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Abstract

A complete analysis of multi-mode bosonic Gaussian chanegiroposed.
We clarify the structure of unitary dilations of general Gsian channels in-
volving any number of bosonic modes and present a normal. fdrine maxi-
mum number of auxiliary modes that is needed is identifiecluting all rank
deficient cases, and the specific role of additive classioienis highlighted.
By using this analysis, we derive a canonical matrix formhefmoisy evolution
of n-mode bosonic Gaussian channels and of their weak comptangesoun-
terparts, based on a recent generalization of the hormakmdedomposition
for non-symmetric or locality constrained situations. llbas us to simplify
the weak-degradability classification. Moreover, we ibgade the structure
of some singular multi-mode channels, like the additivessilzal noise chan-
nel that can be used to decompose a noisy channel in termseasisanbisy
one in order to find new sets of maps with zero quantum capdeibally, the
two-mode case is analyzed in detail. By exploiting the cositfan rules of
two-mode maps and the fact that anti-degradable channetsot&e used to
transfer quantum information, we identify sets of two-mdesonic channels
with zero capacity.
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Bosonic Gaussian channels are ubiquitous in physics. Tiesg\@henever a har-
monic system interacts linearly with a number of bosonic esoghich are inaccessi-
ble in principle or in practice |1,/12/ 3] 4, 5,16, 7]. They proeirealistic noise models
for a variety of quantum optical and solid state systems viteated as open quan-
tum systems, including models for wave guides and quanturdertsates. They play
a fundamental role in characterizing the efficiency of aetgrof tasks in continuous-
variables quantum information processing [8], includingatum communication [9]
and cryptography [10]. Most importantly, communicatiorachels such as optical
fibers can to a good approximation be described by Gaussemtum channels.

Not very surprisingly in the light of the central status oEBuwuantum channels,
a lot of effort has been recently devoted to studying thespprties (see Ref. [4] for
a review), based on a long tradition of work on Gaussian cklar{6, 2, 3]. Specif-
ically, from a quantum information perspective, a key quests whether or not
a channels allows for the reliable transmission of classicguantum information
[3,14,111,12] 13, 14, 15, 16, 177,118]. Significant progressheses made in this re-
spect in recent years, although for some important cageghle thermal noise chan-
nel modelling a realistic fiber with offset noise, the quantcapacity is still not yet
known. In this context, the degradability properties repreé a powerful tool to sim-
plify the quantum capacity issue of such Gaussian chanimeleed, in Refs![16, 17]
it has been shown that with some (important) exceptionss&an channels which
operate on a single bosonic mode (i.e., one-mode Gaussamels) can be classi-
fied as weakly degradable or anti-degradable. This paveddlgdor the solution of



the quantum capacity [19] for a large class of these maps [15]

Here, first we propose a general construction of unitantidita of multi-mode
guantum channels, including all rank-deficient cases. Végatherize the minimal
noise maps involving only true quantum noise. Then, by usingeneralized nor-
mal mode decomposition recently introduced in Ref| [20],ggeeralize the results
of Refs. [16/ 17] concerning Gaussian weak complementaapoéls to the multi-
mode case giving a simple weak-degradability/anti-degpédidy condition for such
channels. The paper ends with a detailed analysis of themtaae case. This is
important since any-mode channel can always be reduced to single-mode and two-
mode components [20]. We detalize the degradability arsaéysd investigate a use-
ful decomposition of a channel with the additive classi@ata map that allows us to
find new sets of channels with zero quantum capacity.

1 Multi-mode bosonic Gaussian channels

Gaussian channels arise from linear dynamics of open bosystem interacting

with a Gaussian environment via quadratic Hamiltoniansodety speaking, they

can be characterized as CPT maps that transform Gausdiesista Gaussian states
[21,122].

1.1 Notation and preliminaries

Consider a system composed hybosonic modes having canonical coordinates
Q1, P1,--+, 0., P,. The canonical commutation relations of the canonical dieor
nates|R;, Ry/| = i(02,);, WhereR := (Qy,---,Qn: Py, --- , P,), are grasped by
the2n x 2n commutation matrix

0 1,
m=| 9 5] ()

when this order of canonical coordinates is chosen, (fieres then x n identity
matrix) [3,/4,/21]. Even though different reordering of tHereents of2 will not
affect the definitions that follow, we find it useful to assuagpecific form fow,,.
One defines the group of resymplectic matrice$p(2n, R) as the set ofn x 2n
real matricesS which satisfy the condition

S09,8T = 7, . (2)

Since Defoy,] = 1, ando,, = —09,, any symplectic matrixS has DefS] = 1
and it is invertible withS—! € Sp(2n,R). Similarly, one hasS” € Sp(2n,R).
Symplectic matrices play a key role in the characterizatibbhosonic systems. In-
deed, define th&Veyl (displacement) operatoes V(z) = Vi(—z) := expliRR7]
with z .= (z1, 29, , T, Y1, Y2, ,Yn)’ being a column vector dk**. Then it
is possible to show [1] that for any € Sp(2n, R) there exists @anonicalunitary
transformatiori/ which maps the canonical observables of the system intcearin
combination of the operatonf%j, satisfying the condition

UV(2)U=V(Sz), (3)
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for all z. This is often referred to as metaplectic representatiamv€rsely, one can
show that any unitary/ which transform§7(z) as in Eq.[(B) must correspond to an
S e Sp(2n,R).

Weyl operators allow one to rewrite the canonical commaratelations as

~ ~ A~

V(z)V() = exp[—%zTagnz’]V(z + 2, 4)

and permit a complete descriptions of the system in termsludracteristic) com-
plex functions. Specifically, any trace-class oper&ofin particular, any density
operator) can be expressed as

~ d?" ~ ~

o= —~9(0;2) V(—2), (5)
(2m)

whered?"z := dx; - - ~dzndyy - - dyn andgb(é; z) is the characteristic function asso-

ciated with the operata® defined by

$(0;2) :=Tr{OV(2)]. 6)

Within this framework a density operatgrof the n modes is said to represent a
Gaussian statéd its characteristic functio(p; z) has a Gaussian form, i.e.,

7, (7)

¢(p; 2) = exp[—3 2" vz +im”
with m being a real vector of mean values, := Tr[/ R;], and the2n x 2n real
symmetric matrixy being thecovariance matriq1, [4,[7] of o. For generic density
operators (not only the Gaussian ones) the latter is defined as thencariaf the
canonical coordinateR, i.e.,

Vg = 1 [P{(Rj —my), (R — mj')}} ; (8)

with {-, -} being the anti-commutator, and it is bound to satisfy theeaainty rela-
tions

v 2 iaQn ) (9)

with o5, being the commutation matrikl(1). Up to an arbitrary veetgrthe uncer-
tainty inequality presented above uniquely characterizeset of Gaussian states,
i.e. any~ satisfying [9) defines a Gaussian state. Let us first notiaeithy satis-
fies (9) then it must be (strictly) positive definite> 0, and have Dét] > 1. From
Williamson theorem([[23] it follows that there exists a syeglc S € Sp(2n,R)
such that

_o| D 0 or
whereD := diag(dy, - - - ,d,) is a diagonal matrix formed by treymplectic eigen-

valuesd; > 1 of 5. ForS = 1,, Eq. (10) gives the covariance matrix associated with
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thermal bosonic states. This also shows that any covariaatex v satisfying [9)
can be written as

v=88T+A, (11)

with A > (. The extremal solutions of Eqg._(11), i.ey, = SST, are minimal
uncertainty solutiongnd correspond to theure Gaussian statesf » modes (e.qg.,
multi-mode squeezed vacuum states). They are uniquelyndigied by the condition
Detlv] = 1 and satisfy the condition [18]

Y= _U2n<7_1)‘72n- (13)

1.2 Bosonic Gaussian channels

In the Schrodinger picture evolution is described by amgjythe transformation
to the states (i.e., the density operators)— ®(p). In the Heisenberg picture
the transformation is applied to the observables of theesystvhile leaving the
states unchanged) — <I>H(é)). The two pictures are related through the identity
Tr[®(5)0] = Tr[p®y(0)], which holds for ally and©. The mapd, is called the
dualof ®.

Due to the representationl (5) arid (6) any completely pa&sitiace preserving
(CPT) transformation on the-modes can be characterized by its action on the Weyl
operators of the system in the Heisenberg picture (e.gReégq17]). In particular,
abosonic Gaussian chann@GC) is defined as a map which, for alloperates on
V' (z) according tol[3]

V(z) — Ou(V(2)) =V (X2) exp[—12"Vz 4+ iv"2], (14)

with v being some fixed real vector @&?", and withY, X € R?>"*?" being some
fixed real2n x 2n matrices satisfying the complete positivity condition

Y >i% with ¥ := 09, — X090, X . (15)

In the context of BGCs the above inequality is the quantunmobbcounterpart of
the uncertainty relation [9). Indeed up to a veatgEq. [15) uniquely determines the
set of BGCs and bounds to be positive-semidefinit&; > 0. However, differently
from (9) in this case strict positivity is not a necessaryregeisite forY”. A com-
pletely positive map defined by Eqs.[14) and (15) will bemefé to as bosonic Gaus-
sian channel (BGC). As mentioned before, such a map is a nfiodalwide class
of physical situations, ranging from communication chassech as optical fibers,
to open quantum systems, and to dynamics in harmonic layiseems. Whenever
one has only partial access to the dynamics of a system thatecavell-described

1This is indeed the matrix

D-1, 0

A:=5 0 -1,

ST (12)
with D as in Eq.[(ID) which is positive sinde > 1.,.
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by a time evolution governed by a Hamiltonian that is a quid@olynomial in the
canonical coordinates, one will arrive at a model descrtbeHqs. [(14) andﬂ)

An important subset of the BGCs is given by seGafussian unitaryransforma-
tions which havé” = 0, X € Sp(2n, R), andv arbitrary. They include the canonical
transformations of EqL{3) (characterized dy= 0), and the displacement transfor-
mations (characterized by haviadg = 1,,, andv arbitrary). The latter simply adds
a phase to the Weyl operators and correspond to unitaryforanations of the form
O (V(2)) = V(=0)V(2)V(v) = V(2) expliv”z].

In the Schrodinger picture the BGC transformation (14ices a mapping of the
characteristic functions of the form

$(p; 2) — G(P(p); 2) == d(p; Xz) exp[—32"Vz +iv' 2], (16)

which in turn yields the following transformation of the nmeand the covariance
matrix

m —— m-+uv,
v o— XTyX +Y. @n

Clearly, BGCs always map Gaussian input states into Gauesigut states.

For purposes of assessing quantum or classical informedipacities, output en-
tropies, or studying degradability or anti-degradabitifya channell|16, 17, 14, 15],
the full knowledge of the channel is not required: Transfoigrithe input or the out-
put with any unitary operation (say, Gaussian unitaried) mat alter any of these
guantities. It is then convenient to take advantage of tl@edom to simplify the
description of the BGCs. To do so we first notice that the s&afissian maps is
closed under composition. Consider théhand ®” two BGCs described respec-
tively by the elementx’, Y’ v and X", Y v"”. The compositiord” o &’ where, in
Schrodinger representation, we first operate wWitland then withd”, is stilla BGC
and it is characterized by the parameters

v = (X//)TU/ + U// ’
X — X/X//
Y — (X//)T Y/ X// + Y// ) (18)

Exploiting these composition rules it is then easy to vetifgt the vectorn can
always be compensated by properly displacing either thetisfate or the output
state (or both) of the channel. For instance by takkg = 1,,, Y” = 0 and
v" = —v', Eq. (18) shows thad’ is unitarily equivalent to the Gaussian chantbel
which hasy = 0 andX = X', Y = Y". Therefore, without loss of generality, in the
following we will focus on BGCs having = 0.

More generally consider the case where we cascade a ger@@cebBdescribed
by matricesX’, Y” as in Eq.[(1b) with a couple of canonical unitary transfoiorat
U, andU, descrlbed by the symplectic matric€sandsS; respectively. The resulting

2 This set does not contain ideal Gaussian measurementdikgldptical homodyning14.



BGC @ is then described by the matrices

X = Si(X')S,, (19)
Y = SI(Y")S,.

For single moder{ = 1) this procedure induces a simplified canonical form/ [13,
17,14] which, up to a Gaussian unitarily equivalence, adl@me to focus only on
transformations characterized ByandY which, apart from some special cases, are
proportional to the identity. In this paper we will genezalisome of these results to
an arbitrary number of modes To achieve this goal, in the following section we
first present an explicit dilation representation in which mapping(14) is described
as a (canonical) unitary coupling between theodes of the system and some extra
environmentaimodes which are initially prepared into a Gaussian statenTe will
introduce the notion of minimal noise channel, showing dulskecomposition rule.

2 Unitary dilation theorem

In this section we introduce a general construction of uypididations of multi-mode
guantum channels. Specifically we show that a CPT channelgaah» modes is a
BGC if and only if it can be realized by invoking< 2n additional (environmental)
modesE through the expression

D(p) = Trp[U(p @ pp)UT, (20)

wherej is the inputn-mode state of the systemy is a Gaussian state of an envi-
ronment,l/ is a canonical unitary transformation which couples theesgswith the
environment, and Tr denotes the partial trace over In case in whichpg is pure,
Eq. (20) corresponds to a Stinespring dilation [24] of tharatel®, otherwise it is a
physical representation analogous to those employed is. R, 17] for the single
mode case.

2.1 General dilations

In this subsection, we will construct Gaussian dilationsluding a discussion of all
rank-deficient cases, and will later focus on dilations lmwg the minimal number
of modes. To proceed, we will first establish some convestsnd notation. To start
with, we write the commutation matrix of our+ ¢ modes in the block structure

oon 0 ] }2n

0 of | }2c, (21)

E
0 =09, Doy = {

whereo,, andok, are2n x 2n and2¢ x 2¢ commutation matrices associated with
the system and environmental modes, respectivelyoskpowe assume the structure
as defined in Eq[{1). FarL, in contrast, we do not make any assumption at this



point, leaving open the possibility of defining it IateEoAccordineg, the canonical
unitary transformatio/ of Eq. (20) will be uniquely determined byZAn + ¢) x
2(n + ¢) real matrixS € Sp(2(n + £), R) of block form

S = [31 82] : (22)

53 54
which satisfies the condition

T E T _
8109, 81 + S205) S5 = 02y,

SoST = o, — $1 0o sg + S9 0'2% S4T =0, (23)

83 09y 83 + 5408 8T = ok
In the above expressions, ands, are2n x 2n and2/ x 2/¢ real square matrices,
while s, ands? are2n x 2¢ real rectangular matrices. Introducing then the covaganc
matricesy > ioq, andyg > iok, of the stateg and jg, the identity [20) can be
written as

= s5178] + 82785 = X 7 X +Y, (24)

2n

5[” O}ST
0 e

where |5, denotes the upper principle submatrix of deg2ee and whereX,Y €
R2<2n satisfying the conditiori {15) are the matrices associatiéhitve channeb.
In writing Eq. (24) we use the fact that due to the definitlofi) e covariance matrix
of the composite state® pr can be expressed asp vg. With these definitions, the
first part of the unitary dilation propertly (R0) can be writtas follows:

Proposition 1 (Unitary dilations of Gaussian channels) Let~y be the covariance
matrix of a Gaussian state dfmodes and let € Sp(2(n + ¢), R) be a symplectic
transformation. Then there exists a symmelric 2n-matrix Y > 0 and a2n x 2n-
matrix X satisfying the conditiori.(15), such that EQ.](24) holds fibrna

Proof: The proof is straightforward: We writg in the block form [2R) and take
X = sTandY = syypsl. Sinceyy is a covariance matrix dfmodes;yz —ioy, > 0
and thereforesy (v — ioy)sl > 0. This leads to Eq[{15) through the identity the
symplectic conditions; 0,57 + s90952 = 04, Which follows by comparing the up-
per principle submatrices of degreef both terms of Eq(23)ll

This proves that any CPT map obtained by couplingtineodes with a Gaussian
state of/ environmental bosonic modes through a Gaussian uriitasya BGC. The
converse property is more demanding. In order to preserd fivd it useful to state
first the following

3With this choice the canonical commutation relations ofithe/ mode read a;, ;] = io; jr

whereR := (Q1,---,Qn; P1, -+, Pu; 71, - - ,70) with Q;, P; being the canonical coordinates of
the j-th system mode and with and, - - - , 75, being some ordering of the canonical coordinates
QF, PE;...;QF, PF of the environmental modes. For instance, takifg = o9, corresponds to

haVeRI: (Qla"' 7Qn;P1a"' 7PR7Q1E? 7Q5Evp1E7 7PZE)'
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Lemma 1 (Extensions of symplectic forms) Let, for some skew symmetad), s;
and s, be 2n x 2n and 2n x 2¢ real matrices forming a symplectic system, i.e.,
S1 09y $1 + s 0%, s = 09,. Then we can always find real matricesand s, such
that S of Eq. [22) is symplectic with respect to the commutatiorrisn@1)).

Proof: Since the rows ob form a symplectic basis, givey ands, (an incomplete
symplectic basis), it is always possible to findands, as above. The proof easily
follows from a skew-symmetric version of the Gram-Schmidigess to construct a
symplectic basid [25]. For a special subset of BGCs, in [S&w2 will present an
explicit expression foiS based on a simplified (canonical) representation ofXhe
matrix that define®. See also Append[x]All

Due to the above result, the possibility of realizing unjtdilation Eq. (20) for a
generic BGC described by the matricEsandY > ¥ = i(09, — X709, X), can be
proven by simply taking; = X7 and finding som&n x 2/ real matrixs, and an
¢-mode covariance matrixz > iok, that solve the equations

5205555 = U2n—8102n51T:E> (25)
sszsg = Y. (26)

With this choice in fact Eq[(24) is trivially satisfied fod al, while s; ands, can be
completed to a symplectic matrix € Sp(2(n + ¢), R). Note thatSp(2(n + ¢), R)
stands for the standard symplectic group here. The uniitatyah property[(20) can
hence be restated as follows:

Theorem 1 (Unitary dilations of Gaussian channels: Conver seimplication) For
any real2n x 2n-matricesX andY satisfying the conditio.(15), there existmaller
than or equal t@2n, S € Sp(2(n + ¢), R), and a covariance matrixz of { modes,
such that Eq.[(24) is satisfied.

Proof: As already noticed the whole problem can be solved by asgumin-
XT and findings, and~z that satisfy Eqs.[(25) and_(26). We start by observing
that the2n x 2n matrix ¥ defined in Eq.[(T5) is skew-symmetric, i.&,= —X7.
Moreover according to Eql_(1L5) its support must be containetie support oft”,
i.e., SuppX] C SuppY]. Consequently giver := ranKY| andr := rankX] as
the ranks ofY” andX:, respectively, one has that> r. We can hence identify three
different regimes:

() k=2n,r = 2n,i.e., bothY andX are full rank and hence invertible. Loosely
speaking, this means that all the noise components in thenehare basically
guantum (although may involve classical noise as well).

(i) k& =2nandr < 2n,i.e.,Y isfull rank and hence invertible, whibke is singular.
This means that the some of the noise components can be plas$ycal, but
still nondegenerate.

(i) 2n >k > r,i.e., bothY andX are singular. There are noise components with
zero variance.



Even though (i) and (ii) admit similar solutions, it is insttive to analyze them
separately. In the former case in fact there is a simple tway of constructing a
physical dilation of the channel with= n environmental modes.

(i) Since X is skew-symmetric and invertible there exists@nre O(2n,R) or-
thogonal such that

00" = {_OM ) ] (27)

wherep = diag(ug, -+, p,) @andp; > 0 foralli = 1,--- ,n (see page 107 in Ref.
[26]). HenceK := M~Y20 with M := ;1 & p satisfies

KYKT = 0y, . (28)
Taking thens, := K~ we gelf
S90m sy =K o KT =%, (29)

which corresponds to Ed. (25) fér= n. Sinces; = X7, Lemma 1 guarantees that
this is sufficient to prove the existence 8f The condition[(24) finally follows by
takingvr = KY K' which is strictly positive (indeeds is invertible andy” > 0
because it has full rank) and which satisfies the uncertagtéygion [9), i.e.,

Y >2iY¥ = qp=KYK">iKYK" =ioy,. (30)

This shows that the channel admits a unitary dilation of trenfas specified in
Eqg. (20) with? = n environmental modes with commutation mati¥, = o, — see
discussion after Eq._(21). Such a solution, however, wilblwe a pure statgz only
if Det[yg] =1, i.e.,

DetY|DefK]* =1 <= DetlY] = Det]Y]. (31)

When Depys| > 1, i.e., DetY| > Det[X], we can still construct a pure dilation by
simply adding further, modes which purify the state associated with the covariance
matrix v and by extending the unitary operaférassociated witt$ as the identity
operator on them. For details see the discussion of casg@h below. This corre-
sponds to constructing a unitary dilation20) with the pstedej; being defined on

¢ = 2n modes.

(i) In this caseY is still invertible, whileX: is not. Differently from the approach
we adopted in solving case (i), we here derive directly aeSgming unitary dila-
tion, i.e., we construct a solution with a puyg that involves/ = 2n environmental
modes. In the next section, however, we will show that, diogpghe purity require-
ment, one can construct unitary dilation that involyeswith only ¢ = 2n — r/2
modes.

4From now on, the symbod—7" will be used to indicate the transpose of the inverse of thigima
Ajie, AT = (AHT = (A7)~ L,
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To find s, and~z which solve Eqs[(25) and (26), it is useful to first transfdrm
into a simpler form by a congruent transformation, i.e.,

cYc? = 1,,, (32)

with C' € Gl(2n, R) being not singular, e.g(’ := Y /2, From Eq. [(Ib) it then
follows that

1y, > iy, (33)
with ¥/ := Y~1/22 Y ~1/2 peing skew-symmetric (i.e}’ = —(X')T) and singular
with rank>'] = ranKX] = r [26]. We then observe that introducing

sg =Yl (34)
the conditions[(25) and (26) can be written as

509 (s5)7 = ¥, (35)
shyve (sh)T = La,. (36)

Finding s}, and~g which satisfy these expressions will provide us also a gwiudf
Egs. [25) and (26).

As in the case of EqL(27), there exists an orthogonal madrix O(2n,R)
which transforms the skew-symmetric matkik in a simplified block form. In this
case however, sinc¥ is singular, we find [26]

0 ‘ | 0 }r/2
1T 0 0 }n — T/2
O¥0" = | — 1 ) V)2 (37)
0 0 tn—r/2
where nowu = diag(p, - - - , pir/2) is ther/2 x r/2 diagonal matrix formed by the

strictly positive eigenvalues g&’| which satisfy the condition$ > x; > 0, this
being equivalent with

L2 2 1, (38)
as a consequence of inequallfyl(33). Define thern= M ~1/2 O with
1 0 0 }r/2
B 0 L2 tn—r/2
M = 0 ? ; L/ (39)
0 1n—r/2 }n - T/2

It satisfies the identity

0 ‘ 17“/2 0 {7’/2 /
KY'KT = L, 0 X V)2 (40)
0 0 tn—r/2.




To show that Eqs[(35) anf (36) admit a solution we take 2n and writec? =
Oan ® 0o, = 04, With 09, @s in EQ.[(1). With these definitions the x 4n rectangular
matrix s;, can be chosen to have the block structure

§ = [K'|oTA], (41)

with A being the following2n x 2n symmetric matrix

0 ‘ 0 0 }r/2
_ AT _ 0 Loy bn—r/2
A=A = 0 ] 0 . Vi /2 (42)
0 ]]-n—r/Z }n - T/2

By direct substitution one can easily verify that Hq.|(35nideed satisfied, see Ap-
pendix B for details. Inserting Ed. (41) into EQ.(36) yieltsw the following equa-
tion

a+ AT +0AT L ABAT = M (43)

for thedn x 4n covariance matrix
a 0

see Appendik C for details. A solution can be easily derivethiing

ot 0 0 }r/2
_3g_ 0 &1y tn—r/2
a=h= . T B “o
0 g:“-n—r/2 }n - 7“/2,
with ¢ = 5/4 and
0 ‘ f ) ( 0 ) }r/2
_ 0 JELy v fn—r/2
S {7 B ‘ ; brpg GO
0 f(g:“-n—r/Z) }n _T/Qv
with f(6) := —(#*> — 1)"/2. For all diagonal matrices compatible with the con-

straint [38) the resulting satisfies the uncertainty relatio; > ioy,. Moreover
since it has Dét/| = 1, this is also a minimal uncertainty state, i.e., a pure Ganss
state of2n modes. It is worth stressing that for= 2n, i.e., when also the rank of
Y is maximum, the above solution provides an alternativevd&adn of the unitary
dilation discussed in the part (i) of the theorem. In thisedd® covariance matrixg
has block elements

azﬁz[u‘l 0}}71 5— 0 flu™) }Z (47)
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wherey is now a strictly positive: x n matrix, while Egs.[(3¥) and (#41) yield

12T M1/2‘ 0 0‘0 pn
S9 =Y 40 { 0 ‘le 0‘0 Vo, (48)

(iii) Here bothY” andX: are singular. This case is very similar to case (ii). Here,
the dilation can be constructed by introducing a strictlgipee matrixY” > 0 which
satisfies the condition

nyln=yv, (49)

with II being the projector onto the support Bt Such aY always existsY =
Y + (1 — II)). By construction, it satisfies the inequality> Y > i%. According
to Sec[I.2Y and.X define thus a BGC. Moreover, sinteis strictly positive, it has
full rank. Therefore, we can use part (ii) of the proof to finghbax 2¢ matrix s, and
Ve = 109, Which satisfy the condition$ (25) anld {26), i.e.

52 0’56 55 = ?7 (50)
52985 = Y. (51)

A unitary dilation for the channeY, X is then obtained by choosing; = 7 and
so = II3,. In fact from Eq.[(51) we get

sovpse =5 ps H=NOYII =Y, (52)
while from Eq. [50)

sp0h st =M 5055 I=TILI =X, (53)
where we have used the fact that SifjpC SuppgY’]. B

In proving the second part of the unitary dilations theoreenprovided explicit
expressions for the environmental staieof Eq. (20). Specifically such a state is
given by the pur@n mode Gaussian stafg characterized by the covariance matrix
~r of elements[(45) and (46). A trivial observation is that tras always be replaced
by the 2n modes vacuum statg))(()| having the covariance matrixl) = 1,.
This is a consequence of the obvious property that accordirien. (11) all pure
Gaussian states are equivaleni@@ (0| up to a Gaussian unitary transformation.
On the level of covariance matrices, Gaussian unitarieespond to symplectic
transformations. For a remark on unitarily equivalentttblas, see also Appendix D.
Hence, by means of a congruence with an appropriate synglesstsformation, we
immediately arrive at the following corollary:

Corollary 1 (Gaussian channels with pure Gaussian dilations) Anyn-mode Gaus-

sian channefb admits a Gaussian unitary dilatiof (R0) with: = |0)(Q| being the
vacuum state oBn modes.
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2.2 Reducing the number of environmental modes

An interesting question is the characterization of the madinumber of environmen-
tal moded that need to be involved in the unitary dilatign20). Fronedtem 1 we
know that such number is certainly smaller than or equal fogwhe number. of
modes on which the BGC is operating: We have in fact expjicitinstructed one of
such representations that involves- 2n modes in a minimal uncertainty, i.e., pure
Gaussian state. We also know, however, that there areisitgin which ¢ can be re-
duced to just:: This happens for instance for BG@swith rankY| = rank>] = 2n,
i.e., case (i) of Theorem 1. In this case one can represechtmnekb in terms of a
Gaussian unitary coupling with= n environmental modes which are prepared into
a Gaussian state with covariance matrix

e =KYK", (54)

— see Eqgs[(30). In general, this will not be of Stinesprimgfénot be a pure unitary
dilation) sinceyg is not a minimal uncertainty covariance matrix. In fact, foe 1
this corresponds to the physical representatio® of Refs. [17]. However i and
X satisfy the conditiori(31), our analysis provides a unithigtion involving merely
¢ = n modes in a pure Gaussian state.

We can then formulate a necessary and sufficient conditiothéochannel® of
class (i) which can be described in termswoénvironmental modes prepared into a
pure state. It is given by

Y=Yy 'l (55)

which follows by imposing the minimal uncertainty conditi¢13) to then-mode
covariance matriX(84) and by usirig {28). Similarly one carify that given a pure
n-modes Gaussian stae and anS € Sp(4n, R) ([22) with an invertible subblock
s,, then the corresponding BGC satisfies conditiod (55). Thevalesult can be
strengthened by looking at the solutions for channels (&) of which the channel
of class (i) are a proper subset.

To achieve this goal, let us first note that with the choice veelenons %, = ,,,
the two matricesr and of Eq. (45) ar&n x 2n covariance matrices for two sets of
independent bosonic modes satisfying the uncertainty relations (90 wespect to
the formo,,. In turn, the matriceg ands” of Eq. (46) represent cross-correlation
terms among such sets. After all, the entire covarianceixnatr corresponds to a
pure Gaussian state.

They key point is now the observation that in Eq.l(43), therimat couples only
with those rows and columns of the matrideand3 which contain elementsl,, _, /
or f(&1,_,2): As far asA is concerned, one could indeed replace the elemeht
and f(u~1) of such matrices with zeros. The only reason we keep theseeelghe
way they are in Eqs|_(45) and (46), is to rendgrthe covariance matrix of a minimal
uncertainty state. In other words, the elements aid 3 proportional tox~! or
f(u~1) are only introduced to purify the corresponding elemenhefsubmatrix,
which is in itself hence a covariance matrix of a mixed Gasstate.

SNot mentioning the trivial case of Gaussian unitary transfation which does not require any
environmental mode to construct a unitary dilation.
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Suppose then that of Eq. (38) has (say) the first /2 eigenvalues equal tb,
e, p1 = ptg = -+ = pyp = 1 whileforj € {+/2+1,---,r/2} we have that
w; € (0,1). In this case the corresponding sub-matrixaoéssociated with those
elements represent a pure Gaussian state, specificallptiem state. Accordingly,
there is no need to add further modes to purify them. Takirsgiito account, one can
hence reduce the number of environmental mdggsthat allows one to represedt
as in Eq.[(20) in term of aure stateyy from 2n to

gpure:n+(n_r//2> :27L—7‘//2 y (56)

i.e. we need the modes ofx plusn — r’/2 additional modes of to purify those of
a which are not in a pure state already. An easy way to charaetdre parameter

is to observe that, according to EQ.37), it correspondeeéatimber of eigenvalues
having modulud of the matrix ofOX'O7, i.e.,

7 = 2n—rankly, — OX/'(X)T0"] = 2n — rank1,, — ¥'(X)7]
= 2n—rankY — XY ' ¥7]. (57)

The explicit expressions for corresponding valuesygfand s, are given in Ap-
pendix[C.1. Here we notice that fof = r = 2n we getlpye = n. This should
correspond to the channels [55) of class (i) for which oneccarstruct a unitary di-
lation with pure input states. Indeed, according to Eq.,([®&Menr’ = 2n the matrix
Y — YY1 37 must be zero, leading to the identiky [55).

Taking into account that’ < r = rankX], a further reduction in the number
of modes/ can be obtained by dropping the requirementygfbeing a minimal
uncertainty covariance matrix. Indeed, an alternativeampirepresentation (20) of
® can be constructed with only

l=n+n-r/2)=2n-1/2, (58)

environmental modes (see AppendixIC.2 for the explicit o).

The whole analysis can be finally generalized to the BGCsaxfc(iii), corre-
sponding to channels that have non invertible matrice$Ve have seen in fact that,
in this case, the staj®; which provides us the unitary dilation of Theorem 1 is con-
structed by replacing” with the strictly positive operator” of Eq. (49). Therefore
for these channelg, of Eq. (56) is defined by Eq.(57) with replaced by, i.e.

7' =2n—rankY — LY ' 27, (59)
TakingY :=Y + (1, — II) with IT being the projector on Supy] this gives,

= 2n—rankKY — XY 2T = 2n —rankY — 2 Y°! £7] — rank 1y, — 1]
k—ranky — LYo 7], (60)
wherek = ranKY|] = ranKII], whereY®! := 11Y ~!1I denotes the Moore-Penrose
inverse [26] ofY’, and where we have used the fact that Skpp- SuppY’]. Re-

membering then that for channels of class i} 2n andY®! = Y ! these results
can be summarized as follows:
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Theorem 2 (Dilations of BGCsinvolving fewer additional modes) Given® a BGC
described by matriceX andY satisfying the condition$ (15) and characterized by
the quantities

r =rankX], 7’ =rankY] — ranky — XY °!'y7). (61)

Thenitis possible to construct a unitary dilation {20) ah8spring form (i.e., involv-
ing a pure Gaussian sta{&;) with at most/p,e = 2n — /2 environmental modes.
It is also always possible to construct a unitary dilatig{2ising? = 2n — r/2
environmental modes which are prepared in a Gaussian, btihaoessarily pure
state.

It is worth stressing that, for channel of class (ii) and)(ithe Theorem 2 only
provides upper bounds for the minimal valueg¢ ahd/,,,.. Only in the generic case
(i) these bounds coincide with the real minima.

2.3 Minimal noise channels

In a very analogous fashion to the extremal covariance ogrcorresponding to
pure Gaussian states, one can introduce the concept of matinbise channel. In
this section we review the concept of such minimal noise obE18] and provide
criteria to characterize them. Given, Y € R?**?" satisfying the inequality_(15),
any otherY” =Y + AY with AY > 0 will also satisfy such condition, i.e.,

Y'2Y > (00 — X 09, X). (62)

Furthermore, due to the compositions rules| (18), the B @ssociated with the
matricesX, Y’ can be described as the composition

P =TVod, (63)

between the channdt associated with the matrices, Y, and the channell de-
scribed by the matrice¥ = 1,, andY = AY'. The latter belongs to a special case
of BGC that includes the so callediditive classical noise channdlk?Z,(3,/4] — see
Sec[2.4 for details.

For anyX € R?"*?", one can then ask how mudeiseY it is necessary to add
in order to obtain a map satisfying the conditionl(15). Thiseg rise to the notion
of minimal nois€]18], as the extremal solutioris of Eqg. (15) for a givenX. The
correspondingninimal noise channelsre the natural analogue of the Gaussian pure
state and allows one to represent any other BGC as i Ef. (@3)gvproper choice
of the additive classical noise madp

Let us start considering the case of a generic chafihef class (i) described by
matricesX andY’. According to Theorem 1 it admits unitary dilation with= n
modes described by some covariance matfisatisfying the condition

Y' = s99pss (64)
for some prope2n x 2n real matrixs,. According to Eq.[(11)yz can be written as

Ve =78+ A, (65)
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with A > 0 and~z minimal uncertainty state. Therefore writing = s,ygs and
AY = s,Ast we can expres$’ as in [63), where now is the BGC associated with
the minimal noise environmental staie. Most importantly since the decomposi-
tion (63) is optimal fory};, the channefp is an extremal solution of Eq._(1L5). We
stress that by constructianis still a channel of class (i): in fact it has the samas
®’, while Y is still strictly positive sinceyz > 0 ands; is invertible — see EqL(64).
We can then use the results of 2.2 to claim¢hatust satisfy the equality (55).
This leads us to establish three equivalent necessary dfident conditions for
minimal noise channels of class (i):

(my) Y =3y 2T, (66)
(ms) DeflY] = Defy)] (67)
(ms3) r=r, (68)

with » andr’ as in Eq.[(61L). Since for class (i) we have that 2n, the minimal noise
conditionms simply requires the eigenvalues of the magrirf Eq. (37) to be equal
to unity. Similarly, minimal noise channels in case (ii) gng can be characterized.

Theorem 3 (Minimal noise condition) A Gaussian bosonic channel characterized
by the matrice§” and X € R*"*?" is a minimal noise channel if and only if

Y =2y°eiy?, (69)
where, as throughout this work, = o5, — X709, X.

Proof: The complete positivity conditiom_(15) of a generic BGC isasitive semi-
definite constraint for the symplectic fork, corresponding to the constraifnt—
io9, > 01in case of covariance matrices of states efiodes. In generat, = rankX]

is not maximal, i.e., not equal n. When identifying the minimal solutions of the
inequality [15), without loss of generality we can look fbetminimal solutions of

Y' —i¥ >0, (70)
where here

U

Y= _—p] 0 | : (71)
0

with o > 0 being diagonal of rank/2 (hereY’ = OYOT andY = OXOT with
O € O(2n,R) orthogonal). The minimal solutions of inequalify [70) anen given
by Y’ = SST @ 0, whereS is ar x r matrix satisfying

0 pn r_| 0 pn
S[_M O]S—[_M 0], (72)
so a symplectic matrix with respect to the modified symptefctim, so an element
of {M € GI(r,R) : M = (u*? @ p**)S(u="? @ n='/?), 8 € Sp(r,R)}. From
this, it follows that the minimal solutions df (70) are eXxgaiven by the solutions
of Y/ = ¥/(Y")®(¥)T, from which the statement of the theorem folloulis.
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2.4 Additive classical noise channel

In this subsection we focus on the mapsvhich enter in the decomposition_(63).
They are characterized by havidg = 1,, andY > 0. Note that with this choice
the condition[(1b) is trivially satisfied. This is the clasalinoise channel that has
frequently been considered in the literature (for a reviese, e.g., Ref[ [4]). For
completeness of the presentation, we briefly discuss thssdf multi-mode BGC.

If the matrixY” is strictly positive, the channdl is the multi-mode generalization
of the single mode additive classical noise channel[17].3n4he language of Ref.
[17], these are the maps which have a canonical fBsnaccording tol[1/7]). Indeed,
one can show that these maps are the (Gaussian) unitaryatantito a collection
of n single mode additive classical noise maps. To see thissleipply symplec-
tic transformations{; andS,) before and after the chann&l Following Eq. [(19)
this leads to{1,,,Y} +— {915, SIYS,}. Now, sinceY > 0, according to
Williamson's theorenf23], we can find a5, € Sp(2n, R) such thatS!'Y' S, is diag-
onal diag\;, -+, A, A1, -+, M) With \; > 0. We can then také; = S, ! to have
S15, = 1,,. ForY > 0 but notY > 0, the mapsV that enter the decomposition
Eq. (63) however include also channels which are not ufhyjtatuivalent to a col-
lection of B, maps. An explicit example of this situation is constructedppendix
E.

2.5 Canonical form for generic channels

Analogously to Refs.[[17, 13, 14], any BGE€ described by the transformation
Eq. (I7) can be simplified through unitarily equivalence pplging unitary canoni-
cal transformations before and after the action of the chlamhich induces transfor-
mations of the forn(19). Specifically, givemamode Gaussian chann&ldescribed
by matrix X andY we can transform it into a new-mode Gaussian channg] de-
scribed by the matrices

X.=5:X8,, Y, = S1YS,, (73)

with 512 € Sp(2n,R). As already discussed in the introductory sections, from an
information theoretical perspectideand®,. are equivalent in the sense that, for in-
stance, their unconstrained quantum capacities coindédecan then simplify the
analysis of the:-mode Gaussian channels by properly choosingnds; to induce a
parametrization of the interaction part (i.&.) of the evolution. The resulting canon-
ical form follows from the generalization of the Williamstimeorem|[23] presented

in Ref. [20]. According to this result, for every non-singumatrixX € GI(2n, R),
there exist matriceS; » € Sp(2n, R) such that

1, 0
X.=5,XS, = { 0 JT} , (74)

whereJT is an x n block-diagonal matrix in the real Jordan form [26]. This d¢smn
developed a little further by constructing a canonical aegosition for the symplec-
tic matrix S associated with the unitary dilation_(20) of the channel.
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For the sake of simplicity in the following we will focus oneltase of generic
quantum channel® which have non-singulaX € Gi(2n,R) and belong to the class
(i) of Theorem 1 (i.e., which have = rank>] = 2n). Under these condition&
must admit a canonical decomposition of the fokml (74) in \wtal the eigenvalues
of J are different froml. In fact one has

Y =09, — X 09, X =857 [00, — X[ 09, Xc] S5 =575, (75)
with X. being the skew-symmetric matrix associated with the chiadpe.e.,

5. 0  1,-J

Tl Ut -1 0 (76)

Since rank:.] = rankX] = 2n, it follows that.J cannot have eigenvalues equal to
1. Similarly, it is not difficult to see that i\ has a canonical forni_(¥4) with all the
eigenvalues of/ being different froml, then® and®.. are of class (i). However, a
special case in whick = 1, is investigated in details in Appendix E.

Consider then a unitary dilatiof_(20) of the chanfelconstructed with a not
necessarily pure Gaussian state of / = n environmental modes. According to
the above considerations, such a dilation always exists.SLe Sp(4n,R) be the
4nx 4n real symplectic transformation (22) associated with thressponding unitary
U. Assumings; = XTI an explicit expression for this dilation can be obtained by

writing
|1 0 | F 0
54 - |: 0 J/ :| 9 Sj - |i 0 G] :| 9 (77)

where, forj = 2,3, F;, G; aren x n real matrices. Imposing Eq$. (23), one obtains
the following relations

J'+ BGT =1, JT + BGT =1,,
G+ FRJT =0, Gl +rJ" =0, (78)

whose solution gives afi € Sp(4n, R) of the form

1, 0 ‘ (1, - JHG-* 0
0 J 0 G
S=|—arFT 0 i, o | (9

0 GLI(J-1,) 0 G1JG

with G being an arbitrary matrix; € Gl(n, R). As a consequence of this fact, and
because the eigenvalues .bfare assumed to be different from s,, s3 and s, are
also non-singular. This is important because it shows thahbosingS as in the
canonical form[(79) we are not restricting generality: Th&ue ofs, can always be
absorbed into the definition of the covariance mairixof pr by writing

Ve =s55"Yes5", (80)

(see also AppendixID). Taking this into account, we can awielthat Eq.[(79)
provides an explicit demonstration of Lemma 1 for channélslass (i) with non-
singularX.
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Sinced. is fully determined byX. andY., the above expressions show that the
action of ®. on the input state does not depend on the choic@.oAs a matter of
fact, the latter can be seen as a Gaussian unitary opef@tiamaracterized by the
n-modes symplectic transformaticip(2n, R),

GT| 0
AC¥:|: O G—1:| )

applied to final state of the environment after the inteaactvith the input, i.e.,
d = UgdUL, whered is theweak complementary mdpr G = 1,,, andd; is the
weak complementary map in presenceb#4 1, — see the next section for details.
Since the relevant properties of a channel (e.g., weak debiiéty [16,/17]) do not
depend on local unitary transformations to the input/oupates, without loss of
generality, we can considé¥ = —.J and the canonical form fof € Sp(4n,R)
assumes the following simple expression

(81)

1, 0 ‘1n——J‘T 0
0 J 0 —J

5= 1, 0 1, 0 (82)
0 1,—J 0 J

The possibility of constructing different, but unitarilge@valent, canonical forms for
S is discussed in AppendixID.

3 Weak degradability

Among other properties, the unitary dilations introducedectior 2 are useful to
definecomplementarypr weak complementarghannels of a given BG@. These
are defined as the CPT mépwhich describes the evolution of the environment under
the influence of the physical operation describing the cabfi®, 17], i.e.,

®(p) :=Trs[U(p @ pi) U], (83)

wherep, o andU are defined as in EQ_{R0), but the partial trace is now taken ov
the system modes.

Specifically, if the statgz we employed in constructing the unitary dilation of
Eq. (20) is pure, then the map is said to be theomplementarpf ® and, up to
partial isometry, itis unique [27, 28, 29,130]. Otherwisksitalledweak complemen-
tary [16,[17]. Since in Eq[{20) the statg; is Gaussian andl is a unitary Gaussian
transformation, one can verify thétis also BGE. Expressing the Gaussian unitary
transformatiori/ in terms of its symplectic matri$ of Eq. (22) the action of is
fully characterized by the following mapping of the covaka matrices of p, i.e.,

Oy 83783 + Sa7S] (84)

6In general however, it will not map the input modes inton output modes. Instead it will
transform them intd modes, with¢ being the number of modes assumed in the unitary dilafigh (20
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which is counterpart of the transformat|0|-(16) and (24} tharacteriz&. The
channel® is then described by the matricés = st andY = s4ypst which, ac-
cording to the symplectic propertiés {23), satisfy the ol

Y >i%  with =0 XT0,,X. (85)

The relations betweef and its weak complementafly contain useful informa-
tion about the channeb itself. In particular we say that the channklis weakly
degradable(WD) while & is anti-degradable(AD), if there exists a CPT maf’
which, for all inputsp, allows one to recoveb () by acting on the output stafig(),
ie.

Similarly, one says thab is AD and® is WD if there exists a CPT map such that
Tod=2>. (87)

Weak degradability [16, 17] is a property of quantum chasfeleneralizing the
degradability propertyntroduced in Ref.[[27]. The relevance of weak-degradgbili
analysis stems from the fact that it allows one to simplify fuantum capacity sce-
nario. Indeed, it is known that AD channels have zero quardapacity [16| 1/7],
while WD channels withpg pure are degradable and thus admits a single letter ex-
pression for this quantity [27]. A complete weak-degratigbanalysis of single
mode bosonic Gaussian channels has been provided in Rgl {[L@Here we gener-
alize some of these resultsito> 1.

3.1 Acriterion for weak degradability

In this section we review a general criterion for degradgbdf BGCs which was
introduced in Ref.[[15], adapting it to include also weak rdelgbility. Before en-
tering the details of our derivation, however, it is worthioimg that generic multi-
mode Gaussian channels are neither WD nor AD. ConsiderimafatD single-mode
Gaussian channd} having no zero quantum capacity > 0 (e.g., a beam-splitter
channel with transmissivity 1/2). Define then the two mode chanrielz & with

® being its weak complementary defined(in|[16, 17]. This is Gauwssince botld
and® are Gaussian. The claim is thht @ is neither WD nor AD. Indeed, its weak
complementary can be identified with the map ®. Consequently, sincé @ @
and® ® @ differ by a permutation, they must have the same quantuncispd'.
Therefore if one of the two is WD thayothof them must also be AD. In this cagg
should be zero which is clearly not possible given Bat> (). In fact, one can use
® ® P to reliably transfer quantum information by encoding ibitihe inputs ofb.

In this respect the possibility of classifying (almost) sihgle-mode Gaussian maps
in terms of weak degradability property turns to be rathesmaarkable property. We
now turn to investigating the weak degradability propertsé multi-mode bosonic
Gaussian channels deriving a criterion that will be appieBec[4.1 for studying in
details the two-mode channels case.

21



Consider an-mode bosonic Gaussian chandetharacterized the unitary dila-
tion (20) and its weak complementady(83). Let{X, Y}, {X,Y} be the matrices
which define such channels. For the sake of simplicity we agiumeX and X to
be non-singularX, X € Gi(2n,R). Examples of such maps are for instance the
channels of class (i) wittk non-singular described in Séc. 2.5. Adopting in fact the
canonical form[(82) folS we have that

1, 0 - [ o, 0
[0 B ] e

with all the eigenvalues of being different fromi.

Suppose now thab is weakly degradable with being the connecting CPT map
which satisfies the weak degradability conditibn] (86). AfRRefs. [16) 17] we will
focus on the case in which is BGC and described by matricéX'7, Y7}. Under
these hypothesis the identify {(86) can be simplified by u#fiegcomposition rules
for BGCs given in Eq.[(18). Accordingly, one must have

Xy = X7'X,
Yr = Y- X'vXy. (89)

These definitions must be compatible with the requiremeattZhshould be a CPT
map which transforms the system modes into theenvironmental modes, i.e.,

Yr>i (05 — Xiia%XT) . (90)

Combining the expressions above, one finds the followingkvaessyradability con-
dition for n-mode bosonic Gaussian channels [15], i.e.

Y — XTX (Y 4 i03) X' X +ick > 0. (91)

In order to obtain the anti-degradability conditini(8T)sisufficient to swag X, Y’}
with { X, Y} and the system commutation matsix, with o2, in Eq. [91), i.e.,

Y — XTX (Y 4+i0E) XX +ioy, > 0. (92)
Equations[(91) and (92) are strictly related. Indeed since
Y - XTX (Y 4+ i0E) XX +ioy, (93)
— _XTXT (f/ — XTX (Y + i) XX + iaﬁ) Xlx,
equation[(9R) corresponds to reverse the sign of the inig@d), i.e.
Y — XTX (Y 4 i00) X 'X +i0k <O0. (94)

Hence to determine ib is a weakly degradable or anti-degradable channel, it is the
sufficient to study the positivity of the Hermitian matrix

Wi=Y - X"X (Y +i09,) X ' X +ick. (95)
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In the case in whicid = n this can be simplified by reminding that an Hermitian
2n x 2n matrix W partitioned as

W Wy
"= [ Wi Wy ] (59)
with W; beingn x n matrices is semi-positive definite if and only if
Wi >0 and Wy — WiW, "W, > 0, (97)

the right hand side being the Schur complementiofsee, e.g., page 472 in Ref.
[26]). Using this result and the canonical form{(82), Eqg.)(8an be written as in

Eq. (97) with

W, = (L, -JH'a,-JHt -y (98)
Wy = i(J T—21,)—Ya(J T —1,) — (1L, — J )V,
W3 = YE), - (J_l - 3]-n)Y§(J_T - ]]-n) )

and

Y1 Y.
Y:{Y;TYz} (99)

For the anti-degradability condition_(92) simply repldge with [<] in Eq. (97).

4 Two-mode bosonic Gaussian channels

Here we consider a particular caseromode bosonic Gaussian channel analysis
above, namely, the case of= 2. This is by no means such a special case as one
might at first be tempted to think since anymode channel can always be reduced
to single-mode and two-mode parts [20]. For two-mode chiagntie interaction
part and the noise term of a generic two-mode bosonic Gaussiannel, X and

Y, respectively, ard x 4 real matrices. Particularly, we will focus on two-mode
channelsb which have non-singulak and belong to the class (i) of Theorem 1 (i.e.,
which haver = rankX] = 4), like in Sec[2.b. These maps can be grasped in terms
of a unitary dilation of the form(82) coupling the two systémsonic modes with
two additional (environmental) modes, whefés a2 x 2 real Jordan block. In order

to characterize this large class of two-mode BGCs, one hagamine only three
possible forms of/:

e Class A: This corresponds to taking a diagonalizable Jobdtzck, that is,

J::JOZ{S 2} (100)

wherea andb are real nonzero numbers. It represents the trivial casévad-a
mode bosonic Gaussian channel, whose interaction termramesouple the
two modes. Actually, we call it of clas4; if a # b and of class4, otherwise.
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e Class B: This is to takd as a non-diagonalizable matrix with a nonzero real
eigenvalue: with double algebraic multiplicity (but with geometric ntiplic-
ity equal to one), i.e.

J =, = {a ]’]. (101)

In this case the Jordan block is called defective [26]. Hamgisy interaction
between the bosonic system and the environment, couplegvib system
modes, is switched on.

e Class C: Here the real Jordan blo¢kas complex eigenvalues, i.e.

a b
J._Jz—[_ba], (102)
with b # 0; the eigenvalues of area + ib. Again, the two system modes are
coupled by the noisy interaction with the environment tigtothe presence of
the element.

In order to explicit the form ot = syyzs?, with s, being defined as in EJ.(B2),
we consider a generic two-mode covariance matrix in theaflea standard form
[32] for the environmental initial covariance matrjx, i.e.

[0
w=|0 5] (109
where

ng:[ . L*}, (104)
f—+ Y

andz, y, z, _ are real number satisfying+y > 0, zy — 22 > 1 andz?y? — y* —

2 + (z_zp — 1)? — zy(22 + 23) > 0 because of the uncertainty principle. More
generally, one can apply a generic two-mode (symplectiageging operatoV (e)

to the environmental input state, i.e.,

e =V(e)reV ()" (105)
where .
| R0 | ct+hs —gs
V(E)_[ 0 R}’R_[ —qs c—hs}’ (106)

andc = cosh(2r), s = sinh(2r), h = cos(2¢), ¢ = sin(2¢) ande = re*¢ being the
squeezing parameter [32]. Finally, it is interesting talgthow the canonical forms
of two-mode BGCs compose under the product. A simple caiomahows that the
following rules apply

o ‘ A B C

A A A/B  A/B/C
B| A/B Ay /B A/B/C
C|A/B/C A/B/C A/C
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In this table, for instance, the element on row 1 and columepiasents the class
(i.e., A) associated to the composition of two channels of the saass4l Note that
the canonical form of the products with a “coupled” channe. (with B or C) is
often not uniquely defined. For instance, composing twaosaaéwith

(J1)i = [ C(L)i ;i } (207)

with i = 1, 2) channels will give us either a clads channel (ifa; +a; = 0) or aclass

B channel (ifa; + a2 # 0). Composition rules analogous to those reported above
have been analyzed in details for the one-mode case in Ré}. A the following

we will study the weak-degradability properties of theseéhclasses of two-mode
Gaussian channels.

4.1 Weak-degradability properties
The weak-degradability conditions in Egs.|(97) become

M- (L—J Hh@-J =0 (108)
and

JTJ" — (1y — J)Ty(1y — J) (109)
—(J T = 20y) 1) — (Lo — S )y (L — T Y] (I —20,) > 0.

In the same way, the anti-degradability is obtained wheih lbioése quantities are
non-positive. As concerns the environmental initial stdtthe unitary dilation, one
can consider a generic two-mode state as in[Eq.](105). Onam# kve find that, if
[J, R] = 0, this two-mode squeezing transformatiiie) can be simply “absorbed”
in local symplectic operations to the output states and theoes not affect the
weak-degradability properties. On the other han@/,i?] # 0, we find numerically
that the introduction of correlations between the two emvwinental modes contrasts
with the presence of (anti-) weak-degradability featuiidserefore, one can consider
the particular case in which the environment is initiallyairstate with a symmetric
covariance matrixyz as in Eq. [(I0B) withe = y = 2N +1landz_. = 2, =0
whereN > 0. In this caseyr = (2N + 1)1, corresponds to a thermal state of two
uncoupled environmental modes with the same photon avenagderN and it is
possible to see the results above easily through analytetails. In fact, we study
analytically the positivity condition in Eq._(91) in the #& possible forms of the real
Jordan blockJ;.

In the uncoupled casé, as in Eqg.[(100), substituting in Eq._(91), we find that
these two-mode bosonic Gaussian channels are Wi 1/2 and AD fora, b <
1/2 (any N > 0). In other words, in the case of two uncoupled modes, the weak
degradability properties can be derived from the result®f@-mode bosonic Gaus-
sian channels: tensoring two WD (AD) one-mode Gaussianraanvith WD (AD)
one-mode Gaussian channels yield two-mode Gaussian deavimieh are WD (AD).
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In the case of defectivé, i.e., J; as in Eq.[(101), corresponding to noisy inter-
action coupling the two system modes, substituting in Efj),(@e find that, on one
hand, these two-mode bosonic Gaussian channels are WD if and

1 2a-1]
1+ 3 ale=D) 1)] . (110)

On the other hand, itis AD if < 0 andN > N, (see Fig[ R). Note that the defective
Jordan blocks are not usually stable with respect to peatiohs [20]. Indeed, we
find numerically that, applying proper two-mode squeeznaggformations to the
environmental input, these weak-degradability condgioeduce to the decoupled
case ones. In Fid.] 1 we consider, for simplicity, a symmaedrneironmental initial
statev; as in Eq. [(10b) withv = y, z— = 0 ande = r, and we plot the relation
betweenr, z, and the minimum value of such that/ := J; reduces toJ := J,
corresponding to the decoupled case. One realizes thatazqg parameterclose
to 1 is enough to decouple the two modes representing the syséering quantum
information. Moreover, let us point out that this squeezimgshold (r) increases
slightly with the presence of correlations, ) while decreases when increasing the
level of noise £) in the initial environmental state. .

1
N>N12:§

Figure 1: Relation between the parameters, and the minimum value of in the
initial environmental state such that the two-mode chawitbl X = 1, ® J; reduces
to the decoupled casg’ = 1, & J, with the same interaction parametefor the
two system modes.

Finally, in the case of real Jordan block with complex eigdngs, i.e.,J; as
in Eq. (102), the corresponding two-mode bosonic Gausdiammels are WD if

a>1/2and
1 N\
N> Ny:i== —1+(1+7>2) . (111)

2 (1-2a

while they are AD ifa < 1/2 andN > N, (see Fig[R). In both of these cases (real
and complex eigenvalues), in which the interaction termpteaithe two bosonic
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Figure 2: In continuous line we repoN; as function ofa in the case of/;. For
N > N; the map is WD ifa > 1 and AD ifa < 0. In dashed line we plotV, as
function ofb whena = 0 in the case off;. For N > N, the channel is (AD) WD if
a>1/2(a<1/2).

modes, there is the (apparently) counter-intuitive faat ibove a certain environ-
mental noise threshold the weak-degradability featur@earp while for one-mode
bosonic Gaussian channels they do not depend on the iriti of the environ-

ment. Actually, one would expect at most that, when the le¥¢he environmental

noise increases, the coherence progressively decreasi¢s ba destroyed. It would

mean that it becomes more and more difficult to recover the@mwent (system)

output from the system (environment) output after the negylution. However,

the things go the other way around when multi-mode bosonits&an channels are
considered.

4.2 Channelswith zero quantum capacity

Analogously to Ref.[[17] where the one-mode case is invatg) one can enlarge
(other than the AD maps) the class of two-mode BGCs with- 0, composing a
generic channel with an AD one. First of all, consider a clehdnas in Section
[2.3, but being AD (not necessarily minimal noise), then thepg®’, defined in
Eq. (63), have zero quantum capacity, i.e., they cannot bd testransfer quantum
information. For instance, one can chogge= (2N.+1)1,, i.e., the environmental
initial state of the mappb is a multi-mode thermal state witN,. being the average
photon number for each mode, such tldais AD or simply with zero capacity;
therefore, for anyy, > v = (2N. + 1)1, as in EQq.[(6b), the mag’ of Eq. (63)
has@ = 0. Particularly forn = 2, using these observations and choosWgequal
to eitherNV; (anda < 0) or N, (anda < 1/2) as in Egs. [(110) and_(111), one
obtains that forX = 1, & J; » andY”’ = sy7ps] [with s, as in Eq.[(8R)] the resulting
channeld’ has always zero capacity. In this way, one extends congilyettze set of
two-modes maps with zero capacity, other than the veryqudati cases of two-mode
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environmental thermal states studied above and shown iriZ-igor instance, two-
mode squeezing can be applied to the thermal staiacluding not only states with
N > N. but also with not trivial two-mode correlations such thgt> (2N, + 1)1,.
Therefore, just considering this last simple inequalitg arcludes so a larger set of
maps that have zero quantum capacity.

Moreover, we observe that, according to composition rutese, the combina-
tion & = ®;; o &; of two channelsb; and®;; of classA, andC, respectively, with
Jordan blocks/; as in Eq.[(10D) withu; = b; andJ;; as in Eq.[(10R) withs;; and
brr # 0, givesJ = ayJ;r which is in the clas€’. Now, since we haveéV; > 0,
N, > 0 and assuming; < 1/2, the channef; is AD and the resulting channé
must have) = 0. Varying the parameters but keeping the prodyet;; = « and
arbr; = b fixed, the parameteN can assume any value satisfying the inequality

1| (5(1—4a+ 8a2 +8b%)\ "
N > Z[( E p—_ — 2] . (112)

Note thata; has been chosen equal 132 and ®; corresponds to two uncoupled
beam-splitter maps with transmissivity2. We can therefore conclude that all chan-
nels of the formC with N as in Eq.[(11R) have zero quantum capacity — sed Fig. 3.
Consider now the compositiah = ®;; o ®; of two channelsb; and®;; of class
C andA, (i.e., in the opposite order with respect to above), resgelgt with Jordan
blocksJ; as in Eq.[(10R) withi; andb; # 0 and.J;; as in Eq.[(10D) withu;; = by,
giving J = a;;J; which is in the clas¢’. As before, since we haw;, > 0, N, > 0
and assuming agairy; < 1/2, the channefb, is AD and the resulting channel has
@ = 0. Varying the parameters but keeping the produet;; = a andba;; = b
fixed, the parameteN can assume any value satisfying the inequality

1
N> 1B+ (a— 1)) (@ + 17

2 2 o 2 2 1/2
((1+4a +40?)(1 — 4a + 8a +8b)) _2]7 (113)

where agaim;; is chosen equal ta/2. Again we can conclude that all clags

channels withV as in Eq.[(11B) have zero quantum capacity. However, ndtatdlie

constraint in Eq.[{113) is an improvement with respect tocthestraint of Eq.[(112)
— see FiglB.

5 Conclusions

In this work, we have presented a complete analysis of gemeuiti-mode Gaus-
sian channels by proving a unitary dilation theorem and bgirig their canonical
form. This is a simple form that can be achieved for any Gamsguantum channel,
as a convenient starting point for various consideratidf@. instance, it allows us
to simplify the analysis of the weak-degradability propestof multi-mode bosonic
Gaussian channels. Minimal output entropies, or quantuhckassical information
capacities and other difficult questions might be tackladgithe canonical form of
multi-mode Gaussian channels shown in this paper. Herenvesiigated in details
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Figure 3: The continuous line depicts pldt as in Eq. [(1111) versuls with a = 1
in J, of Eq. (102). ForN > N, the channel is WD (AD) ifa > 1/2 (a < 1/2).
The dashed line refers to the bound in Hg. (112), while théethslot line to the
one in Eq.[(11B); above these bounds the classap is WD but withQ) = 0. Note
that Eq. [11B) is an improvement with respect to the constfiEq. [112). Similar
bounds can be obtained in the case: 1/2, enlarging the group of AD maps with
other channels witl) = 0.

the two-mode scenario that is relevant since asfimode channel can always be re-
duced to single-mode and two-mode parts [20]. Furthernibeaesults of this paper
could play a basic role in characterizing the efficiency aftomious-variables quan-
tum information processing, quantum communication andtyua key distribution
protocols.
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A Proof of Lemmal

Note that it does not restrict generality to take = o4, as this can always be ac-
companied by an appropriate similarity transform. Our pgobat hand of extending
a symplectic form is then equivalent to the following prahleSuppose we are given
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column vectors, - - - , e, andfy, - - -, f, from R*"*% that satisfy

el oaminer = 0, (114)
flosmenfr = 0, (115)
€]TU2(n+Z)fk = 5j,k7 (116)
for j,k = 1,--- ,n. The procedure continues by identifying vectexs; and f,, .,
such thae?, ;0o(40) fny1 = 1 and
e 102t )W = fr 1 02mipw =0 (117)
for all
weWn = Spamela"' 7en7f1>"' 7fn) (118)
Now define
T/Vnl ={w: wTU2(n+3)v =0Yv € W, }. (119)
Itis now not difficult to see that/, "W~ = {0} andR*"+) = W,, @ W;-: Suppose
that the vectow hasv’oy,10e; = a; andv’ogppp f; = f; for j = 1,--- . n.
Then

_l_

v = [Z (=i fi + Bie;) vy (afi— ﬁj%‘)] ; (120)
7j=1 7j=1

where the first term is element @f,, and the second d# . Following a symplectic

Gram-Schmidt procedure, the symplectic basis can hencetopleted, which is

equivalent to extending the matricesands, to a symplectic

S = [ o1 o2 } € Sp(2(n+0),R). (121)

83 84

B Derivation of Eg. (35)

Here we show that Eq._(85) admits solution fgras in Eq.[(4L). In fact, assuming
ol = 09, ® 09, With 75, as in Eq.[(L), one has

n —

_ Oon | 0 KT
G -2 = (5 ]0ma) [T | - v

= K 0, K "4+ 0"A0,, ATO -

= K ' (KYK"+B) KT+ 0"A0,, ATO - %

= K 'BK "+0"40,5,,A"0

= O (M'?BMY?+ Agy, AT)OT, (122)

where we used EqL(40) to write,, = KXK' + B, with B being the2n x 2n
matrix

0 0
0 ]]-n—r/Z
0

B = (123)

0 0
0 _171—7”/2

The identity [35) finally follows by noticing that the lastrte in Eq. [122) cancels
sinceM'/2B = BM'/? = BandAg,, AT = —B.
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C Propertiesof the environmental states

In this appendix we first give an explicit derivation of Eig3J4 Then we analyze in
details the property of the stafe associated with the covariance matyix defined

be the Eqs[(45) and_ (¥6). Replacing Eql (41) into Eq. (26)gete

B a | o KT
[ K~1|OTA ] [545} [ATO}
= K1'aKT+O0TASTK T+ K1'§ATO+0TABAT O
OF (MY aMY? + A5" M'? + MY25 AT + ABAT) O,

Ly, = shyp (sh)" =

which leads to

M t=a+MV2AT +6ATM 2+ M2 ABATMY?, (124)

and hence to Eq[(43) by the fasf—'/24 = ATM~'Y/2 = A = AT. Such an
equation admits the solution given in Eds.](45) dnd (46).liEily this corresponds
to the4n x 4n covariance matrixy of the form

R 0 0 fw) | 0
0 1 0 | f(£1)
10 fw ] 0

1 0 f(§1)
flw)] 0 pt 0
f(€1) 0 1
fw)] 0 0 0 pt o
L 0 | f(€D) 0 1]

where for easy of notatiaoh := 1,,_, ». By looking at the structure of this covariance
matrix, one realizes that it is composed by two independetst formed by and

2n — r modes, respectively. The first set describgd thermal states characterized
by the matriceg,~! which have been purified adding furthet2 modes. The second
set instead describes a collection2gh — r/2) = 2n — r modes prepared in a
pure state formed by — r/2 independent pairs of modes which are entangled. By
reorganizing its rows and columns this can be cast into thelsir form

ff-_ll) i) ‘ 0 %7‘

_ K I r

" 0 ‘ 512n—7‘ f(£12n—r> }27’L -r (125)
f(£12n—7") 512n—r }27’L -7,

where we used to indicate the: x r matrixu = u @ pu.

C.1 Solution for lyyre = 2n — 1’ /2 environmental modes

Definingr’ as in Eq.[(5F) we choose the environmental commutation rmtdrbe

ok, = 09, ® 09, With 0y, andoy,_,» as in Eq.[(1). A unitary dilation with,e =
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2n—1' /2 environmental modes in a pure state is obtained by hayirg Y /25, with
sy as in Eq.[(41). In this case, howeveljs a rectangular matrin x 2(n — r'/2)

of the form
_ 0 0 _
0 0 0
o 0 ]]-n—r/Z
4 = 0 0
0 0 0
L 0 ILn—r/? i

pr'/2

Fo =)/

{Z};T/Q (126)
Fr—1")/2
}n—r/2.

Similarly, the covariance matrix; can be still expressed as in EQ.|(44). In this case,
yet,« is a2n x 2n matrix of block form

L. 0 0
0 |pt 0 0
o 0 0 gﬂ-n—r/2
“= L.,,] 0 0
0 0 |pu,t 0
L 0 0 g:n-n—r/Q |

b2

} =172
e aa
}(r—r')/2
}n—r/2,

where¢ = 5/4 andy, is the(r — ') /2 x (r — r') /2 diagonal matrix formed by the
elements of: which are strictly smaller thah [ is the(2n — ') x (2n — r’) matrix

e =
_ n—r/2 n—r
- ) R I I (R E R
0 gﬂ-n—r/Z }n - T/27
and
[ 0 0 1 }r/2
0 ) : 0 ; Hr=1")/2
_ 0 J(EL,_, tn—r/2
5= ; ; 2 Vg (129
flug™) 0 0 Hr—1")/2
L 0 f(g:“-n—r/2> | }n - T/27

with f as in Eq.[(46).

By looking at the structure of this covariance matrix, oraiges that it is com-
posed by three independent pieces. The first one describ@keeation of /2 vac-
uum states. The second one, in turn, describesr’) /2 thermal states characterized
by the matriceg., ! which have been purified by adding further— ') /2 modes.
The third one, finally, reflects a collection ®fn — r/2) = 2n — r modes prepared
in a pure state formed by — /2 independent pairs of modes which are entangled.

32



C.2 Solution for ¢ = 2n —r/2 not necessarily pure environmental
modes

In this subsection, we present the alternative derivatioa dilation that does not
necessarily involve an environment prepared in a pure.s@teosing the commu-
tation matrixel, = o4, ® 09, With o5, ando,, . as in Eq.[(1), the matrix, can
be still expressed as in Ed. (41). In this case, howedes a rectangular matrix
2n x (2n — r) of the form

0 ‘ 0 }r/2
:n-n—r/Z }n - T/27

Similarly, vz has the block form(44), whereis still the2n x 2n matrix of Eq. (45),
while 5 andd are, respectively, the followin@n — r) x (2n —r) and2n x (2n —r)
real matrices:

I 3 0 Yn—r/2
b= [ 0 [eL } Yn—r/2, (131)
0 0 Yr/2
_ 0 f€Luyyp) | In—1/2
0= 0 0 Vr/2 (132)
f(g:“-n—r/2) 0 }n_ T/27
with £ andf as in Eq.[(46). That is,
I 0 0 0 7 }r/2
0 €1 1 0 | flED) | Yyn—r/2
B W 0 0 0 }r/2
e = 0 @ | en] 0| jn-rp @
0 0 0 | f(éD) 1 0 Yn—r/2
L0 | flen) 0 0 0 €1 tn—r/2,

with 1 = 1,,_, ,. This covariance matrix now consists of two independertspdihe

first one describes a collection of2 thermal states described by the matripes.

The second instead reflects a collectior2@f — r/2) = 2n — r modes prepared in a
pure state formed by—r /2 independent couples of modes which are entangled. The
covariance matrix given in Theorem 1 can be recovered frawtte given above by
addingr modes to purify the thermal statgs®.

D Equivalent unitary dilations

g — S1 S2
S3 S4
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and~x define a unitary dilation for a bosonic Gaussian chadneharacterized by
matricesX andY. Then a full class of unitary dilations

S = { 5 8 } (135)

S35
can be obtained by taking, = V~yzVT and
si=81, so=8V s5=Wsz, s,=Ws,V, (136)

with V' € Sp(2¢, R) andWW € Sp(2n, R) being symplectic transformations 6&nd

n modes respectively. With this choice in fagt is still a covariance matrix while
the conditions[(23) and_(24) are automatically satisfieconta physical point of
view the symplectic transformatiofsandl¥ correspond to unitary local operations
applied to the environmental input and output states, msedy, by virtue of the
metaplectic representation. Consequently, the weak camesitary channel® and

@' associated with these two representations are unitariljvalgnt and the weak-
degradability properties one can determinedowill be the same when studied for
Q'

Conversely, let us suppose to have two unitary dilationB,oalized with? = n
environmental modes and characterized by the symplectidaes,S and S’ as in
Eq. (134) and(135), respectively, withands, being2n x 2n square matrices. Then
it is possible to show that they must be related as in [Eq.| (L&6gr the hypothesis
thats, andss; are non-singular. First of all, since EQ.{24) must be satisfor all the
input covariance matriceg, we haves;, = X7 = s|. Define thenV/ = s,'s, and
W = sys3*. By using the first of Eq[{23) and exploiting the non-singityeof s
one has

so V UQEZ vt sg = $9 09, 52T — Vou, VI =0y, (137)

which implies that/ is a symplectic matrix (we are assuminf] = o,,,). Moreover,
from the second condition in Eq§. (23) f6rand.S’, we obtain

sposi W = s,Vosl! = sh=Ws,V, (138)

because is non-singular and’ is symplectic. By considering the third condition
(23) one then has

W(SSUQnSg: + 3402n3Z)WT = WU?nWT = O2n (139)

which prove that? is a symplectic. Finally, let us observe that the proof alubves
not use the non-singularity af. Indeed, one can relax this hypothesis and assume
more simply that there existsi& such thats;, = W s3; from Egs. [2B)V has to still
be a symplectic matrix bug; ands}; may be singular.

As an application of these equivalent unitary dilation tesswe can find an al-
ternative canonical form to the one in Séc.] 2.5 with the sajmend s, but with s,
ands; of the following anti-diagonal block form

5 [ b5 } (140)

34



where, forj = 2,3, F};, G; aren x n real matrices. Imposing Eqg$. (23), one obtains
the following relations

J'-RaGY = 1, , J'T-FRBGE=1,, (141)
B-F' =0, JGF-GyJ" =0,

the solution of which provides the following unitary dilai,

1, 0 0 —(1,—-JNG,"
1o J Gy 0
Sl G B 0 ’ (142)
GT 0 0 GrJra;”

where again’, is an arbitrary (non-singular) matrix and the eigenvalued are
assumed to be different froin This solution is unitarily equivalent to the one in Eq.

(79) by applyingV = —o,, and

0 G2_1J_1G2

W= { _GTTGsT o

(143)

as above.

E Theideal-like quantum channel

Here we consider a quantum channel wkh= 1,, butY > 0 with rank less than
2n, which can be described in terms of omlyadditional (environmental) modes. We
call it ideal-like quantum channel. Accordingly, the caimahunitary transformation
U of Eq. (20) will be uniquely determined by4a x 4n real matrixS € Sp(4n, R)

of block form in Eq.[(22), where; are2n x 2n real matrices. Particularly; = s, =

(R0 [-GT 0
83_[0 G3:|7 82_|: O _Fg:|7 (144)

with F3 andG5 beingn x n real matrices such thdtGL = G% F3 = 0, in order to

satisfy the symplectic conditions in Eq$. {23). Taking adage of the freedom in
the choice of the unitary dilation shown in Appendik D, thetrixaS can be put in
the form of Eq.[(2R) in which¥|, = s = 1,

0 0 -1, O
A (145)

where F; is assumed non-singular. In this respect, one Ws&8 € Sp(2n,R) (of
App. D) of the following form

[-F 0
v=[ 3 ] (146)

2n

andW = V-1 Similarly, one can proceed, @ is non-singular, and obtains a
similar structure forS as above. As concerns the weak-degradability properfies, i
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one assumes the initial environmental input stateas: diag 2N +1,2M +1,2N +
1,2M + 1), the eigenvalues of — X7 X-7(Y 4 io)X ' X + ic are{2M, 2(M +
1),2N,2(N + 1)}, which are always positive for any > 0 andA/ > 0; hence, this
channel withyg as above is always weakly degradable.

Finally, one may consider another ideal-like channel with= 1,, andY =
[(1—03)/4]%", i.e.Pxy = @]_,(B1);, where the single-modg, channel is defined
in Ref. [17] asX = 1, andY = (1 — o3)/4. Trivially, this multi-mode channel is
always WD (like B;) and is able to transfer a quantum state without decoherence
with the maximum quantum capacity (like for the single-modsel[17]).
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