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Experimental continuous variable cloning of partial quantum information
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The fidelity of a quantum transformation is strongly linked with the prior partial information of
the state to be transformed. We illustrate this interesting point by proposing and demonstrating the
superior cloning of coherent states with prior partial information. More specifically, we propose two
simple transformations that under the Gaussian assumption optimally clone symmetric Gaussian
distributions of coherent states as well as coherent states with known phases. Furthermore, we
implement for the first time near-optimal state-dependent cloning schemes relying on simple linear
optics and feedforward.
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The ignorance about a given quantum state is what
makes quantum protocols difficult to execute in practice
or even impossible in principle. For example, high effi-
ciency and deterministic teleportation of a quantum state
with no prior information is only possible in the unreal-
istic limit of perfect entanglement. Furthermore, it is
well known that perfect cloning of an arbitrary quan-
tum state is impossible as formulated in the no-cloning
theorem[1, 2]. Luckily, in all practical quantum commu-
nication or computation schemes we are not completely
ignorant about the set of possible input states which in
turn greatly facilitates the execution of these protocols:
The more prior information one has about the input al-
phabet the less resources are needed for the process.

An interesting example demonstrating the influence of
partial quantum information is cloning. For example,
the optimised continuous variable (cv) cloner of an arbi-
trary state (also known as the cv universal cloner) yields
a cloning fidelity of 1/2 corresponding to a standard clas-
sical distributor [3]. However, if the input states are a-
priori known to be coherent states (but with unknown
amplitude and phase), the fidelity increases to 2/3 [4, 5].
By further limiting the number of possible input states
the fidelity increases even further as theoretically anal-
ysed in ref. [6] for a symmetric Gaussian distribution of
coherent states, in refs. [6, 7, 8] for coherent states with
known phase and in ref. [9] for phase covariant cloning
where the mean amplitude is fixed but the phase ran-
dom. Cloning of displaced thermal states and squeezed
states has also been theoretically analyzed [10]. Despite
this high interest in cloning of partial cv quantum in-
formation, there has been no experimental demonstra-
tions. Experimental studies have been entirely devoted
to cloning of qubits with partial information, e.g. phase
covariant cloning [11, 12, 13].

In this Letter we investigate, theoretically and experi-
mentally, the optimization of a continuous variable quan-
tum cloning machine with respect to two different coher-
ent state alphabets using a simple setup based entirely

on linear optics, homodyne detection and feedforward. In
particular we propose and experimentally realise an op-
timal Gaussian cloning machine tailored to clone a sym-
metric Gaussian alphabet of coherent states as well as
coherent states with known phases. In addition, we prove
the optimality of the latter scheme and find that a fidelity
as large as 96.1% can in principle be achieved.

A common measure of the quality of a cloning opera-
tion is the fidelity which is defined as follows. Consider
the protocol where the coherent state, |α〉, to be cloned
is chosen from an ensemble defined by {p(α), |α〉} where
p(α) denotes the probability that the state |α〉 was cho-
sen. This state undergoes a cloning transformation de-
noted by Γ(α). The overlap 〈α|Γ(α)|α〉 then quantifies
the quality of cloning a specific member, |α〉, of the al-
phabet. The average fidelity of the cloning action thus
reads

F̄ =

∫

p(α)〈α|Γ(α)|α〉d2α (1)

Using the fidelity as a measure, the cloning transforma-
tion is optimal when this expression is maximized. Such
maximization normally yields a non-Gaussian solution,
that is, the optimal map Γ is non-Gaussian. However,
since the Gaussian cloning transformation is known to
be near optimal, we will mainly focus on such maps.

In ref. [14] a 1 → 2 cloning map based on linear
optics, homodyne detection and feedforward was pro-
posed. A generalized version of this map is illustrated
in fig. 1 and described in the figure caption. Setting the
transmittivity to T2 = 1/2 and the electronic gains to
gx = gp =

√

2(1 − T1)/T1 the input-output relation for
one of the clones in the Heisenberg picture reads

âclone1 =
1√
2
(

√

1

T1
âin +

√

1

T1
− 1â†

2 + â3). (2)

where âout, âin, â2 and â3 are the field operators asso-
ciated with the output, the input and the ancilla vac-
uum fields respectively. The field operators are given by
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â = x̂ + ip̂ where x̂ and p̂ are the amplitude and phase
quadratures, respectively. The map in eq.2 coincides with
the one in ref. [14] for T1 = 1/2 which was found to be the
optimal Gaussian cloning map for completely unknown
coherent states corresponding to a flat input alphabet. If
on the other hand the number of possible input coherent
states is finite the transformation in ref. [14] is no longer
optimal. For a symmetric Gaussian distribution of coher-
ent states with variance V :p(α) = 1/2πV exp(−|α|2/2V ),
the fidelity in (1) is

F̄ =
2T1

2V (1 −
√

2T1)2 + T1 + 1
(3)

It is clear from this expression that the fidelity is a func-
tion of the knowledge of the input states through the
variance, V , of the Gaussian alphabet. For a given vari-
ance, V , the maximized fidelity is

F̄ =















4V +2
6V +1 , V ≥ 1

2 +
√

1
2

1
(3−2

√
2)V +1

, V ≤ 1
2 +

√

1
2

(4)

which is obtained using the scheme in Fig. 1 with T1 =
1
2 (1/(2V ) + 1)2 and T1 = 1, corresponding to the up-
per and lower inequalities, respectively. These fidelities
are identical to the ones found in ref. [6] for optimized
Gaussian cloning using an OPA. Let us consider these
expressions in two extreme cases: If no a priori infor-
mation is available about the distribution of coherent
states, V → ∞ and the fidelity averages to F̄ = 2/3.
In the other extreme, where complete information about
the input state is at hand, V = 0 and the fidelity is unity.
In the following, we investigate experimentally the real-
istic intermediate regime where the width of the input
distribution is finite and non-zero.

FIG. 1: Schematic of the proposed 1→2 cloning protocol. The
signal, ain, is reflected of a beam splitter with transmittance
T1 and detected using a beamsplitter with transmittance T2

and two homodyne detectors measuring the amplitude, x, and
phase, p, quadratures. The measurement outcomes are scaled
with the gains gx and gp and used to displace the transmitted
signal. The displaced state is subsequently split on a sym-
metric beam splitter, thus producing two clones denoted by
aclone1 and aclone2. a1, a2 and a3 are ancilla states.

We prepare the input coherent states by modulating a
continuous wave laser beam (1064nm) at the frequency

of 14.3 MHz. Two electro-optical modulators inserted
in the beam path were used to control the mean phase
〈pin〉 and amplitude 〈xin〉 quadratures independently by
separate low voltage function generators. Through the
modulation, photons were transferred from the carrier
into the sidebands, thus producing a pure coherent state
at the modulation frequency. We set the modulation fre-
quency to 14.3 MHz and defined the bandwidth of the
coherent state to be 100 kHz.

FIG. 2: Experimental cloning setup. AM: Amplitude Mod-
ulator, PM: Phase Modulator, EOM: electro-optic modula-
tor; LO: Local Oscillator; AUX: Auxiliary state; T1: Variable
beam splitter.

The pure coherent states are subsequently injected into
the cloning machine. First the states are split into two
parts using a variable beam splitter which is consisting of
a half wave plate and a polarising beam splitter; thus any
T1 in eq. (2) is easily accessed by a simple phase plate
rotation. The reflected part of the state is measured us-
ing heterodyne detection where x and p are simultane-
ously measured. This is done by interfering the signal
with an auxiliary beam (AUX1) with a π/2 phase shift
and balanced intensities; subsequently the two output
are measured with high efficiency and low noise detec-
tors, and the sum and the difference currents are con-
structed to provide a measure of x and p. The outcomes
are scaled with low noise electronic amplifiers and used to
modulate the amplitude and phase of an auxiliary beam
(AUX2), and subsequently combined by the remaining
part of the signal employing a 99/1 beam splitter. This
accomplishes a high efficiency conditional displacement
operation. Finally, the displaced state is divided into
two clones using a symmetric beam splitter and the two
outputs are characterized using two homodyne detectors
with intense local oscillator beams (LO1 and LO2). The
signal power and variances of the input state as well as
the output states are then measured using a spectrum
analyzer with resolution bandwidth set at 100kHz and
video bandwidth at 300 Hz. Such measurements suffice
to fully characterise the states due to the Gaussian statis-
tics of x and p. Active electronic feedback loops were
implemented at all interferences to ensure stable relative
phases. From the power and variance measurements, we
estimate the gain as well as the added noises associated
with the cloning transformation. Using these values we
calculate the fidelity for a given input alphabet using the
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expression

F̄ =
2

√

(1 + ∆x2 + 4V (1 − λx)2)(1 + ∆p2 + 4V (1 − λp)2)
(5)

which is obtained from eq. 1 by inserting an arbitrary
Gaussian state (with variance V ) in replacement of Γ(α).
λx = 〈xclone〉/〈xin〉 and λp = 〈pclone〉/〈pin〉 are the
cloning amplitude gains.

FIG. 3: The average fidelity is plotted against the width (
√

V )
of the distribution of input states. The solid line corresponds
to the theory and the red dot and black square correspond
to average fidelities for clones 1 and 2. The dashed line takes
into account that the amplifier used in the scheme was non-
ideal and some technical noise entered the cloning process.
The dotted line corresponds to a measure and prepare strat-
egy. The grey shaded area corresponds the region where the
solution T1 = 1 is optimal. The red line extends this solution
into the region where it is not optimal.

As an example, we consider a Gaussian input distri-
bution with V = 1.72 shot noise units (SNU). For this
alphabet, the cloning machine is optimized by setting
T1 = 0.83 and gx = gp = 0.64 corresponding to a cloning
gain of λx = λp = 0.775. We adjusted the beam split-
ter transmittance to this value and tuned the electronic
gains to the optimized value while monitoring the op-
tical gain of a test signal (through comparison between
the input power and output power of the signal). For
this specific experimental run, we measured an optical
cloning gain of 0.775 ± 0.005 valid for all input states.
After adjusting the gain to this value, the associated
added noises in x and p were measured to 1.21 ± 0.02
and 1.26±0.02. Inserting these values in eqn. (5) we find
an average cloning fidelity of F = 0.775 ± 0.01 which is
arbitrarily close to the optimal value of F = 0.785 (see
eqn. (4)). This experiment was repeated with different
gains corresponding to different widths of the input al-
phabet and the results are summarized in Fig. 3. The
solid curve in Fig. 3 represents the ideal average fidelity
given by eqn. 4. Small deviations from ideal performance
is caused by small inefficiencies of the heterodyne detec-
tor in the feedforward loop: The mode overlap between
the auxiliary beam AUX1 and the signal beam was 99%

and the quantum efficiency of the associated detectors
were 95%±2%. Taking these parameters into account,
the expected average fidelity follows the dashed curve
which agrees well with the measured data. Note that all
the measured data were corrected for the detection in-
efficiencies of the verifying detectors (amounting to 83%
and 85%) to avoid an erroneous underestimation of the
added noise and thus an overestimation of the fidelity.
Note also that for V < 1/2 + 1/

√
2 (corresponding to

the gray shaded region in 3), the best cloning strategy
is a simple beam splitter operation, which is obtained in
the present setup by setting T = 1 and gx = gp = 0,
thus λx = λp = 1/

√
2. In this case ideal performance

is naturally achieved and the ideal solid curve and real
dashed curve in Fig. 3 are identical. Since the detection
efficiency is inferred out of the results, the actual mea-
sured performance will be only limited by the errors in
estimating these efficiencies.

We now proceed by considering another input alpha-
bet. The coherent states are assumed to have a known
and constant average phase but completely random am-
plitude. This input distribution was also considered the-
oretically in ref. [6] and [8] where two different strate-
gies were suggested for the experimental realizations. In
the latter reference, however, the proposed strategy was
not optimal and in the former reference the method re-
lied on squeezing transformations to surpass the classical
cloning strategy. Furthermore, the optimality of the sug-
gested schemes were not proven in these references. In
the following we show that the transformation depicted
in Fig. 1 is optimal for special choices of the ancilla states
a1 and a3, and the transmittances T1 and T2. We start
by setting T1 = 1/2 and T2 = 1 and thus get the following
transformation for one of the output clones

xclone1 = xin +
1√
2
x3 (6)

pclone1 =
1

2
pin − 1

2
p1 +

1√
2
p3 (7)

First assuming that the input ancillas(a1, a2, and a3)
are vacuum states, the fidelity for this transformation is
easily found using the expression (1) and inserting a dis-
tribution with the above mentioned properties. We find
F = 2/

√
5 ≈ 0.894. This should be compared with the

optimised measure and prepare strategy, which we con-
jecture to be associated with single quadrature detection
followed by displacement of an optimally squeezed ancilla
state in the quadrature direction corresponding the con-
stant phase. The optimised squeezing factor is

√

1/2 of
the undisplaced phase quadrature, and this measure and

prepare strategy yields a fidelity of F = 2/
√

3 +
√

2 ≈
0.828 [15]. Remarkably, our proposed scheme surpasses
this value without the use of squeezed states. Although
this cloning protocol surpasses the measure and prepare
protocol, it is not the optimal Gaussian cloning machine
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for this input alphabet. If the input state a1 is infinitely
squeezed in the amplitude quadrature and a3 is squeezed
by a factor of

√

8/5, the cloning machine is optimal yield-

ing a fidelity, F = 4(
√

10−1)/9 ≈ 0.961. Hence, knowing
the phase of the input coherent states, the cloning fidelity
can be exceptionally high using a very simple scheme.

Let us now prove the optimality of this scheme. A
generic Gaussian cloning transformation is casted as

xclone1 = λx1(xin + nx1) pclone1 = λp1(pin + np1)

xclone2 = λx2(xin + nx2) pclone2 = λp2(pin + np2)

where ni are noise operators. Since the two clones are
assumed to be identical we set λx = λx1 = λx2 and
λp = λp1 = λp2 and because the amplitude of the input
is completely random we must have λx = 1. Furthermore
by using the fact that the amplitude (phase) quadrature
of clone 1 commutes with the phase (amplitude) quadra-
ture of clone 2 we find [nx1, np2] = [nx2, np1] = −2i which
in turn yields the uncertainty relation

∆2np∆
2nx ≥ 1 (8)

where ∆2nx = ∆2nx1 = ∆2nx2 and ∆2np = ∆2np1 =
∆2np2. Now considering the commutation relation be-
tween conjugate quadratures of a single clone we find the
uncertainty product ∆2nx∆2np ≥ |1−λp

λp

|2 which is min-

imized for λp = 1/2. The minimum variances of the two
output clones are therefore

∆2x = 1 + ∆2nx (9)

∆2p =
1

4
(1 + ∆2np) (10)

By evaluating the Gaussian fidelity for these clones we
find that it is maximized if the ancilla state is squeezed
such that ∆2np =

√

5/2 and ∆2nx =
√

2/5. The maxi-

mum fidelity is thus found to be F = 4(
√

10 − 1)/9.
We now demonstrate cloning of coherent states with

constant phases using the scheme in Fig. 1 with a1 and
a3 in vacuum states. The experimental setup is slightly
modified with respect to the one in Fig. 2. To enable
direct detection of the amplitude quadrature in the feed-
forward loop, the auxiliary beam AUX1 is blocked and
the sum of the currents produced in the two detectors is
taken. This yields the amplitude quadrature and is corre-
spondingly used to generate the amplitude displacement.
The feedforward gain driving the phase displacement is
set to zero, thus the phase quadrature is unaffected by
the feedforward action. Since the amplitude quadrature
of the input states is completely unknown, the electronic
gain, gx is set such that the overall optical amplitude
quadrature gain is unity. This maximises the average
fidelity for this set of states. Finally, the clones are gen-
erated at the output of the third beam splitter. The

FIG. 4: Spectral amplitude quadrature noise densities of the
two clones (upper black traces) relative to the quantum noise
level (lower red trace). The measurement was taken over a
period of 2 seconds. The settings of the spectrum analyser
were 14.3 MHz central frequency, 100 kHz bandwidth and 300
Hz video bandwidth. The added noise contributions are 1.8±
0.1dB and 1.85 ± 0.1dB for clone 1 and clone 2 respectively.
The optimal cloning limit (1.75 dB above the shot noise level)
is pointed out by the solid green line.

verification procedure is the same as before, and a mea-
surement run is depicted in Fig. 4. Making use of eqn. (5)
we calculated the fidelity of the generated clones to be
89.1± 0.2% and 88.7± 0.2%. In this particular measure-
ment run the gains for the amplitude quadratures were
measured to be λx1 = 0.98 ± 0.01 and λx2 = 0.99 ± 0.01
for clone 1 and clone 2. The experimental cloning fi-
delity greatly exceed the classical fidelity of 82.8% and is
arbitrarily close to the optimal value of 89.4% for non-
squeezed ancillas.

In conclusion, we have illustrated the intriguing rela-
tionship between cloning fidelity and prior partial infor-
mation by proposing and experimentally demonstrating
the state dependent cloning transformation of coherent
states with superior fidelities. We found that the more
prior information about the input states the greater is
the cloning fidelities. This relationship is not only valid
for cloning protocols, but also for other protocols such as
teleportation and purification of quantum information.
Since prior partial information is common in quantum in-
formation networks, we believe that the state-dependent
cloning strategies presented in this paper as well as sim-
ilar strategies for other protocols will have a vital role in
future quantum informational systems.
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