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Continuous-variable quantum key distribution protocols over noisy channels
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It is shown that an increased resistance to channel noise can be achieved in continuous-variable
quantum key distribution by purposely adding noise into the system. This leads us to introduce a
hitherto overlooked family of Gaussian protocols based on squeezed states and heterodyne detection,
which attain higher secret key rates over a noisy line than any other one-way Gaussian protocol.
This notion of noise-enhanced tolerance to noise also provides a better physical insight into the
poorly understood discrepancies between the efficiencies of previously defined Gaussian protocols.
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Quantum Key Distribution (QKD) is a prominent ap-
plication of quantum information sciences, enabling two
partners (Alice and Bob) to share a secret key, which in
turn allows them to communicate with full security. A
particular class of QKD protocols based on the Gaussian
modulation of Gaussian states has attracted much atten-
tion over the last years for its associated (homodyne or
heterodyne) detection scheme offers the prospect of very
high key rates [1]. In these so-called continuous-variable
(CV) protocols, the data which make the key are encoded
into continuous-spectrum quantum observables, namely
the quadrature components of a light field. These proto-
cols fall to date into three families, depending on which
states and detection schemes are used.

In the first one, Alice uses a source of squeezed states
that are randomly displaced along the squeezed quadra-
ture, while Bob performs homodyne detection [2]. The
experimental implementation is much simplified with the
second one, which is based at Alice’s side on coherent
states modulated in both quadratures instead of squeezed
states modulated along a single quadrature [3]. This
second proposal was first demonstrated experimentally
in Ref. [4], while its implementation with optical tele-
com components was reported in Ref. [5]. In the third
proposal, Alice still uses coherent states but Bob per-
forms heterodyne instead of homodyne detection, mea-
suring both quadratures together, hence eliminating the
need for an active random basis choice [6].

In this Letter, we introduce a fourth CV-QKD pro-
tocol based on squeezed states and heterodyne detection,
which, surprisingly, happens to outperform all previous
Gaussian protocols when the noise level in the quantum
channel is high. This missing protocol, completing the
set of Gaussian protocols, had not been found interest-
ing earlier because, at first sight, it serves no purpose
measuring both quadratures when only one of them (the
squeezed quadrature) carries the key. This striking effect
can, however, be understood by exploring the analogy
with qubit-based QKD and realizing that adding some
noise on the data of the appropriate partner during the
error correction phase may result in an increase of the
secret key rate [7]. We indeed can explain the improved

resistance to noise of our new protocol by using its equiva-
lence with the first protocol [2], based on squeezed states
and homodyne measurement, supplemented with noisy
post-processing. This analysis also allows us to generalize
and construct the family of optimal Gaussian protocols
with respect to channel excess noise.

It was known after Ref. [7] that the performance of
qubit-based QKD protocols, such as BB84 [§] or B92 [9],
can be increased by having Alice adding some noise to
her data in the error correction phase. This additional
classical noise makes the protocol more robust against
noise in the quantum channel because it is more detri-
mental to Eve than to Alice and Bob. More precisely, for
each quantum channel, there is an optimal level of noise
that Alice should add in order to maximize the secret key
rate. An explanation of this phenomena can be found
in Ref. [10] using an entanglement-based description of
BB84 together with a modified version of Shor-Preskill’s
unconditional security proof [11]. Here, we shall show
that this counterintuitive effect appears, though in dis-
guise, in the case of Gaussian CV-QKD protocols. It
is not straightforward, however, because of the distinc-
tion that exists between direct reconciliation (DR) and
reverse reconciliation (RR), a feature which plays a key
role in CV-QKD. In contrast to qubit-based QKD, it is
crucial in CV-QKD to specify whether Alice or Bob is
the reference during the error correction post-processing
phase. In DR, Alice plays this role and the maximal
achievable range is known to be 3dB [3]; in RR, there is
no theoretical limitation to this range [4].

In the following, we will focus on the security of CV-
QKD against collective attacks, where Eve interacts in-
dividually with each signal pulse sent by Alice but ap-
plies a joint measurement at the end of the classical
post-processing stage. Studying this class of attacks is
sufficient to prove unconditional security of qubit-based
QKD protocols [12], and we take for granted here the
conjecture that the same holds for CV-QKD [13]. In
addition, we restrict our study to Gaussian collective at-
tacks as they are known to be optimal [13]. Furthermore,
we consider RR as it works over longer distances. The
corollary is that Alice and Bob’s roles must be inter-
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changed when analyzing the tolerance to noise (indeed,
qubit-based QKD uses DR). This lead us to introduce a
fourth Gaussian protocol.

The protocol. The first stage consists in quantum com-
munication over the quantum channel, characterized by
the transmittivity 7" and added noise variance referred
to the input xc. Alice generates a random bit r and a
real number a drawn from a Gaussian distribution G(a)
of variance V,. Subsequently, she generates a squeezed
vacuum state of covariance matrix diag(1/V, V') and dis-
places it by an amount (a,0), see Fig. [l Before send-
ing the state together with the local oscillator through
the quantum channel, she applies a random dephasing of
6 = r7/2 to the state. This dephasing is equivalent to
randomly choosing to squeeze and displace either the x or
p quadrature, as in Ref. |2]. Averaging the output states
over G(a) gives the same (thermal) state for r = 0 and
r = 1, which prevents Eve from extracting information
on which quadrature was selected by Alice. This imposes
the constraint V, +1/V =V on Alice’s modulation. The
quantum signal and local oscillator can be transmitted
over the same fiber by using a time multiplexing tech-
nique, as in Ref. [14]. At Bob’s station, the signal is first
demultiplexed and subsequently measured by a standard
heterodyne measurement, as shown in Fig. I The use
of heterodyning makes the random number generator on
Bob’s side unnecessary since there is no need to switch
between the measurements of conjugated bases, just as
in Ref. [6]. After repeating these steps many times, Al-
ice ends up with a long string of data a correlated with
Bob’s heterodyne data (bg,bp).

The second stage is the classical post-processing stage,
which serves extracting the secret key. It starts by Al-
ice revealing the string of random bits r encoding her
chosen quadratures and Bob keeping as his final string
of data b the measurements (b, or b,) matching Alice’s
choices. This step is followed by the channel estimation,
where Alice and Bob reveal a fraction of their data in
order to estimate T and x¢, which allows them to bound
Eve’s information. Subsequently, Alice and Bob apply a
RR algorithm, such as LDPC codes [14] combined with
a discretization operation. This operation outputs two
perfectly correlated binary strings. Finally, both part-
ners apply a privacy amplification algorithm based, e.g.,
on hash functions [14], which produces a shared binary
secret key from their perfectly correlated data. As shown
in Ref. [7], the achievable RR secret key rate reads

K = I(a:b) — S(b:E), (1)

where I(a:b) is the Shannon information between Al-
ice and Bob’s data while S(b:F) is Eve’s information
on b given by the Holevo quantity S(b:F) = S(pg) —
Jdb p(b)S(p%). Given that Eve can be assumed to hold
the purification of the system and that Gaussian attacks
are optimal, we can directly compute K from the covari-
ance matrix y4p inferred from the channel estimation.

FIG. 1: Proposed experimental implementation of the new
protocol. The source (Alice) is based on a master laser beam.
A fraction of it is extracted to make the local oscillator (LO),
while the rest is converted into second harmonic in a non-
linear crystal (SHG). After spectral filtering (F1), the second
harmonic beam pumps an optical parametric amplifier (OPA)
which generates a squeezed vacuum state. Following the fil-
tering of the second harmonic (F2), this squeezed state is
displaced by a shot-noise units. This is done by mixing the
state on a beamsplitter of high transmittivity (Tar ~ 99%
for BSur) with a coherent state of intensity a2/(1 — Tur),
extracted from the LO. The attenuation (A) thus depends on
a, which is distributed according to a Gaussian distribution
G(a) of variance V;. Before time multiplexing (M) the quan-
tum signal with the LO, Alice applies a phase shift § = rm/2
to it depending on the value of the random bit . Then, the
two components of the time multiplexed signal travel to Bob
through the same fiber, thereby avoiding a spurious dephas-
ing between the signal and LO. At Bob’s station, the two
components are demultiplexed (M’), and the quantum signal
is heterodyne measured. The latter measurement consists in
splitting the quantum signal (and LO) in two with the bal-
anced beamsplitters (BSg), and then homodyning each beam.
The LO used in the second measurement is dephased by /2
in order to measure the conjugate quadrature. Each homo-
dyne detector is composed of a balanced beam splitter and
a pair of highly efficient photodiodes; the difference of the
photocurrents gives the quadratures b, and b,.

Tolerance to noise. In Fig. 2 we show that this new
protocol performs better than all previous RR proto-
cols in term of tolerable excess noise, i.e., the lowest
e =xc — (1 =T)/T that gives a zero secret key rate. In
realistic implementations of CV-QKD, the excess noise
generally comes from the laser’s phase noise and imper-
fections in the modulation, as discussed in Ref. [5], so
that it can be considered as approximately independent
of the length of the fiber. This does not mean, however,
that the new protocol gives higher rates regardless of the
channel transmittivity. As shown in Fig. [ it is only for
losses higher than a given threshold that it gives a higher
secret key rate than the protocol of Ref. |2].

In the new protocol, Bob disregards either b, or b,
during the post-processing stage, depending on Alice’s
quadrature choice r. This is equivalent to tracing out
the mode that is not used in Bob’s heterodyne measure-
ment, so that the new protocol can be viewed as a noisy
version of the protocol based on squeezed states and ho-
modyne measurement [2] where Bob inserts a balanced
beamsplitter before his measurement. The losses induced
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FIG. 2: Tolerable excess noise ¢ (in shot-noise units) as a
function of the channel losses (in dB) for RR protocols: new
(solid line), squeezed states and homodyning (dashed line) 2],
coherent states and homodyning (dotted line) [3], coherent
states and heterodyning protocol (dash-dotted line) [6]. The
optimal protocol with Bob’s added noise xp is also shown
(crosses). The curves are plotted for V — oo.
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FIG. 3: Secret key rates as a function of the channel losses
(in dB) for RR protocols: new (solid line), squeezed states
and homodyning protocol (dashed line) [2]. The curves are
plotted for an excess noise e = 0.5 and V' = 40.

by this beamsplitter translate into noise once Bob clas-
sically amplifies his outcome to match the initial signal.
Therefore, we have a clear demonstration that adding
noise that is not controlled by Eve on Bob’s side can be
beneficial in CV-QKD for a RR protocol.

Interestingly, this effect has a counterpart in DR which
remained unnoticed to date although it is visible with
known protocols. We indeed observe in Ref. [15] that the
homodyne protocol based on coherent states gives a bet-
ter tolerance to excess noise in DR than that based on
squeezed states. The reason is that the former protocol
[3] can actually be viewed as a noisy version of the latter
protocol [2], where the noise is now added by the same
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FIG. 4: Entanglement-based description of the protocol with
general Gaussian added noise on Bob’s side. The source of
squeezed states on Alice’s side is replaced by an entangled
pair (EPR) of variance V, followed by an homodyne mea-
surement of mode A. The other mode is sent to Bob through
the quantum channel. Before Bob’s homodyne detection, the
state received by Bob is mixed with a thermal state (half of an
EPR pair) of variance N on a beamsplitter of transmittivity
T(xp = (1-TB)N/Ts).

mechanism but on Alice’s side in the entanglement-based
equivalent scheme, see Fig. @l In this scheme, coher-
ent states are prepared by Alice applying an heterodyne
measurement, which can be viewed as a noisy homodyne
measurement. We thus conclude that there is a benefi-
cial effect of noise if added on the reference side of error
correction (Alice in DR and Bob in RR). Clearly, adding
noise on the other side is always detrimental as it de-
creases the information between the authorized parties
without affecting the eavesdropper’s information.

Optimal protocol. We now generalize the above new
RR protocol to optimally resist against an arbitrary
channel noise. In Figure [ we exhibit an entanglement-
based description of CV-QKD protocols, where Bob
replaces his heterodyne measurement by an ideal ho-
modyne measurement preceeded by a general Gaussian
phase-insensitive added noise. This models the follow-
ing physical situations: i) inefficient homodyne detec-
tion with efficiency Tp and electronic noise variance
v = (1 = Tp)(N — 1); ii) perfect homodyne detection
followed by a classical Gaussian added noise of variance
xp = (1 = Tp)N/Tpg; iii) any combination of the pre-
vious cases giving the same xp. The secret key rate
can be calculated using the following technique. First
we use the fact that Eve’s system E purifies AB, that
is, S(E) = S(AB). Secondly, after Bob’s projective
measurement, yielding b, the system AEFG being pure,
we have S(E|b) = S(AFG|b). For Gaussian states
S(AFG|b) is the same for all b’s, being just a function of
the covariance matrix v4p5. Thus, we obtain,

K = I(a:b) — S(AB) + S(AFG|b) (2)
which can be calculated from the covariance matrix
zl zo
wan=| 5], 3)

where 2 =V, y = T(V + x¢), 2z = /T(V2-1), I =

diag(1,1) and o = diag(1, —1). The information between



Alice and Bob reads

I(a:b) = % log

V+x

v <4>

where x = x¢ + xp/T. Then, S(AB) is a function of the
symplectic eigenvalues A o of yap which reads

S(AB) = G[(\M — 1)/2] + G —1)/2],  (5)

where G(z) = (x + 1) log(z + 1) — zlog z is the von Neu-
mann entropy of a thermal state and

A, = % A+ /A2 -4D2|. (6)

Here, we have used the notation A = 22 + 32 — 222 and
D = xy — 2%, Finally, S(AFG|b) is a function of the
symplectic eigenvalues A3 4 similar to (B) where A3, are
solutions of the second order polynomial A*—AN2+B = 0
with
1
Y+ Xbp

A:

[y + 2D + xpA] (7)

B = [$+XDD]- (8)

Y+ XD
By tuning Bob’s added noise xp, it is possible to maxi-
mize the secret key rate, as shown in Fig.[Bl More impor-
tantly, the resulting family of optimal protocols exhibits
the highest tolerance to noise among all Gaussian CV-
QKD protocols, as demonstrated in Fig. [ (crosses).

Note that although Bob’s heterodyne measurement is
useful to get an insight on this enhanced tolerance to
noise, Bob eventually disregards one of the two quadra-
tures in the actual protocol. Thus, up to a factor of two in
the key rate, he may as well apply a (noisy) homodyne
measurement and keep the outcome only when he has
measured the right quadrature. Finally, instead of using
a random numbers generator to generate the noise x p, it
is certainly more interesting for Bob to do it physically
by tuning the efficiency of his detector.

Conclusion. We have proposed a new CV-QKD pro-
tocol using squeezed states and heterodyne detection,
which outperforms all known Gaussian protocols in terms
of resistance to noise. This enhanced robustness can be
interpreted as the continuous-variable counterpart of the
effect, first described in Ref. |7], that adding noise in
the error-correction post-processing phase may increase
the secret key rate of one-way qubit-based protocols.
Then, we have studied the impact of a general Gaussian
phase-insensitive noise on the secret key rate, and have
shown that for each quantum channel (characterized by
its transmittivity 7" and added noise variance x¢), there
is an optimal noise xyp that Bob must add to maximize
the secret key rate. The resulting protocol also exhibits
the highest resistance to noise among all Gaussian pro-
tocols. This noise-enhanced tolerance to noise is par-
ticularly interesting for reverse-reconciliation CV-QKD
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FIG. 5: a) Optimal secret key rates as a function of the chan-
nel losses (dB) for a fixed excess noise € = 0.5 (solid line)
compared to the protocol based on squeezed states and ho-
modyning |2] (dotted line) and the new protocol proposed in
this Letter (dashed line). b) Optimal choice of xp (in shot-
noise units) that maximizes the secret key rate. The curves
are plotted for V' = 40.

protocols, which work over larger distances, but, inter-
estingly, it also has an analogue for direct-reconciliation
protocols. This gives a physical explanation to the previ-
ously observed — but poorly understood — discrepancies
between the efficiencies of Gaussian protocols.
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