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Matter–wave emission in optical lattices: Single particle and collective effects
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We introduce a simple set–up corresponding to the matter-wave analogue of impurity atoms
embedded in an infinite photonic crystal and interacting with the radiation field. Atoms in a given
internal level are trapped in an optical lattice, and play the role of the impurities. Atoms in an
untrapped level play the role of the radiation field. The interaction is mediated by means of lasers
that couple those levels. By tuning the lasers parameters, it is possible to drive the system through
different regimes, and observe phenomena like matter wave superradiance, non-Markovian atom
emission, and the appearance of bound atomic states.

Recent progress in atomic physics has allowed exper-
imentalists to trap atoms in optical potentials at very
low temperatures. This has led to the observation of
several interesting phenomena in which atom–atom in-
teractions play a predominant role. With atoms loaded
in optical lattices it is nowadays possible, for example,
to reach the strong correlation regime where quantum
phase transitions between superfluid and insulator phases
[1, 2], Tonks–Girardeau gases [3], or even entanglement
between neighboring atoms can be observed. Those ex-
periments have triggered a large amount of theoretical
work proposing and analyzing new experiments where
intriguing condensed matter behavior could be observed.

In this work we show that with the same systems it
is possible to observe a broad spectrum of different phe-
nomena usually connected to light–matter interactions
(see also [4, 5, 6] for related setups). In our setup, the
role of matter is played by the absence/presence of one
atom in the ground state of an optical potential, whereas
the role of light is played by weakly–interacting atoms in
a different internal state which is not affected by the op-
tical potential. The coupling between those two systems
is induced by Raman lasers, which connect the two in-
ternal states of each atom (see Fig. 1). As we will show,
the Hamiltonian that describes this situation is very sim-
ilar to that describing the interaction between two–level
atoms and the electromagnetic field within a photonic
crystal (PC). By changing the laser and optical trapping
parameters it is possible to drive the system to different
regimes where a rich variety of phenomena can be ob-
served. These include the spontaneous polarization of the
system predicted by the mean field theory [7], collective
effects in the emission of atoms from the lattice [8, 9? ],
and the formation of a bound trapped–untrapped atom
state, analogous to the atom–photon bound state that
appear when atoms within a photonic crystal emit pho-
tons within the gap region [10, 11, 12, 13]. Moreover, it is
possible to reach a regime in which weakly confined atoms
drive atom–atom interactions between strongly confined
ones, giving rise to effective Coulomb-like interactions
between them.

We consider N cold atoms with a ground state hy-
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FIG. 1: (Color online) Schematic diagram: Lasers produce
two-photon Raman transitions to an untrapped state. Fig
A: For laser detunings ∆ > 0, transitions are into a band of
non–trapped states. Fig B: ∆ < 0, transitions are into the gap

region, and a trapped-untrapped atom bound state is formed.

perfine level |a〉 and frequency ω0
a that is trapped by an

optical lattice with M sites and lattice period d0. The
motion of the atoms is restricted to the lowest Bloch band
in the collisional blockade regime, where either one or no
atom occupy each potential well of the lattice, which we
will approximate by a harmonic oscillator of frequency
ω0. Then, we can replace the creation operator at each
site by σ+

j = |1〉j〈0|, which describes transitions from the
Fock state |0〉j with no atoms at site j, to a state |1〉j
with one atom [4]. The atoms have an additional inter-
nal level, |b〉, that is not affected by the lattice potential
(what can be achieved with state dependent potentials)
and has a frequency ωb. We introduce the field operator
ψ†

b(r) = (1/
√
V )

∑

k b
†
ke

ik·r, where V is the quantization

volume, and b†k is the creation operator of an atom in |b〉
with momentum k.

In a similar way as in an atom laser setup [14], two
lasers are then used to induce two–photon Raman tran-
sitions between |a〉 and |b〉. The lasers have a two–photon
Rabi frequency Ω, and their frequencies and momentum
differences are ωL = ω1 − ω2 and kL = k1 − k2 respec-
tively. When tuning them close to a two photon reso-
nance and far from single photon resonances, an effective
Hamiltonian is obtained which in the interaction picture
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can be written as (~ = 1)

Hint =
∑

j

∑

k

gk

(

b†kσje
i∆kt−i(k−kL)·rj + h.c.

)

. (1)

Here rj denotes the positions in the lattice, and ∆k =
k2/2m−∆, with ∆ = ωL − (ωb − ωa) the laser detuning
(and ωa = ω0

a + ω0/2). The coupling constants are gk =

Ωe−X2
0k2/2(8π3/2X3

0/V )1/2, where X0 = (1/2mω0)
1/2 is

the size of the wave function at each site.

The similarity of Hamiltonian (1) with that describing
the interaction of atoms with the electromagnetic field
is apparent. The dispersion relation of the atomic bath
is contained in ∆k, and resembles that of the radiation
field in a three dimensional and infinite PC near the
band-edge [7, 11, 13]. Furthermore, in our set–up one
can easily control several external parameters: Ω, which
determines the coupling strength, ∆, which determines
the resonance conditions, the number of atoms N and of
sites M , the lasers wavevectors kL, and the dimension of
the trap and the lattice. Thus, we expect to observe a
rich variety of phenomena with our system, ranging from
some well–known from the field of Quantum Optics, to
other which are difficult to access in that field. We will
start out with a single excitation (N = M = 1), and
then consider collective effects (M > 1), for the different
regimes dictated by the control parameters Ω and ∆.

An atom within a single trap constitutes the sim-
plest setup but it still gives a very good insight into
the problem. The wave function of the system has
the form |Ψ(t)〉 = A(t)|1, {0}〉 +

∑

kBk(t)|0, 1k〉, where
|1, {0}〉 describes the atom in the trapped state and
no free atom present, and |0, 1k〉 represents no atom
in the trapped state and a single untrapped atom in
the mode k. Using the Schrödinger equation we have
Ȧ(t) = −

∫ t

0
dτG(t − τ)A(τ), where

G(t) =
∑

k

g2
ke

−i∆kt = Ω2 e
i(∆t−arctan [ω0t])

νt|νt|2
, (2)

with νt = 2
√

1 + iω0t, is the correlation function of the
environment. An analytical solution can be obtained by
assuming that trapped atoms are strongly confined so
that ω0 ≫ Ω,∆. For a 3D bosonic field, this leads to
G∞(t) = −αei(∆t+π/4)/t3/2, which is singular at the ori-
gin, but describes correctly times t ≫ 1/ω0. Except for

the value of α = Ω2/ω
3/2
0 , G∞(t) is identical to the corre-

lation function of the radiation field within an anisotropic
PC, as described in [12]. In the same way, a 1D environ-
ment (produced by trapping the atoms in |b〉 in a 1D
harmonic trap), gives rise to a correlation function simi-
lar to the one appearing for the radiation field in isotropic
PCs. Using the Laplace transform method, we get [12]

A(t) = c1e
i(r2

1+∆)t + I(α,∆, t), (3)
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FIG. 2: Evolution of the atomic population |A(t)|2 in loga-
rithmic scale for different detunings. Solid, dotted, dashed,
dot-dashed and dot-dot-dashed lines correspond respectively
to ∆/α2 = −8,−1,−0.2, 0.2, 8 (ω0 = ∞), where one can rec-
ognize the regimes explained in the text. Inset [17]: Steady
state population |Ast|2 = |A(∞)|2. Solid, dashed and dotted
lines correspond respectively to Ω/ω0 = 0.05, 0.025, 0.01.

with I(α,∆, t) = (αeiπ/4/π)
∫ ∞
0
dx

√
xe(−x+i∆)t

(−x+i∆)2+iα2x . Defin-

ing r± = −(α/2) ±
√

(α/2)2 − ∆ we have: (i) If α2/2 >
∆ > 0, then c1 = 0. (ii) If ∆ > α2/2, then r1 = r− and
c1 = 2r

−

r
−
−r+

. (iii) If ∆ < 0, r1 = r+ and c1 = 2r+

r+−r
−

.

Depending on the parameters, we can have very differ-
ent behaviors. For ∆ > 0 there is no trapped atom left
in steady state, whereas for ∆ < 0 this is not the case
(Fig. 2). Thus, there is a quantum phase transition at
∆ = 0 analog to that found in the spin–boson model [15].
Moreover, for ∆ < 0, the emitted atomic field is in the
form of evanescent modes exponentially localized around
the trapped atom, what leads to the trapped atom–
untrapped atom bound state. This follows from the prob-
ability of finding a radiated particle at position r at a long
time t, |Ψb(r, t)|2 = (c1ΩmX

3
0/2πr)

2e−Im[ke

0 ]re−Im[r2
1 ]t,

where ke
0 =

√

2m(∆ − r21) is imaginary if ∆ < 0. For
∆ > 0 we have two different regimes: for ∆ ≫ α2 we just
have an exponential rate Γ0 = 2Ω2

√

π∆/ω3
0 , whereas

in the opposite limit the evolution does not follow such
a law. The first corresponds to the Markovian regime,
where the correlation time τc ≃ ∆−1 of the environment
(here untrapped atoms) is shorter than the typical evo-
lution time of the trapped atom (Γ−1

0 ) [17].

We now study the dynamics of atoms in a lattice with
M sites, choosing ω0 ≫ Ω,∆. Guided by the previous
analysis, we will consider the regimes ∆ > 0 (Markovian
and non–Markovian), as well as ∆ < 0.

In the limit where Γcollτc ≪ 1, where Γcoll gives the
typical evolution time of the trapped atoms, we can ana-
lyze the problem under the Born–Markov approximation.
The dynamics of the atoms in the lattice is dictated by
the quantities

Γ|i−j| =

∫ ∞

0

dτGi−j(τ) = i|Γ0|ξ
e−ν|i−j|/ξ+iri−j·kL

|i − j| , (4)



3

for i 6= j. Here, ν = i, 1 for ∆ > 0 and ∆ <
0, respectively, and the correlation function Gi−j(t) =
∑

k g
2
ke

iri−j·(k−kL)−i∆kt is now

Gi−j(t) = G(t)eir2
i−j/(4X2

0ν2
t
) (5)

with G(t) given by (2). Similar to the radiative case,
the coefficients Γ|i−j| describe the dipolar interactions be-
tween the sites i and j. The quantity ξ = 1/(|k0|d0), with
k0 =

√
2m∆ [16], quantifies the range of the interactions

which, according to (4), has a Yukawa form.
For ∆ > 0, the situation under study resembles that of

a set of M atoms in a lattice of constant d0 interacting
with the electromagnetic field with resonant wave–vector
k0, and where N corresponds to the number of excited
atoms. Thus, phenomena like multiple–scattering, reab-
sorption, or superradiance should be expected. In fact,
apart from ξ we can also define the analogous of the op-
tical depth, which for a cubic lattice is χ = M1/3ξ2. De-
pending on the values of those dimensionless parameters
we can predict different phenomena.

Let us first consider the case of one atom N = 1,
symmetrically distributed through a lattice of M sites.
We will assume that laser directions are chosen such
that |kL| = |k0|. The state at time t can be expressed
as |Ψ(t)〉 = (1/

√
M)

∑

i Ai(t)|1i, {0}〉 +
∑

kBk(t)|0, 1k〉,
where Ai represents the amplitude at site i. Follow-
ing similar lines as in the single site example we can
write Ȧi(t) =

∑

j Γ|i−j|Aj(t), with rates given by (4).
An analytical solution can be obtained by considering
a large system (M1/3 ≫ 1) such that boundary ef-
fects are neglected, and periodic boundary conditions
can be assumed. In that situation, atoms in |a〉 remain
in the completely symmetric state with an amplitude
Acoll(t) = (1/

√
M)

∑

iAi(t) that decays with a collec-
tive rate Γcoll =

∑

n Γ|n|. Then, the system reaches sev-
eral regimes in which collective effects play an important
role [18]: (a) If ξ < 1 and χ ≫ 1, reabsorption occurs,
and the decay rate is renormalized to Γcoll ∼ χΓ0. (b)
If M1/3 > ξ > 1, the dipolar interactions couple near
neighbors, and χ > 1 independent of the size of the sys-
tem. The rate Γcoll scales in the same way as in (a).
Finally, case (c) corresponds to ξ ≫M1/3, a situation in
which every site is connected through dipole interactions
to all other sites, and Γcoll = MΓ0.

We now consider N atoms within M sites. The above
described regimes still give a valid picture for this situa-
tion. In particular, we focus on the collective limit (b),
where ξ > 1. In addition, from here on, we will consider
laser directions to be such that |kL|d0M

1/3 ≪ 1. When
all the atoms are initially in the lattice, we get

d〈σ3
i 〉

dt
= −4Re[

∑

j

Γ|j−i|〈σ+
i σj〉]

d〈σ+
i σj〉
dt

=
∑

l

Γ∗
|l−i|〈σ+

l σ
3
i σj〉 + Γ|l−j|〈σ+

i σ
3
j σl〉, (6)

t G
0

t W

R
(t)

N

FIG. 3: Rate of atomic emission from a 1D lattice with N =
M = 100 atoms. Solid, dashed, dotted and dot-dashed curves
correspond to ξ = 0.9, 1.25, 2, 3.33 respectively. Inset [17]:
Spontaneous symmetry breaking and non–zero steady state
population. Solid and dashed curves represent z(t) and y(t)
respectively, evolving according to (8), for N = M = 103

atoms, ∆ = 0, and ω0 = 50.

with rates given by (4). Here, σ3
i = 2σ+

i σi − 1, and
all the operators are evaluated a time t. Let us first ana-
lyze the atomic emission that occurs for positive detuning
∆ > 0. We focus on the rate of emission of atoms in all
directions, which is given by R(t) ≈ −∑

j d〈σ3
j 〉/dt, for

different values of ξ. If sites evolve independently, R(t)
decays exponentially. However, when ξ > 1 and collec-
tive effects are present, R(t) does no longer decay expo-
nentially and, furthermore, it presents positive slopes at
initial times. This is shown in Fig. 3 for a 1D lattice,
where it is observed that collective effects occur for ξ > 1.
This result is obtained with (6) by using the semiclassical
decoupling 〈σ+

l σ
3
i σj〉 = 〈σ3

i 〉〈σ+
l σj〉, that is based on ne-

glecting atomic quantum fluctuations [9]. Nevertheless,
the change of sign in the slope can be obtained analyti-
cally by differentiating Eq. (6) at t = 0 without the use
of any approximation.

If we now consider negative detuning, ∆ < 0, the rates
(4) are purely imaginary, and the system has an effective
Hamiltonian

H∆<0
eff =

∑

i,j

J|i−j|σ
†
i σ

−
j , (7)

where J|i−j| = iΓ|i−j| is a real and negative quantity, so
that (7) is Hermitian and describes a coherent spin–spin
interaction of ferromagnetic type. This interaction may
have interesting applications in the field of quantum sim-
ulation. Furthermore, for ξ ≫ 1 it gives a Coulomb–like
interaction very difficult to obtain with other techniques.

We now concentrate in the non–Markovian limit,
where the system also becomes strongly interacting. We
will consider that all the atoms are initially in the lattice
(i.e., N = M), and the limit M ≫ 1. We use the mean
field or Hartree approximation [22]. Then, the evolution
of y(t) =

∑

j〈σ−
j (t)〉/M and z(t) =

∑

j〈σ3
j (t)〉/M can be
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written as

dy(t)

dt
= M

∫ t

0

dτGcoll(t− τ)y(τ)z(t);

dz(t)

dt
= −4MRe

[
∫ t

0

dτGcoll(t− τ)y∗(τ)y(t)

]

. (8)

The function Gcoll(t) =
∑

nGn(t), with Gn(t) defined in
(5). Due to the non–Markovian structure of the equa-
tions, the mean field approximation here considered pre-
dicts that the trapped atoms acquire a macroscopic po-
larization in the steady state. This is shown in Fig. (3)
for ∆ = 0, where we have considered an initial infinites-
imal polarization, y(0) = 10−6 (though the steady state
does not depend on the choice of y(0)), and z(0) = 1.
The spontaneous polarization of the system, previously
described in [7] for atoms in PCs, is similar to the sponta-
neous symmetry breaking described in the semiclassical
theory of the laser ([22] and references therein). Fig. (3)
also shows that the non–Markovian effects lead to a non–
zero steady state population, i.e. zst 6= −1.

Most of the phenomena described here may be ob-
served with state of the art experimental setups us-
ing state–dependent potentials [1] in the Mott insulator
regime [2] for the lattice atoms and choosing Ω ≪ ω0 to
avoid the occupation of other bands. The simplest regime
corresponds to the a single excitation (N = M = 1),
where decay, non–Markovian effects, as well as the phase
transition occurring at ∆ = 0 can be observed. Note that
it is not required to have a single atom in the whole lat-
tice, as long as the atoms do not interact with each others
(i.e. ξ ≪ 1 and initially localized), so that one could eas-
ily monitor the decay as a function of time by simply
measuring how many atoms remain in |a〉. The pres-
ence of the bound state of the untrapped atoms should
be visible in the momentum distribution after free ex-
pansion. By preparing a few atoms each of them co-
herently distributed among M sites in disjoint regions,
several copies of the setup consisting in N = 1 atom
within M sites could be realized. Hence, we would ob-
serve collective effects in the decay time for χ ≥ 1. For
an initial Mott insulator state (N = M) it should also be
possible to observe superradiant effects by looking at the
slope of the decay rate for short times, and for ∆ < 0 the
nearest–neighbor interaction induced via virtual transi-
tions to the untrapped state, as follows from Eq. (7). All
those phenomena require ξ ≥ 1, i.e. |∆| ≤ 1/(2md2

0),
as well as the Markovian limit, Γcoll ≤ |∆|. Observing
superradiance for long times (i.e. the whole shape of Fig.
3) may be limited by decoherence effects caused by ran-
dom magnetic fields which shift |a〉 and |b〉 differently.
Furthermore, to observe coherent interactions in Eq. (7)
beyond nearest neighbors requires ξ ≫ 1, which may also
be compromised by decoherence effects. A possible way
around this is to use lighter atomic species, like Li, where
those conditions are relaxed. On the other hand, the col-
lecive non–Markovian effects related to the spontaneous

polarization should be also easy to observe by choosing
∆ ≃ 0.

The proposed set–up may be advantageous to observe
some phenomena with respect to atoms interacting with
light in a PC. First, it is easily tunable; second, the de-
tection techniques developed for atoms in optical lattices
[23] may allow to measure features, like the analogue to
the photon-atom bound state, that are difficult to mea-
sure in PCs; third, the optical lattice is a nearly perfect
periodic potential. In addition, other interesting phe-
nomena could be explored with the present set–up. For
example, for χ ≫ 1 light–matter interface schemes can
be used to control the emission direction of the atoms,
or to map the state of trapped atoms into that of un-
trapped atoms [24]. Besides that, if |b〉 is affected by a
trap that is wider than that of |a〉, other types of inter-
actions, like the one described by the Jaynes Cummings
or the so-called Tavis Cummings model, can be imple-
mented. Finally, the present system may be tuned to
explore other regimes which have never been considered
in quantum optics since they could not be reached there,
like for example the ones in which the initial state of the
atoms in the lattice is a superfluid, or a Tonks gas.
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