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Towards an extension of the Hudson’s theorem to mixed quantum states
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In this work, we make a step towards the extension of the Hudson’s theorem to mixed states by
finding upper and lower bounds on the degree of non-Gaussianity of states with positive Wigner
functions. The bounds are expressed in the form of parametric functions relating the degree of
non-Gaussianity, the purity of the states and the purity of Gaussian states determined by the
same covariance matrix as of these states. Even though the bounds are not tight, they permit for a
preliminary visualization of the space of states with positive Wigner functions and for the derivation
of a bound on the purity of a state with strictly positive Wigner function and a given covariance
matrix.

PACS numbers:

I. INTRODUCTION

The Wigner representation of quantum states [1],
which is realized by joint quasi-probability distributions
in phase space, has a specific property which differen-
tiates it from a true probability distribution; it can at-
tain negative values. Among pure states, it was proven
by R.L. Hudson [2] and later generalized to multi-mode
quantum systems by F. Soto et al [3], that the only states
which have positive Wigner functions are the Gaussian
ones. The question that naturally arises [2], is whether
this theorem can be extended to mixed states, among
which not only the Gaussian states may possess a posi-
tive Wigner function. A logical extension of the theorem
would be a complete characterization of the set of such
states. However, this has not been yet achieved due to
the mathematical complications which emerge when one
deals with convex sets of quantum states [4].

Motivated by the increasing interest and need for bet-
ter understanding of de-Gaussified mixed states [5], we
explore the space of states with positive Wigner functions
using as a reference point the Gaussian states. We obtain
a partial solution to the problem, by analytically deriving
necessary conditions (bounds) on the non-Gaussianity for
a state to have a positive Wigner functions. The set of
conditions depend on the purity of the state and on the
purity of the corresponding Gaussian state via paramet-
ric functions which can be visualized in a three dimen-
sional space. As it is intuitively expected, the ultimate
degree of non-Gaussianity is increasing with the decrease
of the purity of the Gaussian reference state.

Furthermore, our derived conditions permit, in prin-
ciple, the existence of non-Gaussian states less or more
pure than the corresponding Gaussian ones. We present
several physical examples of states less pure than the
corresponding Gaussian states. This is in contrast with
other measures, such as the von Neumann entropy, where
the Gaussian states are extremal.

Before we derive the main results, we would like to re-
call a convenient representation of the trace of the prod-

uct of two one-mode quantum states, ρ and ρ′, in terms
of the Wigner representation,

Tr (ρρ′) = 2π

∫ ∫

dxdpWρ (x, p) Wρ′ (x, p) . (1)

where Wρ is the Wigner function of the state ρ. The
purity of a state, µ[ρ] = Tr

(

ρ2
)

may be calculated with
the help of this formula. For a state with a Gaussian

Wigner function, completely determined by the covari-

ance matrix γ and the displacement vector d, the purity

is simply µ [ρG] = (det γ)
−1/2

. The matrix elements of
the covariance matrix of state ρ are defined as

γij = Tr({(r̂i − di)(r̂j − dj)}ρ) (2)

where r̂ is the vector of quadrature operators r̂ = (x̂, p̂)T ,
d = Tr(r̂ρ), and {·, ·} is the anticommutator.

Our aim is to derive bounds on the distance between a
state ρ of purity µ[ρ] possessing a positive Wigner func-
tion, and the Gaussian state ρG determined by the same
covariance matrix and displacement vector. While there
are different measures in the literature for quantifying
the distance between two mixed states, we have chosen
to use a recently proposed one [6],

δ [ρ, ρG] =
µ[ρ] + µ [ρG] − 2Tr (ρρG)

2µ[ρ]
, (3)

which was especially constructed to quantify the non-
Gaussian character of ρ. The domain of values for δ is
[0, ε] , with ε < 1 and 0 is attained iff ρ ≡ ρG. For
one-mode states it is conjectured in [6] that ε = 1/2.

II. BOUNDS ON NON-GAUSSIANITY

In a first step, we are going to derive the bounds for
Tr (ρρG). It is then straightforward to express these
bounds in terms of the distance δ [ρ, ρG], as µ[ρG] and
µ[ρ] are included in the conditions of the problem.
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A. Upper Bounds and ultimate distance

One can employ the expression Eq.(1) to reformulate
the problem as an optimization problem that can be
tackled with the method of Lagrange multipliers. More
specifically we derive the desired bounds by extremizing
the functional I[Wρ] = Tr (ρρG) represented by Eq. (1)
and being constrained by the condition that the Gaus-
sian Wigner function WρG

and the positive distribution
Wρ, are possessing the same first and second moments.
In order to simplify our derivation, we apply a symplec-
tic transformation S on the states, SρS†, SρGS† such
that the Gaussian state becomes symmetric in x and p.
Since the functional and also the purities of the states
are invariant under such operations, the problem is now
reduced to a simpler equivalent one with the Gaussian
state being a thermal state centered in zero and of vari-
ance C. Furthermore, we claim that the function W ex

ρ

which extremizes the functional I[Wρ] is symmetric as
well under rotation in the x− p plane and we justify this
assumption at the end of the derivation.

After having applied the symplectic transformation
and under the assumption of symmetric solutions, the
functions Wρ and WρG

(r) = 1
2πC e−r/2C depend only on

the radius squared r = x2 + p2 and the functional I[Wρ]
obtains a simpler form

I[Wρ] = Tr (ρρG) = 2π2

∫ ∞

0

Wρ (r) WρG
(r) dr. (4)

The constrains that we impose on the function Wρ can
be summarized as follows:

1. It vanishes for r = rB and rA, it is positive for
rB < r < rA, and zero elsewhere. Below, we show
that the maximum number of roots is indeed two.

2. It is normalized

π

∫ rA

rB

Wρ(r)dr = 1. (5)

3. It is constrained to have the same variance as the
corresponding Gaussian state, ρG

π

∫ rA

rB

Wρ(r)rdr = 2C = 1/µ [ρG] . (6)

We note here that the Heisenberg uncertainty rela-
tion is satisfied for both ρ and ̺G, iff C > 1/2.

4. The state ρ is of purity µ[ρ],

µ[ρ] = 2π2

∫ rA

rB

W 2
ρ (r)dr. (7)

5. It is square integrable and continuous.
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FIG. 1: (a) The bounds on the non-Gaussianity δ [ρ, ρG]ex

derived with the method of Lagrange multipliers. The dou-
ble horizontal orange line marks the boundary between the
two branches of solutions. The blue single line indicates the
intersection with the plane µ [ρG] = 1 (but also δu.ult) and
the blue double line with the plane µ [ρG] = 1. The red line
denotes the left extremity of the surface. The ‘vertical’ grid
lines correspond to different µ [ρG] and the horizontal to pa-
rameters α and β. (b) The physical part of the lower bound
on non-Gaussianity δ [ρ, ρG]

C.S.
given by the Cauchy Schwarz

inequality.

We would like to point out here that without the re-
quirement of the positive definiteness of the operator ρ,
the set of conditions listed above is not sufficient to con-
strain the solutions to eligible Wigner functions. To our
knowledge no applicable criterion on phase-space func-
tions does exist, ensuring that the operator ρ is physical
(see [7] for an extensive discussion). On the other hand,
one might be able to prove a quasi-probability distribu-
tion unphysical by using a theorem [8] which states that
a square integrable and normalized function is a Wigner
function, iff its overlap with the Wigner function of every
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pure state is positive.
After having applied the method of Lagrange multipli-

ers, we obtain the extremal solution

W ex
ρ (r) = A1 + A2

1

2πC
e−r/2C + A3r , (8)

with A′s to be defined by the constrains 2-4. The con-
dition 5 limits the class of possible W ex

ρ (r) functions in
Eq. (8) to those that have two, one or zero roots. The
latter case is the trivial one where W ex

ρ (r) coincides with
the WρG

(r) and thus δ [ρ, ρG] becomes zero. We treat the

two other cases separately and obtain two continuously
connected branches of solutions for W ex

ρ . The expres-

sions that we obtain for Tr (ρρG)ex and µ[ρ]ex are highly
non-linear so that it is not possible to derive an analytic
expression that connects “directly” the two quantities.
Nevertheless, we are able to express the extremum solu-
tions in a form of parametric functions.

I. Two roots, W ex
ρ (rB) = W ex

ρ (rA) = 0. We express

the purity µ[ρ]ex and the extremum overlap Tr (ρρG)
ex

in terms of the purity of corresponding Gaussian state
µ[ρG] and parameter α = (rA − rB)µ[ρG],

µ[ρ]ex = µ[ρG]
2

(

α2 − 9 sinh(α)α + 2
(

α2 + 6
)

cosh(α) − 12
)

3α
(

α cosh
(

α
2

)

− 2 sinh
(

α
2

))2 , (9)

Tr (ρρG)ex = µ[ρG]2Exp

[

−α (α + eα(2α − 3) + 3)

3 (eα(α − 2) + α + 2)

]

(eα − 1) /α, (10)

where µ[ρG] ∈ (0, 1]. By imposing the condition rB > 0
we obtain the following bounds α ∈ (0, xr], with xr being
the root of the equation

ex(x − 3) + 2x + 3 = 0. (11)

II. One root, W ex
ρ (rA) = 0. The extremum solution is

defined by the following pair of parametric functions,

µ[ρ]ex = µ[ρG]
4

(

e2β(β − 3)2 + 8eββ(β − 3) + β(β(2β + 9) + 12) − 9
)

(2eβ(β − 3) + β(β + 4) + 6)
2 , (12)

Tr (ρρG)
ex

= µ[ρG]
4(β(cosh(β) + 2) − 3 sinh(β))

2eβ(β − 3) + β(β + 4) + 6
, (13)

where µ[ρG] ∈ (0, 1] and β = rAµ[ρG]. The range of the parameter is β ∈ [xr,∞).

We show now that although we have only considered
solutions W ex

ρ with no angular dependence, our result is
general. Indeed, if we waive this assumption and consider
the most general case, we arrive to

W ex
ρ (x, p) = A1 + A2

1

2πC
e−(x2+p2)/2C

[2ex] + A3x
2 + A4p

2 + A5xp, (14)

which is the analogue of Eq. (8). We can apply a sym-
plectic rotation on the states ρ and ρG, to eliminate the
term A5xp in Eq. (14). Such a rotation does not affect
the Gaussian state or the overlap and the resulting func-
tion has a form of an ellipsoid in the phase space. The
conditions

〈

x2
〉

=
〈

p2
〉

= C then can be satisfied iff

A3 = A4. Thus, the most general solution reduces to the
symmetric one, Eq.(8).

With the help of the derived bounds on the trace over-
lap, Eqs. (9)-(10),(12)-(13), we plot in Fig. 1(a) the cor-
responding bounds on the distance δ [ρ, ρG]ex. By direct
inspection of the graph we conclude that the intersec-
tion of surface bound with the plane µ[ρ] = 1 provides us
with an upper bound to the distance between a Gaussian
state of purity µ [ρG] and any state with the same covari-
ance matrix and positive Wigner function. We call it the
ultimate upper bound δu.ult (µ [ρG]) (see also Fig. 2 (b))
and its parametric expression can be directly derived by
setting µex[ρ] = 1 in Eqs. (9)-(10),(12)-(13).

Concerning the question of the physicality of the func-
tions Eq.(8), by simply resorting to Hudson’s theorem
we can conclude that the intersections with the planes
µ[ρ] = 1 and µ[ρG] = 1 (see Fig. 1(a)) cannot cor-
respond to physical states. In order to arrive to more
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FIG. 2: (a) The upper (blue) and lower “Cauchy-Schwarz”
(black) bounds on the non-Gaussianity of one-dimensional
states with a positive Wigner function and the trial mixed
state (green) Eq. (16). (b) The two curves,δl.ult and δc.ult,
limit the region where the tight ultimate bound for non-
Gaussianity must be sited.

accurate conclusions we apply the theorem [8] and using
the first five eigenstates of the quantum harmonic oscil-
lator as test pure states, we prove that the functions of
Eq. (8) are unphysical, hence, our bounds are not tight.

B. Lower Bounds

From Fig. 1(a) we observe that the bounds derived by
using the method of Lagrange multipliers confine δ only
from above. In order to obtain a lower bound we need
to find an upper bound on the trace distance. This we
can do by applying the Cauchy Schwarz inequality for
the Wigner representation of the trace overlap, Eq. (1),
and after recalling the definition of purity we arrive at

Tr (ρρG) ≤
√

µ [ρG] µ [ρ] ≡ Tr (ρρG)C.S. (15)

where C.S. stands for “Cauchy Schwarz”.
We note here that the only property of the functions

Wρ and WG
ρ that we have used is the non negativity.

Consequently Tr (ρρG)C.S. is not a strict bound and we
expect that the requirement 3 may further constrain the
upper limit in Eq. (15).

C. The Convex Set of Coherent states

The bounds Eqs. (9)-(10), (12)-(13), and (15) provide
us with the necessary conditions for a one-mode mixed
state to posses a positive Wigner function. The subset of
convex combinations of pure Gaussian states (squeezed
and displaced) is properly contained in the set of all pos-
itive Wigner functions [4]. Thus, identifying the extrem-
ities for this set could supply us with a lower estimation
on the tight upper bound. Even though we have not
been able to find a universal analytic solution to this op-
timization problem we have considered different mixtures
of pure Gaussian states, such as, an optimized continuous
convex combination of displaced coherent states, a “ring”
of squeezed states, different discrete convex combinations
of squeezed and coherent states. The visualization of the
ensemble of the results is not perspicuous and therefore
we have chosen to present in Fig. 2(a) only one of them,
which consists of the states with the Wigner function of
the form

Wρ (x, p, q, s) = αe−
(x−q)2

s
−p2s + (1 − α)e−

(x+q)2

s
−p2s.

(16)
In the limit of pure states, µ[ρ] → 1, these states are the
most non-Gaussian states among all different trial mix-
tures that we considered, achieving the highest distance
δc.ult . We have derived an analytic expression for it,
δc.ult(x) = 1

2 (1 + x − 2
√

2x/
√

1 + x2) where x = µ [ρG],

by considering α → 0 and keeping the product αsq2 con-
stant. The curve δc.ult (see Fig. 2(b) ) gives a lower
estimation on the tight upper ultimate bound. The tight
bound is sited between the curves δc.ult and δu.ult in
Fig. 2(b).

III. BOUNDS ON THE PURITY

One may notice in Fig. 1(a) that the left extrem-
ity of the bound (red line) is to the left of the plane
µ[ρG] = µ[ρ]. This means that the bounds allow, in
principle, the existence of states less pure than the cor-
responding Gaussian states. Can this possibility be re-
alized by some physical states? Knowing about the ex-
tremality of Gaussian states [9], in particular, in terms of
the von Neumann entropy, one could expect that Gaus-
sian states are also the “least pure” states. However the
answer to our question is positive and in the Appendix
we demonstrate this with specific examples.

In addition, this left extremity of the surface in
Fig. 1(a) limits the purity of a quantum state with pos-
itive Wigner function, for a given purity of the corre-
sponding Gaussian state. To derive analytically this
bound we employ once again the method of Lagrange
multipliers but now for the functional Eq. (7) of the
purity, under the constraints Eq.(5) and Eq.(6). The ex-
tremum is realized by the function,

W ex(r) =
2

3π
µ[ρG]

(

1 − rµ[ρG]

3

)

(17)



5

where r ∈ [0, 3/µ[ρG]] so that W (r) remains everywhere
positive. Positivity of second variation ensures that we
have found a solution that minimizes the purity func-
tional, and therefore a lower bound on the purity

µ[ρ]ex =
8

9
µ[ρG]. (18)

We plot in Fig. 3 (straight line) the difference µ[ρ]ex −
µ[ρG] as a function of µ[ρG]. Together, we present the
function µ[ρ]−µ[ρG], derived numerically or analytically,
for three different examples (see Appendix) for which this
function indeed attains negative values, i.e. µ[ρ] < µ[ρG].

The derived limit Eq.(18) is consistent with the fact
that for classical distributions the Rényi entropy is max-
imized by the Student distribution [10], since purity cor-
responds to Rényi entropy of order two and W ex(r) re-
alizes the Student distribution. However, this bound is
unphysical for quantum state since the overlap of Eq.(17)
with the Wigner function of the first number state is neg-
ative for all values of µ[ρG]. Indeed, in Fig. 3 we see that
for µ [ρG] → 1 all physical examples are far from our
bound in agreement with Hudson’s theorem. Neverthe-
less, in the limit of maximally mixed states µ [ρG] → 0
our bound Eq. (18) is asymptotically tight.
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FIG. 3: Difference between the lower bounds for purity of
quantum states and the purity of corresponding Gaussians.
Lower straight red line: positive Wigner functions. Green line
(in the grey region): optimized mixture of coherent states.
Blue dashed line: convex combinations of number states.
Grey region: “ring” of squeezed states.

IV. CONCLUSIONS

In conclusion, we have found upper and lower bounds
on the non-Gaussianity of mixed states with positive
Wigner function, only depending on the purity and co-
variance matrix of the states. In addition, we have ob-
tained a lower bound on the purity of states with posi-
tive Wigner functions in terms of the purity of the corre-
sponding Gaussian states. Interestingly, Gaussian states
turn out not to be extremal with respect to purity. An
open question remains to derive tighter bounds.
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APPENDIX: EXAMPLES OF MIXED STATES

1. Optimized mixture of coherent states

The first example we examine is a symmetric convex
combination of coherent displaced states,

W coh(x, p) =

∫ ∫

dx0dp0

π
α(x0, p0)e

(x−x0)
2+(p−p0)2 .

where α(x0, p0) is a classical distribution which depends
only on radius of displacement r0 = x2

0 + p2
0. The

Lagrange multipliers method provides us with a lower
bound for the purity of these states realized by

α(r0) =
2

3π

µ[ρG]

1 − µ[ρG]

(

1 − µ[ρG]r0

3(1 − µ[ρG])

)

.

We evaluate the purity µ[ρG]ex.coh numerically and plot
its difference from µ[ρG] in Fig. 3 (the green line).

2. “Ring” of squeezed states

An example that comes closer to our bound Eq.(18) is
a convex combination of Gaussian states displaced uni-
formly on a circle, and squeezed along the radius

W sq(x, p, r, s) (19)

=
1

2π2

∫ 2π

0

dθe(x cos θ−p sin θ−r)2s+(x sin θ+p cos θ)2/s.

The parameter r is the displacement parameter, the ra-
dius of the “ring” and s is the squeezing parameter. The
purity of this state and of the corresponding symmetric
Gaussian states are

µ[ρ] =

√
2

π
s

∫ 2π

0

dθ
e
(µG(1+s2)−2s)(1−cos θ)

µG(1+(s2
−1) cos θ+s2)

√

1 + 6s2 + s4 − (s2 − 1) cos 2θ

µ[ρG] = 2s/(s2 + 2sr2 + 1).

We do not perform any optimization. The gray region in
Fig. 3 corresponds to the parametric plot of these equa-
tions for a representative range of the parameters r and
s.
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3. Mixture of number states

The last example we consider does not belong to the
set of states with positive Wigner functions. This is the
set of states formed by finite convex combinations of the
number states,

ρN =

N
∑

n=0

Pn|n〉〈n|, ∀n, Pn ≥ 0

N
∑

n=0

Pn = 1 . (20)

where N limits the number of photons in the number
states present in this combination. The purity of such
states, and the purity of the corresponding Gaussian
states are

N
∑

n=0

P 2
n = µ[ρN ] ,

N
∑

n=0

Pn(n + 1/2) = 1/2µ [ρG] .

Assuming N large enough for the Lagrange multipliers
method to be valid, we find Pn that minimizes the purity

Pn =
4µ [ρG]

3 + µ [ρG]

[

1 − 2nµ [ρG]

3 − µ [ρG]

]

,

µ [ρ]ex.N = 8µ [ρG] /
(

9 − µ [ρG]2
)

. (21)

where n ≤ (3 − µ [ρG]) /(2µ [ρG]). The obtained result
Eq.(21) is plotted in Fig. 3 as blue dashed line.
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