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We apply a Bayesian data analysis scheme known as the Markov Chain Monte Carlo (MCMC)
to the tomographic reconstruction of quantum states. This method yields a vector, known as the
Markov chain, which contains the full statistical information concerning all reconstruction param-
eters including their statistical correlations with no a priori assumptions as to the form of the
distribution from which it has been obtained. From this vector can be derived, e. g. the marginal
distributions and uncertainties of all model parameters and also of other quantities such as the
purity of the reconstructed state. We demonstrate the utility of this scheme by reconstructing
the Wigner function of phase-diffused squeezed states. These states posses non-Gaussian statistics
and therefore represent a non-trivial case of tomographic reconstruction. We compare our results
to those obtained through pure maximum-likelihood and Fisher information approaches.
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I. INTRODUCTION

The tomographic reconstruction of quantum states
represents an important laboratory tool in both quantum
optics and quantum information alike. It can be applied,
for example, to the reconstruction of the dynamical inter-
action between quantum systems in a technique known
as quantum process tomography. This latter technique is
important in quantum computing, where the characteri-
zation of quantum gates is essential to the overall quan-
tum circuit [1, 2, 3]. Tomography has even been used
as part of the optimization of advanced interferometry
as was done in the preparation of frequency dependent
squeezing [4].

Since the theoretical discovery by Vogel and Risken
[5] that the Wigner function can be reconstructed from
homodyne detector data, a number of reconstruction
schemes have been developed ranging from direct inver-
sion of the tomographic data by means of the filtered-
back projection method [6] to statistical methods such
as maximum-likelihood estimation [7, 8, 9, 10, 11, 12].
An important feature of maximum-likelihood methods
is the guaranteed positive “semi-definiteness” of the re-
constructed state. The result of a maximum-likelihood
reconstruction method is either a density matrix [10, 11]
or a set of parameters [13, 14] which have maximized the
likelihood functional given a model of the measurement
apparatus and of the parameterized state. A full analysis
of the experimental data, however, should also answer im-
portant questions regarding error-bars on the estimation
of the state parameters, possible correlations amongst the
parameters, and error-propagation when using the recon-
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structed state for further calculations of quantities such
as the purity of the state or amount of entanglement.

Several methods have been proposed in the literature
to put error-bars on the reconstructed quantum states.
For linear reconstruction techniques based on the aver-
aging of sampling functions over the experimental data
[15] one can calculate the statistical uncertainties of the
estimated quantities by evaluating variances of the linear
estimators [16]. Another possible approach is to numer-
ically simulate the whole measurement and reconstruc-
tion process many times assuming that the reconstructed
state is the true state that is being measured upon. The
error bars are then calculated from the resulting ensem-
ble of reconstructed states [17]. Finally, uncertainties
on estimates obtained by maximum-likelihood method
can be determined by evaluating the Fisher information
matrix [18]. This latter approach essentially relies on ap-
proximation of the likelihood function by a Gaussian and
becomes exact only asymptotically in the limit of a very
large number of experimental data.

In the present paper we show that the uncertainties
in quantum state estimation can be consistently deter-
mined by using a general and statistically well motivated
Bayesian analysis scheme known as the Markov Chain
Monte Carlo (MCMC). The method is based on the im-
plementation of a Markov chain to search the parameter
space resulting in a set of samples from the joint poste-

rior probability density distribution on the unknown pa-
rameters of the model. This technique produces several
important results. First, it yields the Markov chain con-
taining all of the relevant statistical information about
the parameter space. Second, one can extract a set of
marginalized probability density distributions for each
parameter quantifying the degree of uncertainty on their
estimation. Third, the resulting chain can be used in
further calculations, where one can produce probability

http://arXiv.org/abs/0902.4603v1
mailto:James.DiGuglielmo@aei.mpg.de


2

density distributions on quantities such as of the purity
or amount of entanglement of the reconstructed state.

This paper is divided into the following sections: in
Sec. II the necessary concepts required from Bayesian
data analysis are introduced and applied to the case of
quantum state estimation. In Sec. III, the quantum like-
lihood function for phase-diffused squeezed states is de-
rived. In Sec. IV the Markov chain Monte Carlo algo-
rithm is introduced and finally in Sec. V both the techni-
cal details of the experimental realization as well as the
results of the reconstruction are presented.

II. BAYESIAN DATA ANALYSIS

Bayes’ Theorem prescribes the rule to invert the rela-
tionship between the experimental data already observed
and the parameterized model which could have generated
the measured data set. The theorem reads

p(~λ|D , I) =
p(D|~λ , I)p(~λ|I)

p(D|I)
, (1)

where we use D to represent our data, I to represent

our prior information or model of the experiment and ~λ
to represent a vector of model parameters. The quan-

tity p(~λ|D , I) is known as the posterior distribution,

p(D|~λ , I) is known as the likelihood function, p(~λ|I) is
the prior distribution and p(D|I) is a normalization fac-
tor. The standard application of Bayesian analysis is to
calculate the posterior distribution given a parameterized
model of the sought after signal, the measured data and
prior probability distributions on the values of the model
parameters. These three elements are brought together
through Eq. (1).

Let us now construct the likelihood function for the
quantum estimation problem. A general measurement
on a quantum system can be described by the so-called
positive operator-valued measure (POVM). Each possi-
ble measurement outcome j is associated with a POVM
element Πj which is a positive semidefinite operator.
The probability of outcome j can be calculated as Pj =

Tr[Πjρ(~λ)] where ρ(~λ) denotes the density matrix of the
measured quantum system that depends on the model

parameters ~λ. Since the total probability of some out-
come is 1, the POVM elements sum up to identity oper-
ator,

∑

j Πj = 11. This generic framework in particular
encompasses a tomographic reconstruction of the state

ρ(~λ) that consists of several different measurements M
with possible outcomes indexed by lM . Then j = (M, lM )
becomes a multi-index indicating both the measurement
setting and the measurement outcome for a given setting.
Let nj denote the observed number of measurement out-
come j and N =

∑

j nj represents the total amount of
collected data. The likelihood function L is the probabil-

ity of observation of a particular set {nj} for a given ~λ.
It follows that L is given by a multinomial distribution

and reads

L = N !

N
∏

j

P
nj

j

nj !
. (2)

In terms of the constituents of Bayes’s theorem the theo-
retical probabilities {Pj} are functions of the parameters
which are to be determined. The measured numbers of
counts {nj} correspond to the data.

III. THE LIKELIHOOD FUNCTION FOR

PHASE-DIFFUSED SQUEEZED STATES

The phase-diffused squeezed states were first intro-
duced within the context of continuous-variable squeez-
ing purification by [19, 20, 21]. They arise when squeezed
states are transmitted over de-phasing quantum channels
such as optical fibers affected by thermal fluctuations.
These states are characterized by non-Gaussian statistics
and therefore represent a non-trivial case for quantum
state tomography.

The Wigner function for phase-diffused squeezed state
is given by

W (x, p) =
1

2π
√

VxVp

∫

∞

−∞

exp

[

−
(

x2
φ

2Vx

+
p2

φ

2Vp

)]

Φ (φ) dφ,

(3)
where xφ = x cos φ + p sinφ, pφ = p cosφ − x sin φ with
x and p as the standard position and phase quadratures
and φ representing the random phase shifts distributed
according to some probability distribution Φ (φ). We use
Vx to represent the variance of the squeezed quadrature
and Vp for the variance of the anti-squeezed quadrature.
We normalize the variances such that for vacuum state
we have Vx = Vp = 1 and the state is squeezed in x
quadrature if Vx < 1. In the experiment we measure sev-
eral different rotated quadratures xθ, where θ defines a
specific measurement setting. The theoretical homodyne
probability density distribution p(xθ) can be calculated
from Wigner function as a marginal distribution. In-
tegration of W (x, p) over the conjugate quadrature pθ

yields, after some algebra

p (xθ) =
1√
2π

∫

∞

−∞

1
√

Ṽ (φ)
exp

[

− x2
θ

2Ṽ (φ)

]

Φ (φ − θ) dφ,

(4)

where Ṽ (φ) = Vx cos2 φ + Vp sin2 φ.
The data from each measurement is binned into L

bins whose lower boundaries are defined by Qθ,l. The
outer bins extend to infinity and we set Qθ,1 = −∞ and
Qθ,L+1 = ∞. The corresponding theoretical probability
Pθ,l is given by integration of the probability density (4)
over the bin,

Pθ,l(~λ) =

∫ Qθ,l+1

Qθ,l

p(xθ)dxθ. (5)
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In our experiment, the results from two quadrature mea-
surements were formed into histograms each containing a
total of L = 70 bins. From the perspective of direct data
inversion this corresponds to an overdetermined system,
because we need to estimate only three real parameters,
c. f. below.

The POVM elements describing such binned homo-
dyne detection can be expressed as

Πθ,l =

∫ Qθ,l+1

Qθ,l

|xθ〉〈xθ |dxθ, (6)

where |xθ〉 is an eigenstate of quadrature operator xθ.
Note that, by definition, the sum of theoretical probabil-
ities over all bins is equal to one,

∑

l

Pθ,l(~λ) = 1. (7)

This is a mathematical expression of the fact that the ho-
modyne detection always yields some outcome and, after
each measurement, one of nθ,l is increased by one. Put
in a different way, the homodyne detection is described
by a complete POVM (6) whose elements Πθ,l satisfy the
condition

∑

l Πθ,l = 11.
Assuming the phase noise distribution, Φ (φ), is a zero

mean Gaussian, the state can be completely character-

ized by just three parameters ~λ = {Vx , Vp , Vφ} where Vφ

is the variance of the random phase shifts. The quantum
log-likelihood function for the phase diffused squeezed
states is finally obtained by taking the natural logarithm
of Eq. (2) giving us

Λ =
∑

θ,l

nθ,l ln
[

Pθ,l(~λ)
]

, (8)

where, for simplicity, we ignore all terms that do not
depend on the parameter values.

IV. MARKOV CHAIN MONTE CARLO

ALGORITHM

The goal of our Bayesian reconstruction scheme is the
calculation of marginalized posterior distributions on our

model parameters ~λ = {Vx, Vp, Vφ}. To this end, the
MCMC method can be used to generate samples drawn

from the posterior distribution p(~λ|D, I). Since this dis-
tribution is unknown one cannot directly sample from it
and instead we sample from the distribution that is the
product of the likelihood and the prior. The prior is cho-
sen by considering the possible values of the parameters
to be determined. Since the parameters to be determined
in this case are variances, their values must be greater
than zero. In order to assume relative ignorance in the
value the parameters could take, we use a prior which
only requires the variances to be positive and satisfy the
Heisenberg uncertainty relation, VxVp ≥ 1. Since the
likelihood in this analysis is a sharply peaked function

OPA

DAQ

Phase diffused squeezed beam

Modecleaner

Noise

Local oscillator

BHD

FIG. 1: (Color online) Experimental setup: The experimen-
tal setup consists of an optical parametric amplifier (OPA) for
the generation of the squeezed vacuum states, a phase shifter
to induce the random phase noise and a homodyne detector
to measure the prepared state. The mode cleaner was used
to increase the fringe contrast at the balanced homodyne de-
tector.

the choice of uniform priors has negligible effect on the
numerical results of the MCMC [29]. In this case Bayes’s
theorem, Eq. (1), tells us that the likelihood function is
proportional to the posterior distribution and since this
is a function that we can compute for a given parameter
space location we can use a standard sampling algorithm
such as the Metropolis-Hastings sampler to draw from
it. We describe our implementation of this sampler in
Appendix A.

V. EXPERIMENTAL IMPLEMENTATION

A. Description of the Experiment

Figure 1 shows the experimental setup that was used
to prepare the phase diffused squeezed states. The full
details of the setup are provided in [20] and will be sum-
marized here. The squeezing source was an optical para-
metric amplifier (OPA) constructed from a type I non-
critically phase-matched MgO:LiNbO3 crystal inside a
standing wave resonator, similar to the design that previ-
ously has been used in [22]. The OPA was pumped with
50mW of green light at 532nm resulting in a classical
gain of about 11. The length of the OPA cavity as well as
the phase of the second harmonic pump beam were con-
trolled using radio-frequency modulation/demodulation
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FIG. 2: Markov chains: This figure depicts the evolution of the Markov chains where the abscissa represents the iteration number
and the ordinate represents the value of the chain. After an initial “burn-in” period, in which the chains head to their steady-
state positions, the chains eventually converge to a region of parameter space and begin to sample from the posterior distribution.
The proposal distributions were taken to be Gaussian with the standard deviations Σx = 0.0042, Σp = 0.022, Σφ = 0.0037
corresponding to the squeezing parameter, the anti-squeezing parameter and the phase noise parameter, respectively. The
starting values were randomly chosen with the only constraint that they be non-negative and obey VxVp ≥ 1. The chains
settled to their equilibrium positions with means of µx = 0.316, µp = 6.888, and µφ = 0.171 corresponding to the squeezing,
anti-squeezing and phase noise parameter respectively.

Vx

p
(V

x
)
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anti-squeezing parameter
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0.16

0.16

0.17
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0.18

FIG. 3: Marginalized posterior distributions: Each probability density was calculated using every tenth point from the marginal-
ized chains corresponding to 38000 data points. The standard deviation of each density are σx = 0.0056, σp = 0.0289, and
σφ = 0.0020 corresponding to the squeezing parameter, the anti-squeezing parameter and the phase noise parameter, respec-
tively. The dotted line represents the result of the Fisher analysis.

techniques. The mode cleaner was operated in high fi-
nesse mode F = 10500 resulting in a line width of 55 kHz.
A non-classical noise power reduction of slightly more
than 5.0 dB was directly observed with a homodyne de-
tector in combination with a spectrum analyzer at a
Fourier sideband frequency of 6.4MHz.

The phase noise was induced by reflecting the squeezed
field from a piezo-electric transducer (PZT) mounted
high-reflection mirror that was quasi-randomly moved.
The voltages applied to the PZTs were produced as fol-
lows. An independent random number generator pro-
duced data strings with a Gaussian distribution. The
strings were digitally filtered to limit the frequency band
to 2–2.5 kHz. The output interface was a common PC
sound card with SNR of -110dB. The sound volume was
set to meet the desired standard deviation of channel

phase noise.

Homodyne detection confirmed that the squeezing
degraded in the same way when phase noise was in-
creased. The detector difference currents were electroni-
cally mixed with a 6.4MHz local oscillator. The demodu-
lated signals were then filtered with a 400kHz bandwidth
low-pass filter and sampled with one million samples per
second and 14 bit resolution using a National Instruments
analog-digital sampling card.

B. Results of the MCMC

Figure 2 depicts the resulting chains after 40,000 it-
erations of the MCMC algorithm. The abscissa repre-
sents the number of iterations of the MCMC whereas the



5

ordinate represents the parameter values. After an ini-
tial “burn-in” period of approximately 1000 iterations,
in which the chain heads towards equilibrium, the chain
converges and begins to sample from the posterior dis-
tribution (which in this Gaussian case also includes the
region of maximum-likelihood). The development of cri-
teria for the determination of chain convergence is a gen-
eral problem which has been the subject of much research
[23, 24]. The general idea is to run multiple chains per
estimation parameter and monitor their evolution both
within each change and across each change. Convergence
is inferred if all chains behave consistently. With respect
to the case at hand, convergence of the chain can be in-
ferred by comparing the locations to which the marginal-
ized parameter chains have settled with the independent
measurement of the Vx, and Vp parameter values per-
formed with a spectrum analyzer. In the absence of such
an independent measurement, the criteria in [23, 24] can
be used to infer convergence.

The width of the marginalized chains, i. e., their stan-
dard deviations, quantify the degree of uncertainty on
the value of each parameter. By forming histograms of
the chain as a function of each of the parameters we
obtain their marginalized posterior probability distribu-
tions as shown in Fig. 3. From these posteriors we ob-
tain the following uncertainties on the model parameters:
σx = 0.0056 for the squeezing parameter, σp = 0.0289
for the anti-squeezing parameter and finally σφ = 0.0020
for the phase noise parameter. The proposal distribu-
tions, from which the posterior distribution samples have
been drawn, were chosen to be Gaussians with the fol-
lowing standard deviations Σx = 0.0042, Σp = 0.022,
Σφ = 0.0037 corresponding to the squeezing parameter,
anti-squeezing parameter and phase noise parameter, re-
spectively. These values were obtained through manual
tuning of the MCMC algorithm. This is done by adjust-
ing the individual standard deviations, i. e. Σx, Σp, Σφ,
until the proportion of accepted jumps reaches approxi-
mately 44% [25].

As an independent test of the posterior standard devi-
ations, we also calculated the Fisher information matrix
[26, 27] given by

Fij =

〈

∂Λ

∂λi

∂Λ

∂λj

〉

. (9)

The inverse Fisher matrix represents the covariance of the
posterior probability distribution for the true parameters
~λ as inferred from a single experiment assuming Gaus-
sian noise and constant priors over the parameter range
of interest. The calculated standard deviations from the
Fisher matrix are presented in Fig. 3 as well as in Table
I where very good agreement is readily seen. It should
be stressed that the posterior distribution standard de-
viations obtained from the Fisher matrix are only valid
when assuming Gaussian noise whereas the posterior dis-
tribution standard deviations obtained from the Markov
chain is valid regardless of the form of the posterior dis-
tribution. The results of the MCMC as well as of the

TABLE I: Standard deviations of posterior distributions:
This table compares the standard deviations of the param-
eter posterior distributions obtained from the Markov chain
Monte Carlo method and from the Fisher information matrix.
The standard deviations represent the error on the estimation
of the parameter values. The Fisher matrix returns the actual
standard deviations only in the case of Gaussian noise.

Parameter Estimates Uncertainties
Parameter MCMC Maximum Likelihood MCMC Fisher

Vx 0.316 0.317 0.0056 0.0055
Vp 6.889 6.880 0.0289 0.0294
Vφ 0.171 0.171 0.0020 0.0020

Fisher analysis are compared in Table I.

Figure 4 depicts the evolution of the log-likelihood
function (Eq. (8)) for each iteration of the MCMC. It
is seen that as the chains evolve through the “burn-in”
stage the log-likelihood quickly increases. After approxi-
mately 1000 iterations it has reached equilibrium where-
upon parameter space jumps to higher likelihood values
are balanced by jumps to lower likelihood values.

Figure 5 represents the spectrum of the squeezed state
before the phase diffusion. The measured state is seen
to have a squeezing strength of -4.98dB or a variance of
Vx = 0.31 and an anti-squeezing strength of 8.39dB or a
variance of Vp = 6.91. These values have not been cor-
rected for dark noise and were measured using a video
bandwidth (VBW) of 10.0Hz, a resolution bandwidth
(RBW) of 100kHz and a sweep time (SWT) of 1.5 s.
These values lie within the width of the respective pos-
terior distributions obtained from the MCMC analysis.
Furthermore, only two quadrature measurements, each
containing just 100, 000 data samples, were required to
obtain these results. This represents a significant sav-
ings in terms of experimental effort to reconstruct a non-
Gaussian state.

We also compare our results with that of a pure
maximum-likelihood approach. This was achieved by al-
tering step 3(d) of the Metroplis-Hastings sampler (see
Appendix A) such that the chain remains at its cur-
rent position whenever the likelihood ratio r is less than
one. This forces the chain to only move to regions of
higher likelihood and hence quickly converge on the true
maximum-likelihood location. The parameter values ob-
tained at the maximum-likelihood were: V̂x = 0.317
for the squeezing parameter, V̂p = 6.880 for the anti-

squeezing parameter and V̂φ = 0.171 for the phase noise
parameter. These are, however, the only results obtained
from the maximum-likelihood estimation alone. Since
the MCMC chain contains a complete statistical descrip-
tion of the parameters, the statistical error on the re-
construction of both the quantum state itself as well as
derived quantities from it, e. g. purity, can be exactly
determined. This will be illustrated in the next section.



6

C. Reconstruction of the Quantum State

Having completely characterized the parameter space,
the final state can be reconstructed. In order to gen-
erate the Wigner function shown in Fig. 6, the Markov
chain together with Eq. (3) were used to calculate the av-
erage Wigner function. The characteristic non-Gaussian
statistics of the phase-space Wigner distribution is clearly
manifested in the reconstructed state. It should be
stressed that this averaging already takes into account
the standard deviation of each value of the Wigner func-
tion since the parameter values are taken from the pos-
terior distribution.

In addition to generating a phase-space plot of the
reconstructed quantum state, the Markov chain can be
used in further calculations of such properties as the pu-
rity of the reconstructed state. Figure 7 depicts such a
result. Using the analytical definition of the purity

µ = 4π

∫∫

W 2 (x , p) dxdp, (10)

and the resulting chain from the MCMC, the purity can
be calculated, automatically taking into consideration
the statistical error and correlation on the parameters
determined by the MCMC. The result is a probability
density whose standard deviation quantifies the degree of
uncertainty on the estimation of the purity. For the state
in question, we obtain a purity of µ = 0.5649 ± 0.0028.
It is important to note that this information is delivered
directly from the MCMC itself; no additional assump-
tions as to the distribution of the errors and their corre-
lation properties need to be made. Additionally, any one-
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FIG. 4: Log-Likelihood: Evolution of the log-likelihood as a
function of iteration. The abscissa represents the iteration
number and the ordinate the log-likelihood value. After ap-
proximately 1000 iterations the log-likelihood appears to have
attained it’s maximum value at which point the chains have
reached equilibrium and are sampling from the posterior dis-
tribution.
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FIG. 5: Zero span measurement of squeezing and anti-
squeezing: The recorded amount of squeezing and anti-
squeezing as measured by a balanced homodyne detector and
spectrum analyzer at a Fourier frequency of 6.5 MHz. It is
seen that approximately -4.98 dB of squeezing and 8.39 dB
of anti-squeezing were directly measured without dark noise
correction. These correspond to variances of Vx = 0.31 and
Vp = 6.91, respectively. The units of the vacuum have been
set to 1 corresponding to 0 dB.
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FIG. 6: (Color Online) Reconstructed Wigner function: The
Wigner function of the measured state as reconstructed using
Eq. (3) and the Markov chain. This reconstruction contains
all the relevant statistical information.

dimensional quantity can be calculated in this manner.
For example, if estimating the amount of entanglement
of a non-Gaussian state, the logarithmic negativity [28]
can be calculated over the span of the resulting chain.
The result will be a probability density quantifying the
uncertainty on its value.
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FIG. 7: Reconstructed purity posterior distribution: The pu-
rity was calculated using the resulting Markov chain of 38,000
parameter values and Eq. (10). This results in a probability
density function which exactly quantifies the uncertainty on
the estimation of the purity. The purity is calculated to be
µ = 0.5649 ± 0.0028. No such result is possible with a pure
maximum-likelihood approach.

VI. CONCLUSION

We have applied a Bayesian data analysis scheme
known as Markov chain Monte Carlo (MCMC) to the
tomographic reconstruction of quantum states. Taking
phase diffused squeezed states as an example, we have
provided the details as to the derivation of the likelihood
function as well as to the numerical implementation of the
MCMC. The results include a set of probability density
distributions which exactly quantify the degree of uncer-
tainty on the estimation of the parameters. These results
were compared to both a pure maximum-likelihood and
a Fisher information approach. Furthermore, using the
Markov chain in the calculation of the state’s purity en-
abled the construction of a probability density distribu-
tion on the value of the purity, thereby quantifying the
degree of uncertainty on its calculation.

We note that MCMC scheme is completely general and
can be applied to higher dimensional problems, such as
the reconstruction of the density matrix, and will be the
topic of future publications.
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APPENDIX A: METROPLIS-HASTINGS

SAMPLER

Our implementation of the MCMC is based on the
Metroplis-Hastings sampler. It is defined by performing
the following steps (see also Fig. 8):

1. Generate initial values for parameters, ~λo

2. Compute the quantity L0 = L(D|~λ0)

3. Iterate the following over the index t until the chain
has converged

(a) Generate a trial parameter vector ~ξ according

to a proposal distribution q(~λt−1)

(b) Compute the quantity Lt = L(D|~ξ). If
VxVp < 1 or some Vj < 0 then set Lt = 0.

(c) Compute the ratio r = Lt/Lt−1

(d) Sample from a uniform distribution, U(0 , 1)

if

{

r > U, set ~λt = ~ξ, Lt = L accepted

r < U, set ~λt = ~λt−1, Lt = Lt−1 rejected
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The proposal distribution q(~λ) used in stage 3(a) is
used to select trial parameter values within the MCMC.
Theoretically q can be any distribution, however in prac-
tice it is sensible for the proposal distribution to suggest
jumps that are local to the current location but large
enough to allow an efficient exploration of the parame-
ter space [30]. Stage 3(b) ensures that the sampling is

restricted to subspace of physically admissible values of

parameters ~λ. The simple difference between this MCMC
method compared to that of a pure maximum-likelihood
method is that for repeated stages within the Metropolis-
Hastings sampler the chain has finite probability of jump-
ing both to higher or lower values of likelihood.
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tection and quantum-state reconstruction, in Progress in
Optics Vol. 39, edited by E. Wolf (Elsevier, Amster-
dam,1999.).

[16] U. Leonhardt, M. Munroe, T. Kiss, T. Richter, and M. G.
Raymer, Opt. Commun 127, 144 (1996).

[17] G. M. D’Ariano, M. F. Sacchi, and P. Kumar,
Phys. Rev. A 61, 043022 (1999).
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