

1

Presentation of Activities in Continuous-Variable QIPC

Nicolas J. Cerf

Centre for Quantum Information and Communication (QuIC) Université libre de Bruxelles (ULB)

COMPAS meeting Brussels, November 30 - December 1, 2009

What is so special about Gaussian states ?

• A quantum de Finetti theorem in phase space

A. Leverrier and N. J. Cerf, Phys. Rev. A 80 (2009) 010102(R)

Investigating Hudson's theorem for mixed states

A. Mandilara, E. Karpov, and N. J. Cerf, Phys. Rev. A 79 (2009) 062302.

Quantum de Finetti theorem (for qubits)

Invariant states under permutations

Special role of *i.i.d.* states, e.g. in quantum cryptography

Quantum de Finetti theorem (for CV)

Invariant states under rotations in phase space

Special role of Gaussian states, e.g. in quantum cryptography

Hudson theorem : special role of Gaussian (pure) states

A pure state has a non-negative Wigner function iff it is a Gaussian state

What about mixed states with W (x,p)>0 ???

e.g., non-Gaussian mixture of Gaussian states:

$$W(x,p) = \sum_{i} w_{i} W_{G}^{i}(x,p) \ge 0 \quad \text{with} \quad \sum_{i} w_{i} = 1 \quad w_{i} \ge 0$$
$$\stackrel{\bigvee}{\ge} 0$$

Collaboration – theme 1

Katerina Mandilara, Evgueni Karpov, NJC (ULB) & Anthony Leverrier, Philippe Grangier (CNRS/IO)

Quantum bit commitment with continuous variables ?

• A no-go theorem on Gaussian QBC

L. Magnin, F. Magniez, A. Leverrier, and N. J. Cerf, arXiv:0905.3419 [quant-ph]

• A potentially realizable non-Gaussian protocol (based on photon subtraction)

QBC is well known to be impossible unless one includes restrictions, such as bounded memory; here, restriction to Gaussian operations

Non-Gaussian QBC protocol

Use of cat states: $|\pm\rangle \propto |\alpha\rangle \pm |-\alpha\rangle$

 $(P_{Alice cheats}, P_{Bob cheats})$ is outside the allowed region for qubit-QBC

Collaboration – theme 2

Loïck Magnin, Xavier Lacour, NJC (ULB) & Anthony Leverrier, Philippe Grangier (CNRS/IO) & Frédéric Magniez (LRI, Orsay, France)

Preserving quantum optical coherence against line losses ?

• No-go for Gaussian quantum error correction

J. Niset, J. Fiurasek, and N. J. Cerf, Phys. Rev. Lett. 102 (2009) 120501.

• A quantum "erasure" correcting code (against non-Gaussian fluctuating loss)

Gaussian quantum error correction (GEC)

Impossible to achieve GEC [$T \rightarrow T_{GEC}$] such that $E_D[T_{GEC}] < E_D[T]$

entanglement degradation
$$E_D[T] = min\left(\frac{\det N}{\left(1 + \det M\right)^2}, 1\right) \quad 0 \le E_D \le 1$$

Quantum error / erasure correcting code (QECC)

"Erasure" \equiv error of which location is known

2-to-4 qubits QECC Grassl et al., PRA 56, 33 (1997).

2-to-4 modes continuous-variable QECC Niset, Andersen, and Cerf, PRL **101**, 130503 (2008).

Continuous-variable C-NOT gate: $|x\rangle|y\rangle \rightarrow |x\rangle|x+y\rangle$ (= QND coupling)

Decoder works for all possible erasure locations

Erasure may be probed via a twin mode (polarization, frequency,...)

	$(g_1^x,\!g_1^p)$	$\left(g_{2}^{x},\!g_{2}^{p} ight)$
loss of A	$(-\sqrt{2}, -\sqrt{2})$	$(0,\!0)$
loss of B	$(\sqrt{2},\sqrt{2})$	$(0,\!0)$
loss of C	(0,0)	$(\sqrt{2}, -\sqrt{2})$
loss of D	(0,0)	$(-\sqrt{2},\sqrt{2})$

15

Probabilistic scheme Each mode transforms as $\rho \rightarrow (1-p_{\rho})\rho + p_{\rho}|0\rangle\langle 0|$ with p_e = erasure probability $|\alpha>$ $|\alpha >$ BS1 p_m EPR Post-selection BSM 4 x_m BS2 $|\beta>$ lβ

Post-selection: keeping events with $x_m \le x_{th}$ and $p_m \le p_{th}$ 16

Erasure filtering

Single-mode fidelity

Probability of success

17

Experimental optical setup (in CW)

Experimental results for (deterministic) QECC

Experimental performances of erasure filtering

Collaboration – theme 3

Joint work with:

```
Julien Niset, Joachim Schäfer, NJC (ULB)
&
Jaromir Fiurasek (UP)
&
Ulrik Andersen, Metin Sabuncu, Alexander Huck (DTU)
&
Gerd Leuchs, Mikael Lassen (FAU)
```

Possible future themes ?

- CV quantum coin tossing
- CV fault tolerant quantum computation (concatenation of CV-QECC)
- CV quantum algorithm (Deutsch-Josza, Grover)
- Bipartite extension of CV quantum de Finetti
- CV quantum non locality