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We propose and experimentally demonstrate nondestructive and noiseless removal �filtering� of vacuum
states from an arbitrary set of coherent states of continuous variable systems. Errors, i.e., vacuum states in the
quantum information are diagnosed through a weak measurement, and on that basis, probabilistically filtered
out. We consider three different filters based on on-off detection, phase stabilized, and phase randomized
homodyne detection. We find that on-off detection, optimal in the ideal theoretical setting, is superior to the
homodyne strategy also in a practical setting.
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I. INTRODUCTION

Ultralow noise quantum channels transmitting discrete or
continuous-variable �CV� quantum-information are prerequi-
site for the successful execution of many quantum informa-
tion protocols. For example, the security and the secret key
rate of quantum key distribution critically depend on the
amount of excess noise added to the quantum states during
transmission �1,2�. All realistic quantum channels are
afflicted by such noise: In fiber channels, for example, light
scattering by thermal phonons causes Gaussian phase noise.
On the other hand, noise sources important in atmospheric
transmission, such as time jitter and beam pointing noise �3�,
show a characteristic non-Gaussian behavior.

In order to retain security, the errors imposed by the noisy
channels must be corrected. Various methods have been de-
veloped to combat noise in CV quantum communication,
examples being entanglement distillation �4� and quantum
error correction coding �5�, which are relying on highly non-
classical resources and complex processing. An alternative is
quantum filtering which is a protocol that probabilistically
rejects erroneous quantum states through detection. The sim-
plest approach is a classical measure-prepare strategy based
on optimal state discrimination using the Neyman-Pearson
criterion �6� followed by state recreation. Helstrom found
that by using a tailored detection process, it is possible to
identify a pure target state in a noisy mixture �7� �see also
�8–10��. Takeoka et al. generalized this strategy and named it
unambiguous quantum state filtering since it unambiguously
filters out a specific signal from the noise �11�. However,
only a single a priori known state is resurrected, which is
done destructively and therefore not suitable for quantum
communication.

In this paper, we propose and experimentally realize a
quantum state filter protocol specially tailored to non-
Gaussian noise as in atmospheric transmission. The protocol
filters a coherent state alphabet nondestructively and noise-

lessly, i.e., the quantum states are not completely destructed
and no excess noise is added by our filter. Our protocol is
based on a weak measurement of the corrupted signal fol-
lowed by a post selection of the remaining part of the signal.
We investigate two different weak measurement strategies,
namely homodyne detection and on-off detection and com-
pare their efficiencies in filtering out noise. We find that op-
timum filtering is obtained by the use of an ideal on-off
detector. The scheme presented in this paper provides the
implementation of a CV error detection protocol enabled by
a photon counting detector.

An exemplary application of such a filter is shown in
Fig. 1. Suppose a signal is conveyed consecutively through
two different quantum channels each possessing different
kinds of noises �e.g., a free space channel and a fiber chan-
nel�. If the first channel is inflicted by the non-Gaussian on-
off noise and the following channel by Gaussian noise, the
on-off noise might be completely masked by the Gaussian
noise and cannot easily be filtered out at the receiving sta-
tion. In order to circumvent a mixing of the two noise
sources, the filtration station could be placed between the
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FIG. 1. Application of the quantum filter device. The filter F is
placed between two quantum channels connecting sender S and
receiver R. We assume, that the channels have non-Gaussian on-off
�first part� and Gaussian properties �last part�. The on-off behavior
of the first channel will be masked by excess noise in the second
channel �e.g., ����� � → �0��0 � →�th�. However, a quantum filter in
the intermediate station can sense the channel break and reject the
noisy state by sending information over a classical channel to R.
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two channels thus removing the on-off noise before the sig-
nal enters the Gaussian noise channel.

The filtration protocol can be also used to improve the
security of a quantum key distribution scheme based on a
coherent state alphabet and heterodyne detection. This is
proven at the end of the paper.

II. DESCRIPTION OF THE PROTOCOL

Let us consider the protocol in detail. Information is en-
coded into quantum states taken from a coherent state alpha-
bet with a possibly unknown probability distribution. The
quantum state is subsequently sent through the quantum
channel where it is subject to time jitter or beam positioning
noise. Such non-Gaussian noise occurs when the detection
time is longer than the signal but shorter than the jitter time
or when the aperture of the receiver is larger than the beam
but much smaller than the beam pointing noise. This noise
can be approximated by a mixture of the sent coherent state
��� and the vacuum state

���� = p������ + �1 − p��0��0� , �1�

where p is an unknown probability for perfect transmission.
The task is now to find a protocol that unambiguously filters
out the vacuum state, while only attenuating the coherent
state, e.g., ���→ ����, ��1.

To accomplish a state-independent weak measurement
adding no excess noise, the signal system must be coupled
unitarily and phase insensitively to a meter system in which
the actual measurement takes place. Due to these require-
ments, the coupling can be enabled by a beam splitter with
the meter system being in the vacuum state before interaction
�12�. The signal-meter coupling can therefore simply be de-
scribed by the transformation

���� � ��0� → ���1 − R�� � ���R�� , �2�

where R is the reflectivity of the beam splitter. After this
interaction, the presence or absence of the vacuum contribu-
tion is correlated in the two systems. Thus by detecting the
vacuum state in the meter system, filtering of the vacuum in
the signal system can be performed by post selecting on the
correlated state. The strategy is illustrated in Fig. 1. The next
step is thus to find the measurement strategy that optimally
and unambiguously detects the vacuum contribution.

Let us assume that we use the measurement operators ��

and � to discriminate the vacuum state and the unknown
signal state. We seek a strategy that maximizes the probabil-
ity ��R� �� ��R�� of measuring ��R�� under the condition
that the vacuum state is never detected incorrectly, that is
E= �0 �� �0�=0. Such decision problem was first encountered
by Neyman and Pearson �6� and was further elaborated upon
by Helstrom �7� and Holevo �13�. They found that the maxi-
mum probability of detecting the signal correctly �also called
the acceptance probability� with no error detections �E=0� is
given by P��R��=1−exp�−R���2� �note that E= P�0��. We
readily find that measurement operators satisfying these con-
ditions are ��= �0��0� and �=1− �0��0� for rejecting and ac-
cepting the state, respectively. Therefore, using these mea-

surement operators the signal states can be unambiguously
detected in the meter system and thus perfectly filtered out in
the signal system. We stress that since this optimized mea-
surement is independent of the signal amplitude and the re-
flection coefficient, it is the optimal strategy for every coher-
ent state.

The physical implementation of these measurement op-
erators is known to be an ideal avalanche photodiode �APD�
operating in the breakdown voltage mode. Practical APDs
are, however, lossy and possess dark counts which results in
a reduced success probability and gives rise to errors, that is,
E�0. Therefore, in addition to the APD, we investigate in
the following the filtering performance using a homodyne
detector for the decision problem; quadrature values larger
than a certain a priori specified threshold value are assumed
to stem from the unknown signal state, smaller values from
the vacuum state. Note that a similar strategy was proposed
in Ref. �14� and experimentally realized in Refs. �15,16� to
purify nonclassical resources. We also note that the incorpo-
ration of an APD in a CV system has been implemented in
previous experiments on state preparation and estimation
�17,18�.

In order to quantify the performance of the filtering pro-
tocol using different detection methods, we introduce two
appropriate functions: The sensitivity S and the gain G. The
sensitivity quantifies the filtering efficiency near the vacuum
state and we define it as

S =
1

2

d2

d���2
�P��R����=0. �3�

Since the probablity P must be minimal when �=0, the sen-
sitivity S is a measure for how quickly the probability in-
creases around �=0. For the ideal filter we easily find S=R,
thus we will be using S /R as the figure of merit. The other
parameter that we will use to quantify the performance of the
filter is the gain G= p� / p where p� is the probability for the
coherent state to occur in the mixture after filtering:
��= p� ��T����T� � + �1− p�� �0��0� with T=1−R. The success
probability for positive filter outputs is PS= pP��R��
+ �1− p�P�0� and the gain can thus be written as

G =
1

p
	1 − �1 − p�

E

PS

 . �4�

Note that the sensitivity S depends solely on the filter imple-
mentation. Thus, it is independent of the channel. In contrast,
the gain is a signal-, channel-, and filter-dependent param-
eter, and therefore describes the joint action of channel and
filter.

III. EXPERIMENTAL SETUP AND RESULTS

We proceed with the experimental demonstration of quan-
tum filtering using an APD-based filter. The setup is shown
in Fig. 2�a�. The source is a diode laser emitting light at
810 nm, characterized with a coherence time of 1 �s and
measured to be shot noise limited in the detected bandwidth.
The statistical mixture of the coherent signal states and
vacuum states is prepared in a computer-controlled electro-
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optical modulator �EOM�. The EOM therefore generates the
signal and simulates the noisy channel. To obtain a small
excitation of the coherent state, the beam is heavily attenu-
ated after modulation. We set the coherent state probability
to p=2%, thus the probability for vacuum to occur being
1− p=98%. The signal duration is defined within 800 ns time
windows, while the rate of the signal preparation is set to
100 kHz.

We investigate the performance of the APD-based filter
by characterizing the state with homodyne detection before
and after filtering. First we demonstrate the principles of the
protocol using the APD as a filter and the homodyne detector
for characterization. The probability distribution of the
mixed input state is shown in Fig. 3 by circles and for com-
parison the pure vacuum state is shown by crosses. Next, the
mixed state is passing the filter beam splitter and the homo-
dyne quadrature data are selected based on the measurement
outcomes of the APD detector. The resulting probability dis-
tribution is shown by the dotted curve and should be com-
pared to the ideally filtered signal �solid line� and the one
expected using homodyne detection with equal error prob-
ability �dotted-dashed line�.

In the following, we fully characterize the quantum filters.
The mixed state is split on a 50:50 beam splitter and subse-
quently directed to two different detector units: A fiber
coupled APD �Perkin-Elmer SPCM CD3017� and a homo-
dyne detector. We therefore simultaneously measure the ac-
ceptance probabilities for the two different detection
schemes; here each detector represents a filter.

Let us first discuss the APD-based filter �see Fig. 2�b�
�left-hand side��. A gate option is used to precisely determine
the detection time. The quantum efficiency is estimated to be
�APD=63% 	3%, while the dark count rate is 180 cts /s.
Due to these imperfections, the expected acceptance prob-
ability is

PAPD�
� = 1 − �1 − pd�exp�− �APD�1 − pd��
�2� , �5�

where 
=�R� and pd is the dark count probability. The ex-
pected error probability is EAPD= PAPD�0�= pd. We measure
the acceptance probability by comparing the actual decision
�based on the filter measurement outcome� with the a priori
known preparation of the state. The results are presented in
Fig. 4 as a function of R���2. Note that R should be tailored
to the actual amplitude � to optimize the performance. The
error probability is found to be E=5.3�10−3, which is lim-
ited not by the dark count probability 1.4�10−4 but by the
imperfections in preparing the vacuum state.

Next we discuss the filter based on homodyne detection
�see Fig. 2�b� �right-hand side��. The detector’s bandwidth is

(a)

(b)

FIG. 2. Schematic illustration of a coherent state quantum filter
for the non-Gaussian channel: �a� Filter device with verification
measurement; �b� �left-hand side� filter using APD as a detector, �b�
�right-hand side� using homodyne detection with a local oscillator
�LO�.
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FIG. 3. Marginal distribution for the perturbed state �p=0.02�
�circles�, the vacuum state �crosses� and the filtered state using an
APD filter �triangles�. The solid line and the dotted-dashed line
correspond to the theoretical performance of a filter with APD
��APD=1� and with homodyne detector ��HDS=1�, respectively.
The mean photon number in the filter is R���2=1.65 and the error
probabilities are identical EAPD=EHDS=5.3�10−3.
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FIG. 4. Acceptance probability for mean photon number R���2
impinging on the filter detector. The triangles, circles, and squares
show experimental data for APD and homodyne detection with
and without stabilized LO, respectively. The solid lines are
theoretical predictions for detectors with unit quantum efficiency.
EAPD=EHDS=EHDR=5.3�10−3.
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10 MHz. Using a local oscillator �LO� power of about
5 mW, the shot noise to electronic noise ratio is 18 dB. The
detection efficiency, including the mode matching efficiency
and the quantum efficiency of the photodiodes is �HD
=84% 	3%. We investigate two different kinds of homo-
dyne detectors: One with a phase stabilized local oscillator
�HDS� and one with a phase randomized local oscillator
�HDR�. The latter scheme should be used when the input
alphabet of coherent states is rotationally symmetric in phase
space whereas the former scheme is superior if, e.g., a binary
phase encoding is used where the absolute direction of the
displacement is known a priori. The hypothesis whether a
signal or a vacuum state was measured is based on the ab-
solute value of the measured quadrature; if it is above a
certain threshold value, denoted B, we estimate the state to
be ���, if not �0�. Knowing that the signal is encoded into ���,
the expected acceptance probability for a phase stabilized
local oscillator is

PHDS�
� =
Erfc��2�B + a�� + Erfc��2�B − a��

2
, �6�

where a=�HD
, while for the phase randomized local oscil-
lator

PHDR�
� =
1

2�
�

−�

�

Erfc��2�B − a cos 
��d
 . �7�

The error is identical for the two approaches and given by
EHDR=EHDS=Erfc��2B�.

A classical signal is appended to the pulse trains to esti-
mate the phase difference of signal and LO at a given time.
Measurement data, acquired with randomized phase of the
LO, is subsequently directly used to evaluate the perfor-
mance of the scheme based on random LO. However, due to
the appended classical signal the relative phase is known and
we selected the data associated with a phase difference of
zero corresponding to the phase stabilized case. Using these
data and the above hypothesis, we find the acceptance prob-
ability for various excitations R���2 and various threshold
values B. In Fig. 4 we plot the acceptance probability as a
function of R���2 with the threshold value set such that the
error probability matches the one of the APD. It is clear from
the plot that the APD performs better than the homodyne
detector despite the much higher quantum efficiency of the
latter one.

The sensitivity of the two filters is obtained by fitting
curves to the measured acceptance probabilities correspond-
ing to various thresholds �for the homodyne case� and sub-
sequently using Eq. �3�. The results are plotted in Fig. 5�a�,
where the triangle represents the APD-based filter whereas
the circles and squares are associated with the phase random-
ized and phase locked LO, respectively. For post selection
thresholds B close to the coherent state variance the sensitiv-
ity of homodyne detectors is maximal. As evident from the
plot, for identical error probability the sensitivity of the
APD-based filter is much larger than that of the homodyne-
based filter.

From the measurements we also calculate the gain for
different mean photon numbers and different success prob-

FIG. 5. In all figures the triangles are experimental data points
for a filter using APD, the circles and squares show data for filters
using homodyne detection with and without stabilized LO, respec-
tively; the solid lines are theoretical predictions for filters using unit
quantum efficiency detectors, �=1 �APD: S /R= �1− pd�2 for �=1�.
�a� Sensitivity as a function of error probability. The dashed line
should guide the eye to the error rate where the detectors are com-
pared EAPD=EHDS=EHDR=5.3�10−3. �b� Gain G as a function of
mean photon number R���2 impinging on the filter detector. Signal
probability fixed to p=2%. �c� Parametric plot of Gain G and suc-
cess probability PS for R���2� �0,1.65�. The performance decreases
from APD to HDS and HDR. The error bars show the statistical
errors �3� error bars� and are much smaller than the experimental
errors.
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abilities as shown in Figs. 5�b� and 5�c�, respectively. The
former figure clearly shows the superior performance of the
APD filter compared with the homodyne filters. From Fig.
5�c� we clearly see that the behavior of the gain as a function
of the success probability follows the same curve for the
three filters if the error rates are tailored to be the same �by
adjusting the error thresholds appropriately�. This is also
what is expected from Eq. �4�.

IV. FILTERING IN A QUANTUM KEY DISTRIBUTION
SCHEME

In the final part, we consider the filtering action in a CV
quantum key distribution scheme using Gaussian modulated
coherent states �1�. To estimate a lower bound for secure
transmission we use recent work of García Patrón and Cerf
�19� �see also Ref. �20��, showing that the lower bound can
be directly computed from the covariance matrix of the joint
state between the sender of information, Alice, and the re-
ceiver, Bob. The lower bound �for reverse reconciliation� is
thus given by

Klower = Iab
G − �bE

G , �8�

where �bE
G is the maximum information between Bob and the

eavesdropper, Eve, corresponding to the Holevo bound, and
Iab

G is the Gaussian mutual information between Alice and
Bob. These quantities are computed solely from the covari-
ance matrix of the joint state of Alice and Bob.

The joint state is found by using the equivalence between
the coherent state scheme and an entanglement-based proto-
col. In an ideal entanglement-based protocol, Alice generates
Gaussian two-mode squeezed states and measures one mode
using heterodyne detection. The other mode is then being
prepared in a coherent state with a Gaussian distributed dis-
placement. A two-mode squeezing variance of V results in a
displacement variance of �= �V+1 /V� /2−1. The prepared
coherent state is sent to Bob through the erasure channel and
produces the following density matrix:

�AB = p��V��V��AB + �1 − p��A � ��0��0��B, �9�

where �V�AB represents a two-mode squeezed state and �A is
a thermal state having a variance �V+1 /V� /2. The lower
bound for secure communication is found numerically by
solving Klower�0 using the covariance matrix of the joint
state �AB and Eq. �8�. We find security cannot be guaranteed
if p�0.87 �corresponding to Klower�0�. Klower is maximized
over the variance V.

Let us now consider the security when the filtering proto-
col is implemented. Assuming first the APD to be ideal, the
state after filtering is

�filter =
�UBS�ABTUBS

† �

Tr��UBS�ABTUBS
† �

, �10�

where UBS is the unitary beam splitter operation, �ABT
=�AB � �0��0� and � is the measurement operator of the tap
T. The structure of the covariance matrix for this state is
given by CVAB� = 1

PS
�CVAB− P0CVAB

0 �, where CVAB is the co-
variance matrix of the state right after the beam splitter after

tracing out the tap mode, �BS=TrT�UBS�ABTUBS
† �, and CVAB

0

is the covariance matrix of the state if the measurement
outcome of the filter measurement is associated with
��=1−�, ��=��UBS�ABTUBS

† �� /Tr���UBS�ABTUBS
† �. P0

is the probability for getting a measurement result associated
with �� and PS=1− P0 is the filtering success rate. Using
the covariance matrix of the filtered state, CVAB� , we again
compute the lower bound numerically, and find that the prob-
ability p for which secure communication can take place is
now just required to be larger than zero. This can be also
investigated analytically in the limit of weak two-mode
squeezing �V�1�, corresponding to a small Gaussian alpha-
bet. In this case, the lower bound on the secure key rate is
approximately

Klower � pPS
1

2
log2	 e

2

T�V − 1�2, �11�

which is positive for any T�0 and V�1. We have thus
shown that the usages of an ideal filter reestablishes the se-
curity of the quantum key distribution system independent
on the amount of vacuum noise.

We now consider the realistic case where the APD is non-
ideal. Using an APD with nonzero quantum efficiency is not
a hindrance for obtaining secure communication, but it will
result in a lower success rate. A limiting factor on the secu-
rity, however, is the presence of dark counts which limits the
minimum noise probability pmin for which security can be
proven. For a given dark count rate, the transmission T of the
filtering beam splitter and the modulation variance � can be
numerically optimized to maximize Klower for which security
can be guaranteed in the protocol with respect to the noisy
channel. Using the experimental parameters of the APD used
in our experiment ��=0.63, pd=0.005� we find that secure
communication can be guaranteed if p� pmin=0.222. By re-
ducing the dark counts to pd=5�10−4 the minimum
probability is reduced to pmin=0.028 and for even lower
pd=5�10−5, the threshold is only pmin=0.003.

V. CONCLUSION

In summary, we have investigated a filtering protocol that
successfully filters out vacuum states from a set of coherent
states of a continuous variable system. A weak measurement
scheme consisting of a beam splitter and an optimized mea-
surement was employed to probabilistically filter out the un-
wanted vacuum states. Different measurement strategies
based on homodyne and on-off detection were investigated
and compared. We therefore provided the first direct com-
parison between an APD-based and a homodyne-based pro-
tocol, and found that the ideal on-off detection is optimal and
that the practical �that is nonideal� on-off detector is superior
to homodyne detection despite the much higher quantum ef-
ficiency of the latter one. The protocol will be advantageous
in continuous variable quantum communication wherever
beam positioning and time jitter noise are the main obstacles
for faithful and secure transmission.
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