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Abstract. We present an optical realization of an adjustable discriminator of
non-orthogonal quantum states and a programmable phase-covariant quantum
multimeter. Both devices utilize polarization states of photon pairs generated
by spontaneous parametric down-conversion. The experimental realization is
based on the fact that two Bell states can be distinguished solely by means of
linear optics. The first device discriminates unambiguously between two non-
orthogonal polarization states of the data qubit. The selection of the states
that should be discriminated is controlled by the quantum state of the program
qubit. The second device can perform any von Neumann measurement on a
single qubit represented by a polarization state from the equator of the Bloch
sphere. Also in this case the measurement basis is selected by the state of the
program qubit.
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1. Introduction

In this article we deal with the most essential part of all quantum apparatus, namely
quantum measurement [1–4]. Recently the universal quantum measurement devices
- quantum multimeters - were introduced [5–9]. Their main advantage is the pos-
sibility to program the apparatus by the quantum states of another qubit system
called program register. These states can be in principle unknown and mutually
nonorthogonal.

The paper is organised as follows: the programmable quantum state discrim-
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inator is discussed in Sec. 2 and phase-covariant quantum multimeter in Sec. 3.
Both devices are set by the polarization state of the program qubit and then they
distinguish between two states of the data qubit. Whole measurement devices are
composed of linear optics only, a balanced beam-splitter, polarizing beam-splitters
and photodetectors. Two Bell states can be distinguished and the other two Bell
states correspond to inconclusive results.

2. Programmable quantum-state discriminator

2.1. Theory

A general unknown quantum state cannot be determined completely by a measure-
ment performed on a single copy of the system. The situation is different if a priori
knowledge is available [1–3] – e.g., if one works only with states from a certain
discrete set. Even quantum states that are mutually non-orthogonal can be dis-
tinguished with a certain probability provided they are linearly independent (for a
review see Ref. [10]). There are, in fact, two different optimal discrimination strate-
gies [11]: First, to determine the state with the minimum probability of errors [1,2].
Second, unambiguous or error-free discrimination. In this case the measurement
result is always correct, but there is a nonzero probability of an inconclusive result
[12–16]. The first experiment, designed for the discrimination of two linearly polar-
ized states of light, was done by Huttner et al. [17]. The interest in the quantum
state discrimination is not only “academic” – unambiguous state discrimination can
be used, e.g., as an efficient attack in quantum cryptography [18].

In this paper we focus our attention to the unambiguous state discrimination.
Let us suppose that we want to discriminate unambiguously between two non-
orthogonal states. However, we would like to be able to work with different pairs of
states. The programming of the discriminator to work with given states is controlled
by preparing a program register in the corresponding state [5].

Let us have two (non-orthogonal) input states of a qubit that should be dis-
criminated:

|φ±d 〉 = a|Hd〉 ± b|Vd〉, (1)

where |H〉 and |V 〉 denote horizontal and vertical polarization. The complex num-
bers a and b are determined by orientation ϑ and ellipticity tan ε of the polarization
ellipse (see Fig. 1):

a = cos ε cosϑ + i sin ε sinϑ, b = cos ε sin ϑ− i sin ε sin ϑ. (2)

Subscript ”d” stays for ”data”. Note that these states are supposed to be symmet-
rically located around the state |Hd〉. In addition let us have a program qubit in a
state (index ”p” denotes “program”) |φp〉 = a|Hp〉+ b|Vp〉. Then the total state of
the data and program qubit acquires a form

|φ±d 〉 ⊗ |φp〉 =
√

2
[
a2 ± b2

2
|Φ+〉+

a2 ∓ b2

2
|Φ−〉+ ab|Ψ±〉

]
, (3)
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Fig. 1. Example of the measured data states |φ+
d 〉 and |φ−d 〉 (ε = 24◦, ϑ = 24◦) :

a) polarization ellipses, b) Stokes vectors.
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Fig. 2. Scheme of the measurement setup.

where |Ψ±〉 and |Φ±〉 are the Bell states

|Ψ±〉 =
1√
2

(|Hd〉|Vp〉 ± |Vd〉|Hp〉) , |Φ±〉 =
1√
2

(|Hd〉|Hp〉 ± |Vd〉|Vp〉) . (4)

If we are able to distinguish between the two Bell states |Ψ+〉 and |Ψ−〉 then we
can unambiguously discriminated states |φ+

d 〉 and |φ−d 〉.
The probability of successful discrimination is p = 2|ab|2 = 2(|a|2 − |a|4).
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2.2. Experiment

Pairs of entangled photons are generated in the process of spontaneous parametric
down-conversion in LiIO3 nonlinear crystal pumped by cw Kr-ion laser at 413.1 nm.
Generated photons are horizontally polarized and centered at 826.2 nm. Required
polarization states are prepared by means of rotating wave plates: λ/4 is rotated by
angle α = ±ε; λ/2 is rotated by angle β = ±(ε + ϑ)/2. Both photons overlap at a
nonpolarizing beam splitter (BS) forming Hong-Ou-Mandel interferometer (HOM)
[19], the lengths of both arms are equalized by scanning a mirror in one arm. The
output beams from the BS pass polarization beam splitters (PBS) to distinguish
horizontal and vertical components. Then the beams are filtered by cut-off filters
and circular apertures and coupled into multimode fibers. D1, . . ., D4 denote
Perkin-Elmer single-photon counting modules (quantum efficiencies ≈ 50%, dark
counts about 150/s). The signals from detectors are processed by our home made
4-input-coincidence unit and the results are transfered to a PC.

2.3. Measurement result

First we scanned the HOM interference dip for diagonal linear polarizations. The
measured rate of coincidences between D1 and D4 or D2 and D3 is plotted in Fig. 3a)
as a function of the mirror position. Then the coincidences corresponding to Bell
states |Ψ+〉 and |Ψ−〉 were scanned in the same range in order to gain the value
of Csh away from the interference dip for the normalization purposes. In the zero
position, if detectors D1 and D2 or D3 and D4 click together, the Bell state |Ψ+〉 is
detected, so |φ+

d 〉 is recognized. Whereas, if detectors D1 and D3 or D2 or D4 click
together, the Bell state |Ψ−〉 is detected, so the state |φ−d 〉 is recognized. The other
two Bell states lead to an inconclusive result, because no coincidence count occur.

In the following text we use this simplified notation: C++ denotes the detection
rate of |Ψ+〉 when the input state was |φ+

d 〉 ⊗ |φp〉; C−+ mean detection rate of
|Ψ−〉 for input state |φ+

d 〉 ⊗ |φp〉; etc. Figure 3b) shows scans of coincidence rates
C++, C+−, C−+ and C−− as a function of the mirror position. Main measurements
plotted in Fig. 4 show the dependence of the coincidence rates as a function of angle
ϑ: a) for linear polarization (ε = 0◦); and b) for elliptical polarization (ε = 24◦).
Figure. 5 illustrates the probability of successful discrimination calculated from the
experimental data measured for four different ellipticities as follows

Psucc =
1
2

[
C++

2(C++
sh + C−+

sh )
+

C−−

2(C−−sh + C+−
sh )

]
. (5)
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Fig. 3. a) Hong-Ou-Mandel interference dip measured for linear polarization, ϑ =
45◦. b) Coincidences measured for input states |φ+

d 〉 and |φ−d 〉 with parameters
ε = 0, ϑ = 45◦, as a function of mirror displacement.
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Fig. 4. Coincidences measured for a) linear input polarizations (ε = 0◦) and b)
elliptical input polarization. (ε = 24◦)

3. Phase-covariant quantum multimeter

In this section, our aim is to perform von Neumann measurements on a single qubit
in any basis {|ψ+〉, |ψ−〉} located on the equator of the Bloch sphere

|ψ±(φ)〉 =
1√
2

(|0〉 ± eiφ|1〉) , φ ∈ [0, 2π). (6)

The particular measurement basis is selected by a quantum state of a program reg-
ister. It is impossible to perfectly encode such projective measurement into states
in finite-dimensional Hilbert space [4, 5], but it is possible to encode POVMs that
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Fig. 5. Probability of success for all measured ellipticities. (Points are measured
data, lines correspond to theoretical predictions.)

represent, in certain sense, the best approximation of required projective measure-
ments.

As in the previous section there are two methods: deterministic multimeter and
probabilistic one. The optimal probabilistic multimeter should minimize the error
rate of the conclusive outcomes for the fixed fraction of inconclusive results. As a
limit case it is possible to get an error-free operation.

3.1. Theory

The optimal (fixed) POVM acting on data and program qubits together for one-
qubit program reads [8, 9]:

Π± = |Ψ±〉〈Ψ±|+ 1− η

2
(|Φ+〉〈Φ+|+ |Φ−〉〈Φ−|) ,

Π? = η
(|Φ+〉〈Φ+|+ |Φ−〉〈Φ−|) . (7)

The factor η parametrize a smooth transition from a deterministic error-prone mul-
timeter (η = 0) to a probabilistic error-free one (η = 1). Again, |Ψ±〉 and |Φ±〉 are
the Bell states. Probability of an inconclusive result for this multimeter is PI = η/2,
and the formula for the average fidelity reads F = (3− 2PI)/(4(1− PI)). Thus for
ambiguous multimeter we have F = 3/4 and PI = 0, whilst for error-free operation
we obtain F = 1 and PI = 1/2.
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Fig. 6. a) Coincidence rates; and b) Probability of Inconclusive result for unam-
biguous operation as a function of phase φ. Solid line represents theoretical value
PI = 1/2.

3.2. Experimental realization

This experiment can also be implemented using the setup shown in Fig 2. Two
logical values of qubit |0〉 and |1〉 are represented by linear horizontal |H〉 and
vertical |V 〉 polarization states. Desired states |ψ±(φ)〉 are prepared by means
of rotating wave plates: λ/4 is rotated by angle α = ∓φ/2 and λ/2 is rotated
by β = ±(90o − φ)/4 with respect to horizontal plane. As in the previous section,
detection of |Ψ+〉 corresponds to the recognition of the basis state |ψ+(φ)〉; detection
of |Ψ−〉 corresponds to basis state |ψ−(φ)〉. Everything else means an inconclusive
result.

Inconclusive-result rate is a complement of conclusive-result rate. In our mea-
surement, the relative error rate (with respect to all conclusive results) - i.e., a
fraction of events when we get |Ψ+〉 instead of |Ψ−〉 or vice versa, is about 3%. It
is mainly due to unbalance of the splitting ratio of the BS and non-ideal overlap of
spatial modes.

Probability of inconclusive result PI can be obtained as

PI = 1− 1
2

[
C++ + C−+

2(C++
sh + C−+

sh )
+

C−− + C+−

2(C−−sh + C+−
sh )

]
. (8)

Measured probability of inconclusive result PI (Fig. 6b) is in good agreement with
theoretical value 1/2 and, as expected, it does not depend on the measurement basis
represented by the phase φ.

4. Conclusions

Measurement on the data qubit can be quite efficiently controled by the quantum
state of the program register. Classical setting of the angle between the states that
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shall be unambiguously discriminated and a classical description of a measurement
basis in case of projective phase-covariant measurement would require infinitely
many bits of classical information, while only one quantum bit suffices in the present
case to obtain an error-free (although probabilistic) operation.
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