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Abstract. Entangled two-photon states are often generated in the process
of spontaneous parametric down-conversion. The two photons comprising one
pair are tightly correlated in energy and time. The width of these correlations
are investigated in interferometric experiments. Unbalanced Mach-Zehnder in-
terferometer in the route of one photon together with a narrow frequency filter
in the route of the other one is used to evaluate the width of the energy correla-
tions. Hong-Ou-Mandel interferometer serves for measurement of the time cor-
relations with the same two-photon source. The measurement results approve
the theoretical relation between the time and spectral (energetic) correlations
expected for given entangled states. Both the strong energy correlations and
narrow time correlations of the detection instants may be exhibited together
only by an entangled state.
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1. Introduction

Spontaneous parametric down-conversion (SPDC) often serves as a source of entan-
gled pairs of photons. The fact, that the two photons comprising one pair are tightly
correlated in energy and time, is used in many experimental applications. Different
properties of SPDC were studied both theoretically and experimentally[1–3].

In this paper we study the correlations of energies of the two photons from
one pair. We let the idler proton to propagate through a Mach-Zehnder (MZ)
interferometer [4–11]. Scanning one arm of the MZ interferometer we measure the
coherence length of the idler photons. Then we place a narrow frequency filter in the
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signal photon path and observe a substantial prolongation of the coherence length
behind the MZ interferometer in a coincidence-count measurement. In Section 2, the
measured energy correlations are compared with the developed theoretical model.
In Section 3 the time correlations are investigated measuring the Hong-Ou-Mandel
interference dip with the same source and the agreement with the theory is verified
[12].

2. Energy correlations
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Fig. 1. Experimental setup for the measurement of energy correlations.

The experimental setup for the measurement of the energy correlations is schemat-
ically drawn in Fig. 1. The entangled two-photon state at the output plane of the
nonlinear crystal is

|ψ(1)〉 = Cψ

∫

dω1

∫

dω2Φ(ω1, ω2)â
†
1(ω1)â

†
2(ω2)|vac〉. (1)

The symbol â†1(ω1) stands for the creation operator of a photon with frequency ω1 in

the signal field and analogically the symbol â†2(ω2) for the idler photon. The phase-
matching function Φ(ω1, ω2) describes correlations between modes in the signal and
idler fields. The normalized coincidence-count rate measured between detectors D1

and D2A, or between D1 and D2B reads

Rn(∆t) = 1 ± ρ(∆t), (2)

where ρ is an interference term, and ∆t is the propagation time difference in the
two arms of the MZ interferometer.

2.1. Setup with a gaussian filter

It should be stressed out, that the geometric filtering due to the apertures selects a
narrow spectrum, and it can be modelled by a Gaussian curve. If we place a narrow
band interference filter in the signal photon path an even narrower spectrum is
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Fig. 2. Right panel: coincidence-count interference visibility as a function of the
relative delay lMZ : without any filter (diamonds, dotted line), with the narrow
band interference filter (squares, solid line). Left panel: corresponding transmit-
tance spectra.

selected. This spectrum can be modelled by a Gaussian curve too. The intensity
spectrum reads

TGj(ωj) = exp

[

−
(ωj − ω0

j )
2

σ2
j

]

, j = 1 (signal), 2 (idler). (3)

Given the parameter σ, FWHM = 2
√

ln 2σ. The interference term is described by
the formula

ρ(∆t) =
2

CG
Re

{

T ∗
l Ts exp

[

iω0
2∆t

]}

exp

[

−∆t2

4β2

]

, where β2 =
1

σ2
1

+
1

σ2
2

. (4)

Ts and Tl are the overall amplitude transmittances of the two alternative paths in
the MZ interferometer. In the ideal case, when both paths are equally probable,
the local visibility of the coincidence-count rate interference pattern is

V (∆t) = exp

[

−∆t2

4β2

]

. (5)

If we assume the geometric filtering only (σ1 = σ2 = σ), the visibility in MZ
interferometer simplifies to a form

V (∆t) = exp

[

−σ
2∆t2

8

]

. (6)

Right panel of Fig. 2 shows the coincidence-count interference visibility mea-
sured with no filters (diamonds), and with narrow band interference filter centered
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at 826.4 nm, FWHM =1.8 nm (squares). The dotted line is a Gaussian fit to these
data. The left panel of Fig. 2 shows the corresponding spectra. FWHM of the geo-
metric filtering is found to be 5.3 nm (dotted line). The normalized transmittance
spectrum of the interference filter is shown with the solid line and the correspond-
ing interference visibility plotted in the right panel fit well with the measured data.
Narrowing of the spectrum of signal photons from 5.3 nm to 1.8 nm yields the
broadening of the coincidence-count interference pattern from 160 µm to 350 µm.

2.2. Setup with A Fabry-Perot resonator (FP)

FP provides a two-orders-of-magnitude narrower frequency filter than the narrow
band interference filter. The geometric filtering also takes place in this case.

The interference term is found to be

ρ(∆t) =
2

CFP
Re

{

T ∗
l Ts

∞
∑

n=−∞

V
|n|
0 exp

[

i(ω0
2∆t+ nϕ0)

]

exp

[

− (∆t− nt0)
2

4β2

]}

,

t0 = 2
lF
c
, and ϕ0 = ω0

1t0. (7)

t0 determines the time of one roundtrip in the FP resonator, ϕ0 is a phase factor
acquired in one roundtrip. The n-th term of the sum corresponds to the case that the
signal photon propagates just |n| times through the FP. The n-th term contribution
is peaked around the detuning value ∆t = nt0. The width of the peak is the same
as in the case without the FP resonator, determined by the spectral width of the
entangled photons [13]. If these peaks are narrower than t0, then the visibility is a
modulated function. If these peaks are wider than t0, then the visibility dependence
is smooth function. The upper envelope of the visibility dependence (7) is found as

V upper(∆t) = V
|∆t|
t0

0 =

(

1 +
2

γ
(1 −

√

1 + γ)

)

|∆t|
t0

, γ =

(

2F

π

)2

, (8)

where parameter F is the finesse of the FP resonator.

2.2.1. Multiple lines of the FP resonator

The transmittance spectrum of the FP resonator is a periodic function with narrow
peaks at a distance given by a free spectral range. In our case, λFSR = 1

2λ
2/lF ≈

3.6 nm. The spectrum of the signal photon is limited within the interval given by
the geometric filtering (FWHM=5.3 nm). If we scan the width of the FP within one
quarter of the wavelength the transmittance spectrum changes and the calculated
coincidence-count interference visibility changes as well (see Fig. 3). In all cases
the high-visibility region is broadened considerably according to Eq. (8), moreover
the dependence is modulated with the period corresponding to one roundtrip in
the FP resonator. Figure 3a) shows the first limit case, lF = 94.80 µm. The spec-
trum is dominated by two equivalently strong maxima and the calculated visibility
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Fig. 3. Spectra of the signal photons (left panel) and the corresponding
coincidence-count interference visibility as a function of the relative delay lMZ

(right panel); squares − measured data, lines − theory calculated with parame-
ter F = 150 for three different values of lF .

modulation is the deepest. Figure 3c) shows the other limit case, lF = 95.00 µm.
The spectrum has one dominant peak and two smaller satellites at both sides. The
visibility modulation is the smallest. Squares in the right panel of Fig. 3b) shows
the measured interference visibility. The period of the visibility oscillations yields
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lF ≈ 95 µm. Comparing the measured depth of the modulation gives more accurate
lF within one quarter of the wavelength, lF = 94.86 µm.

2.2.2. Single line of the FP resonator

lMZ

Fig. 4. Right panel: coincidence-count interference visibility as a function of
the relative delay lMZ measured without any filter (diamonds, same as in Fig. 2)
and with both the FP resonator and the narrow band interference filter in the
signal-photon path (squares). The solid line is the fit according to Eq. (7). Left
panel: corresponding spectra.

We can use the FP resonator together with the narrow band interference filter
in order to select just a singe line of the FP resonator. It is possible due to the
fact, that the FWHM of the narrow band interference filter (1.8 nm) is narrower
than the free spectral range of the FP resonator (3.6 nm). It should be stressed
out, that the width of a single peak is about 0.024 nm, which is two-orders-of-
magnitude narrower than the interference filter. Scanning the FP length we are
able to position a single narrow transmittance peak to the center of the interference
filter, lF = 95.03 µm. With this setting the high-visibility region is broadened
considerably and no oscillations of the measured visibility appear. The theoretical
dependence of the interference visibility is also given by Eq. (8).

3. Time correlations

Our fiber implementation of the HOM interferometric setup is drawn in Fig. 5. The
normalized coincidence-count rate RHOMn as a function of relative delay between
the signal and idler photons is

RHOMn (∆t) = 1 − ρHOM (∆t). (9)
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Fig. 5. Experimental setup for the Hong-Ou-Mandel interference measurement.

lHOM

Fig. 6. Right panel: coincidence-counts in the Hong-Ou-Mandel interferometer
as a function of the path difference of the interferometer’s arms lHOM : measured
data (dots) and theoretical fit (solid line). Left panel: corresponding spectrum.

Assuming the geometric filtering only (σ1 = σ2 = σ), the interference term for
HOM interferometer reads

ρHOM (∆t) = exp

[

−σ
2∆t2

2

]

. (10)

We can compare the theoretical width of the HOM dip given by Eq. (10) with
the width of the interference visibility peak measured with MZ interferometer, as
described by Eq. (6). Theoretically the HOM dip should be half wide compared
with the width of the interference peak measured under the same conditions with
the MZ interferometer. Gaussian fit to the measured dip shown in the right panel
of Fig. 6 yields the spectrum of the geometric filtering, FWHM=6.0 nm. This
spectral width is slightly larger than the one obtained with the MZ interferometer
(5.3 nm). This small difference is probably due to the slight readjustment needed
after rebuilding the setup (compare Figs. 1 and 5).
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4. Conclusions

The second- and fourth-order interference experiments testing the two-photon fields
generated in spontaneous parametric down-conversion were performed and explained.

We placed the narrow frequency filter in the signal beam and observed an
effective prolongation of the coherence length (in the MZ interferometer placed in
the idler-beam path) and a substantial increase of visibility in a coincidence-count
measurement. This prolongation is the consequence of the correlation of energies of
the two beams given by the two-photon state Eq. (1). This individual experimental
result can be explained also classically, i.e. it could be achieved also with a certain
separable state of two photons.

We measured also the HOM-interference dip with the same photon source to
confirm that the signal and idler photons comprising one pair are also correlated

in time. This individual experimental result can again be explained classically.
However, no classical description of both experiments (energy/time) can be devel-
oped. I.e., only the entangled two-photon state can exhibit both these correlations
together.
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