
Di�raction grating illuminated by partially coherent beamMiloslav Du�sekDepartment of Optics, Palack�y University,17. listopadu 50, 772 07 Olomouc,Czech RepublicAbstractThe di�raction grating illuminated by a partially coherent radiation has been investigated in theframework of scalar wave theory. The angular distribution of light intensity behind the grating hasbeen derived, using the formalism of correlation theory in the space-frequency domain. The source ofradiation has been assumed to be quasi-homogeneous. In contrast to the coherent case, the angulardependence of intensity di�ers, in general, from the spectrum of radiation. However, in most ofpractically interesting cases this e�ect is negligibly small.1 IntroductionIn recent years there has been a good deal of research in the �eld of spectral correlation propertiesof partially coherent radiation. It has been predicted theoretically [1, 2, 3, 4] and then also veri�edexperimentally [5, 6, 7, 8, 9] that the normalized spectrum of radiation is not, in general, invarianton propagation even in free space. The changes of the spectrum depend on the state of coherence ofthe source. The spectral features have been examined, in details, for radiation emitted by stochasticplanar quasi-homogeneous sources [1, 3, 10, 11, 12] and by stochastic spherically symmetric sources[13, 14, 15]. For planar quasi-homogeneous sources a condition has been found for the normalizedspectrum to be the same throughout the far zone and at the source plane: the source correlationsmust obey so called scaling law [1]. Also the spectral correlation properties of partially coherentradiation scattered on a random medium 
uctuating in space and time have been studied [16, 17, 18].Propagation of polychromatic partially coherent light through a linear time-invariant system [12] andthrough inhomogeneous medium [10] has also been studied.Nevertheless, little attention has been paid to the process of measurement of the spectrum. Largepart of spectroscopic apparatus use a di�raction grating as a main element. Di�raction of coherentwaves on the grating is a well known process. But little is known about the e�ect of di�ractiongrating on propagation of partially coherent beams and on their spectral and correlation properties.In the present paper we deal with this phenomenon and we try to answer the question whether it isalways the spectrum of the incident light that is measured by the use of gratings.2 Basic conceptsFirst we will mention the description of a partially coherent �eld. We will assume a stochastic scalar�eld, represented by the complex analytic signal V (~r; t), which is statistically stationary, at least in1



the wide sense. We de�ne the correlation function of the second order�(~r1;~r2; t2 � t1) = hV �(~r1; t1)V (~r2; t2)i ; (1)here h: : :i means the ensemble average, the asterisk denotes the complex conjugate, ~r1;~r2 are positionvectors, and t1; t2 are arbitrary instants of time. Now we can introduce the corresponding cross-spectral density function which is the Fourier transform of the correlation function,W (~r1;~r2; !) = 12� Z 1�1d� �(~r1;~r2; � )ei!� : (2)This function characterizes the spatial correlation of particular frequency components. Since the�eld V (~r; t) is assumed to satisfy the homogeneous wave equation (outside sources) it can be shownthat the cross-spectral density W (~r1;~r2; !) at arbitrary spatial point may be determined from theboundary conditions given on some surface D by the following formula (see, e.g., Ref. [19])W (~r1;~r2; !) = ZD d2r01 ZD d2r02 K�(~r1;~r01; !)K(~r2;~r02; !)W (~r01;~r02; !); (3)where K(~r;~r0; !) represents the so called di�raction function. The spectrum of radiation S(~r; !) =W (~r;~r; !).Let us now turn our attention to the spectrum measurement. The spectrometer works in thefollowing manner: The di�raction grating in
uences the propagation of particular frequency compo-nents of incoming light beam. The detector of small angular extent is placed in su�cient distancebehind the grating in a direction speci�ed by an angle � with the normal to the grating plane (or it isplaced in the focal plane of the lens located at the distance of focal length behind the grating). Thedetector performs the time averaging of jV (~r; t)j2. If the process of 
uctuations of V (~r; t) is ergodicthe time average can be replaced by the ensemble average. It is known that in an ideal, fully coherentcase the incoming waves of di�erent frequencies are de
ected in di�erent directions.3 Intensity in the far zone behind the gratingIt can be shown, starting from Eq. (3), that the spectrum of radiation at a point r~s in the far zoneis given by the formula [20, 21]S(1)(r~s; !) = � k2��2 cos2 �r2 4F hW (init)(�1;�2; !)i (ks?; ks?); (4)where W (init)(�1;�2; !) is the cross-spectral density on the initial \source" plane ( �1 and �2are two-dimensional vectors#1, ~s is a unit vector and s? is its two-dimensional projection to the\source" plane, � is the angle that ~s makes with the axis perpendicular to the \source" plane(cos � = p1� js?j2), k = !=c with c being the speed of light in vacuo, and 4F denotes the four-dimensional Fourier transform,4F hW (init)(�1;�2; !)i (f1; f2) = ZR2d2�1 ZR2d2�2 W (init)(�1;�2; !)ei f1��1e�i f2��2 : (5)The total signal from a small (in�nitesimal) detector located at the direction ~s is proportional to theintegral I(~s) = r2 Z 10 d! �(!)S(1)(r~s; !); (6)where �(!) represents the spectral sensitivity of detector. The factor r2 is added to eliminate anunsubstantial dependence on the distance r.Let us consider an arrangement shown in Fig. 1. We will assume that immediately in front ofthe grating there is a planar quasi-homogeneous secondary source generating beam-like �eld. Thecross-spectral density across the source plane can be written in the form [3, 20, 21]W (0)(�1;�2; !) = hS(0)(�1; !)i1=2 hS(0)(�2; !)i1=2 �(0)(�2 � �1; !); (7)2



where S(0)(�; !) is the source spectrum and �(0)(�0; !) denotes the degree of spectral coherence whichdepends on �1 and �2 only through the di�erence �0 = �2 � �1. It is assumed that S(0)(�; !) varymuch more slowly with � than �(0)(�0; !) with �0 so that we can approximate Eq. (7) by the formulaW (0)(�1;�2; !) = S(0) [(�1 + �2)=2; !]�(0)(�2 � �1; !): (8)We chose a simple grating with a complex amplitude transmittance described by the functionM(�) = exp�i2��2� ��� ; (9)where � is the grating period (� = j�j). Then the cross-spectral density immediately behind thegrating takes the form W (init)(�1;�2; !) =M�(�1)M(�2)W (0)(�1;�2; !): (10)On substituting into Eq. (4) and then into Eq. (6) we �nally obtain the following expression for thedetected intensity at the direction ~s:I(~s) = Z 10 d! �(!)� k2��2 cos2 � ~S(0)(0; !) ~�(0)�ks? � 2��2�; !� : (11)Here tilde denotes the two-dimensional Fourier transform, viz.,~S(0)(f ; !) = ZR2d2� S(0)(�; !)e�i f ��; (12)~�(0)(f ; !) = ZR2d2� �(0)(�; !)e�i f ��: (13)Let us remind that in order for a quasi-homogeneous secondary source to generate beam that prop-agates close to the axis perpendicular to the source plane (z-axis), j~�(0)(ks?; !)j must be negligibleexcept when js?j � 1; i.e., j~�(0)(f ; !)jmust be negligible unless jf j � k [3]. Nevertheless, the nonzeroangular divergence is inherent to any partially coherent beam.We can set, without loss of generality, � = (�; 0); i.e., we can choose such coordinate system thatthe grooves are parallel to the y-axes (see Fig. 1). Let us further suppose that the detector, thoughsmall, has a �nite extent and can receive the entire optical intensity spread in the y-direction (the beamis assumed to have a very small angular divergence). This enables us to con�ne the considerationsto only one dimension and to get rid of the delta-function in the coherent limit. Mathematically itmeans that I(~s) is integrated over sy. For simplicity let also ~S(0; !) = S(!)D where D is an e�ectivearea of the source. We will also assume that both � and sx are positive.4 Coherent limitIt is clear from Eq. (13) that in the coherent limit and for normal incidence~�(0)(f ; !) = (2�)2�(f ):Thus I(sx) = Z 1�1 dsy I(~s) = 2�c� D cos2 � 1s2x��2�c� 1sx�S �2�c� 1sx� ; (14)where sx = sin �, c being the speed of light in vacuo. Eq. (14) shows a well known fact that measuringintensity at di�erent directions behind the grating we can determine the spectrum of incident coherentradiation (using, of course, detector with known spectral sensitivity).3



5 Partially coherent beamIn the general case when the grating is illuminated by a partially coherent beam the measured quantityI(sx) is expressed by the formulaI(sx) = Z 10 d! �(!) k2� cos2 � S(!)D �̂�ksx � 2�� ; !� ; (15)wherê�(fx; !) = Z 1�1dx �(x; 0;!)e�ifxx = 12� Z 1�1dfy ~�(fx; fy;!) � k2� Z 1�1 dsy ~�(fx; ksy;!): (16)The last approximation holds when ~�(f ; !) is not negligible only for jf j � k. Realizing this constraintwe could also presume that cos � is determined only by sx so that we can not take it into account inintegration over sy . The quantity �̂ �!c sx � 2�� ; !�, as a function of frequency !, may be, in general,very di�erent from the delta-function.The question arises under what conditions can the relation (15) be approximated by Eq. (14),i.e., when the angular spread of each frequency component may be neglected and the quantity�̂ �!c sx � 2�� ; !� can be replaced by 2�� �!c sx � 2�� �.Let us suppose that the spatial Fourier transform of the degree of spectral coherence ~�(f ; !) = 0for jf j > �k, where 0 < �� 1, and for each !. This means that the beam has a very small divergence.Let also sx > �. Then the function �̂ �!c sx � 2�� ; !� will be nonzero only for frequencies ! from thefollowing range 2�c� (sx + �)�1 � ! � 2�c� (sx � �)�1: (17)We can introduce the \width" of �̂ �!c sx � 2�� ; !�:�! = 2�c� 2�s2x � �2 :Let us set !0 = 2�c� 1sx :If �� sx then �! � !02�sx = ���c !20 (18)and it is clear that �! � !0. If, in addition, the spectrum of radiation S(!) varies slowly incomparison with �̂ �!c sx � 2�� ; !� on the frequency range speci�ed by inequalities (17) and if similarrestriction holds also for the spectral sensitivity of detector �(!) we can express Eq. (15) in theapproximate form I(sx) � �(!0) !02�c cos2 � S(!0)D Z 10 d! �̂�!c sx � 2�� ; !� : (19)Otherwise, when the spectral line is too narrow it will appear broadened.Note that the key condition � � sx is usually very well satis�ed in real optical spectrometers.For example, for grating with 1000 lines/mm (� = 10�6 m) the angle corresponding in the �rst orderto the wavelength � = 550 nm (! � 3:4 � 1015 s�1) is about 33�, i.e., sx � 0:55.However, the problem remains regarding the value of the last integral in Eq. (19). In order thatEq. (19) had the same form as Eq. (14) corresponding to the coherent case, the last integral in Eq. (19)should be equal 2�c=sx. It is satis�ed, e.g., when the degree of spectral coherence at the source planeis independent on frequency, at least in interval given by Eq. (17).If the degree of spectral coherence � varies with frequency so slowly that in interval (17) thefunction �̂ can be approximated by the �rst two terms of its power expansion with respect to variable! thenZ 10 d!0 �̂�!0c sx � 2�� ; !0� 4



� Z 10 d!0 (�̂�!0c sx � 2�� ; !0�+ @@! ��̂�!0c sx � 2�� ; !��!=!0 (!0 � !0))= 2�csx + 2�c2s2x Z �k0��k0 dfx @@! [�̂(fx; !)]!=!0 fx; (20)where k0 = !0=c. Here we have used the relationZ 1�1 dfx �̂(fx; !) = 2� for each !; (21)which follows from the obvious fact that �(0; !) = 1. The function �̂(fx; !) is still assumed to bezero for jfxj > �k and it is still presumed that sx � �. If �(�0x; �0y;!) has, in addition, the followingproperty of symmetry, �(�0x; 0;!) = �(��0x; 0;!) (22)for all �0x and !, the function �̂(fx; !) is also symmetric and the last integral in Eq. (20) has zerovalue. Eq. (19) can be replaced by Eq. (14).If the degree of spectral coherence of the secondary source obeys the scaling law#2, i.e., if�̂(fx; !) = k�1ĥ (fx=k) (the circum
ex denotes the one-dimensional Fourier transform), thenZ 10 d! �̂�!c sx � 2�� ; !� = Z 10 d! c! ĥ�sx � 2�c�! � = c Z ���dq 1sx � q ĥ(q): (23)Here we have used the fact, that ĥ(q) = 0 for jqj > �, which follows from the assumption that�̂(fx; !) = 0 for jfxj > k�. Since sx � � the last expression in Eq. (23) can be approximated by theformula csx Z ���dq ĥ(q) = 2�csx ; (24)where the relation (21) has been employed again. Thus the grating \gives" actually the spectrum likein the coherent limit. This case is physically important because most common thermal laboratorysources obey the scaling law [1].6 General scalar approachWe will now return to Eqs. (4), (6) and (7) and will describe the case of a general grating and thee�ect of �nite aperture. Let the cross-spectral density at the initial plane have the formW (init)(�1;�2; !) = X�(�1; !)X(�2; !)�(�2 � �1; !); (25)where �(�0; !) is the degree of spectral coherence of a secondary source andX(�; !) =M(�)A(�) [S(!)]1=2 : (26)Here A(�) involves the aperture function and the normalized distribution of the square-root of lightintensity at the initial plane. M(�) is the complex amplitude transmittance of the di�raction grating;it is a periodic function which may be represented in the formM(�) = 1Xn=�1 
n exp �in2��2� � �� ; (27)where 
n are constants. The symbol S(!) denotes the source spectrum.Using Eq. (5) we obtain the formula4F hW (init)(�1;�2; !)i (f1; f2) = (2�)2 ~X�(f1; !) ~X(f2; !) 4� ~�(f1; !)�(f2 � f1)= 1(2�)2 ZR2d2� ~X�(� + f1 � f2; !) ~X(�; !)~�(f2 � �; !); (28)5



where 4� denotes the four-dimensional convolution and~X(f ; !) = ~M(f ) 2� ~A(f ) [S(!)]1=2 : (29)The tilde denotes the two-dimensional Fourier transform [as in Eqs. (12) and (13)] and 2� denotestwo-dimensional convolution. Evidently,~M(f ) = (2�)2 1Xn=�1 
n��f � n2��2�� (30)and than ~X(f ; !) = [S(!)]1=2 1Xn=�1 
n ~A�f � n2��2�� : (31)On substituting from Eq. (31) into Eq. (28) and using Eqs. (4) and (6) we �nally obtain the followingexpression for the detected intensity at the direction ~s:I(~s) = cos2 �(2�)4 1Xm=�1 1Xn=�1 
�m
n ZR2d2f ~A��f �m2��2�� ~A�f � n2��2��| {z }1� Z 10 d! S(!)�(!)!2c2 ~��!c s? � f ; !�| {z }2 : (32)Here the summation is taken over all orders of the di�raction grating. The term designated as \1",together with the integration over the variable f , represent the e�ect of �nite aperture. The term \2"corresponds to the elementary case which has been discussed in the previous sections.7 ConclusionsWe have described the e�ect of a di�raction grating illuminated by partially coherent radiation inthe scalar approximation. We have shown that the angular distribution of the intensity of radiationin the far zone behind the grating is not, in general, determined by the spectrum of radiation inthe grating plane alone but that it also depends on the coherence properties of the radiation. Wehave found conditions, however, under which this e�ect is negligible. These conditions are satis�edin many common practical situations.AcknowledgementsI am obliged to professor Emil Wolf and to professor Jan Pe�rina for useful comments on the man-uscript. This research was partially supported by the Grant Agency of Czech Republic (projectNo. 202/94/0458).References[1] E. Wolf, Phys. Rev. Lett. 56 (1986) 1370.[2] E. Wolf, Nature 326 (1987) 363.[3] Z. Da�ci�c and E. Wolf, J. Opt. Soc. Am. A 5 (1988) 1118.[4] E. Wolf, Optics Commun. 62 (1987) 12.[5] G. M. Morris and D. Faklis, Optics Commun. 62 (1987) 5.[6] M. F. Bocko, D. H. Douglass, and R. S. Knox, Phys. Rev. Lett. 58 (1987) 2649.6
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Fig. 1 Illustrating the notation.
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