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Abstract

The diffraction grating illuminated by a partially coherent radiation has been investigated in the
framework of scalar wave theory. The angular distribution of light intensity behind the grating has
been derived, using the formalism of correlation theory in the space-frequency domain. The source of
radiation has been assumed to be quasi-homogeneous. In contrast to the coherent case, the angular
dependence of intensity differs, in general, from the spectrum of radiation. However, in most of
practically interesting cases this effect is negligibly small.

1 Introduction

In recent years there has been a good deal of research in the field of spectral correlation properties
of partially coherent radiation. It has been predicted theoretically [1, 2, 3, 4] and then also verified
experimentally [5, 6, 7, 8, 9] that the normalized spectrum of radiation is not, in general, invariant
on propagation even in free space. The changes of the spectrum depend on the state of coherence of
the source. The spectral features have been examined, in details, for radiation emitted by stochastic
planar quasi-homogeneous sources [1, 3, 10, 11, 12] and by stochastic spherically symmetric sources
[13, 14, 15]. For planar quasi-homogeneous sources a condition has been found for the normalized
spectrum to be the same throughout the far zone and at the source plane: the source correlations
must obey so called scaling law [1]. Also the spectral correlation properties of partially coherent
radiation scattered on a random medium fluctuating in space and time have been studied [16, 17, 18].
Propagation of polychromatic partially coherent light through a linear time-invariant system [12] and
through inhomogeneous medium [10] has also been studied.

Nevertheless, little attention has been paid to the process of measurement of the spectrum. Large
part of spectroscopic apparatus use a diffraction grating as a main element. Diffraction of coherent
waves on the grating is a well known process. But little is known about the effect of diffraction
grating on propagation of partially coherent beams and on their spectral and correlation properties.
In the present paper we deal with this phenomenon and we try to answer the question whether it 1s
always the spectrum of the incident light that is measured by the use of gratings.

2 Basic concepts

First we will mention the description of a partially coherent field. We will assume a stochastic scalar
field, represented by the complex analytic signal V' (¥,¢), which is statistically stationary, at least in



the wide sense. We define the correlation function of the second order
F(I_:lafzatZ _tl) — <V*(f1atl)v(f2at2)> ) (1)

here {...) means the ensemble average, the asterisk denotes the complex conjugate, ¥y, ¥s are position
vectors, and #1,%, are arbitrary instants of time. Now we can introduce the corresponding cross-
spectral density function which is the Fourier transform of the correlation function,
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This function characterizes the spatial correlation of particular frequency components. Since the
field V(¥,1) is assumed to satisfy the homogeneous wave equation (outside sources) it can be shown
that the cross-spectral density W (¥, T2, w) at arbitrary spatial point may be determined from the
boundary conditions given on some surface D by the following formula (see, e.g., Ref. [19])

W (¥, T2, w /d2 /d2 K*(¥), 7, w) K (o, Ty, w) W (¥, Th, w), (3)

where K(¥,1',w) represents the so called diffraction function. The spectrum of radiation S(¥,w) =
W(T, T, w).

Let us now turn our attention to the spectrum measurement. The spectrometer works in the
following manner: The diffraction grating influences the propagation of particular frequency compo-
nents of incoming light beam. The detector of small angular extent is placed in sufficient distance
behind the grating in a direction specified by an angle § with the normal to the grating plane (or it is
placed in the focal plane of the lens located at the distance of focal length behind the grating). The
detector performs the time averaging of |V (¥, ¢)|?. If the process of fluctuations of V(¥,t) is ergodic
the time average can be replaced by the ensemble average. It is known that in an ideal, fully coherent
case the incoming waves of different frequencies are deflected in different directions.

3 Intensity in the far zone behind the grating

It can be shown, starting from Eq. (3), that the spectrum of radiation at a point r§ in the far zone
is given by the formula [20, 21]

k\?cos?f 4 -
S (1§, w) = (-) — F [W(lmt)(pl,pz,w) (ksy, ksy), (4)
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where W(imt)(pl,pz,w) is the cross-spectral density on the initial “source” plane ( p; and p,
are two-dimensional vectors#!, § is a unit vector and s, is its two-dimensional projection to the
“source” plane, 6 is the angle that s makes with the axis perpendicular to the “source” plane

4
(cos@ = /1 —|s1]?), k = w/c with ¢ being the speed of light in vacuo, and F denotes the four-

dimensional Fourier transform,
4 (init) _ 2 2 (init) ifip —if.p
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The total signal from a small (infinitesimal) detector located at the direction § is proportional to the
integral

I(8) = r? /Ooodw B(w) S (r, w), (6)

where ®(w) represents the spectral sensitivity of detector. The factor r? is added to eliminate an
unsubstantial dependence on the distance r.

Let us consider an arrangement shown in Fig. 1. We will assume that immediately in front of
the grating there is a planar quasi-homogeneous secondary source generating beam-like field. The
cross-spectral density across the source plane can be written in the form [3, 20, 21]

1/2 1/2
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where S(®)(p, w) is the source spectrum and u(®)(p’,w) denotes the degree of spectral coherence which
depends on p; and p, only through the difference p’ = p, — p;. It is assumed that S(O)(p,w) vary
much more slowly with p than (°)(p/,w) with p’ so that we can approximate Eq. (7) by the formula

W(O)(Ph pyw) = S [(p1+ p2)/2, 0] N(O)(Pz —pw). (8)
We chose a simple grating with a complex amplitude transmittance described by the function
27
M(p) = exp szJl , (9)

where A is the grating period (A = |A]). Then the cross-spectral density immediately behind the
grating takes the form

WD (5 gy w) = M*(p) ) M(p) W O(py, py,w). (10)

On substituting into Eq. (4) and then into Eq. (6) we finally obtain the following expression for the
detected intensity at the direction s:

. (o] k 2 ~ - 27
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Here tilde denotes the two-dimensional Fourier transform, viz.,

§(0)(f,w):/ d2p SO (p,w)e= L P, (12)
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AO(f W) = /ﬂpdzp N(o)(p’w)e—if.p. (13)

Let us remind that in order for a quasi-homogeneous secondary source to generate beam that prop-
agates close to the axis perpendicular to the source plane (z-axis), |/](0)(ksJ_,w)| must be negligible
except when |sy | < 1;i.e., |i°)(f,w)| must be negligible unless |f| < k [3]. Nevertheless, the nonzero
angular divergence is inherent to any partially coherent beam.

We can set, without loss of generality, A = (A, 0); i.e., we can choose such coordinate system that
the grooves are parallel to the y-axes (see Fig. 1). Let us further suppose that the detector, though
small, has a finite extent and can receive the entire optical intensity spread in the y-direction (the beam
is assumed to have a very small angular divergence). This enables us to confine the considerations
to only one dimension and to get rid of the delta-function in the coherent limit. Mathematically it
means that I(§) is integrated over s,. For simplicity let also §(O, w) = S(w)D where D is an effective
area of the source. We will also assume that both A and s, are positive.

4 Coherent limit

It is clear from Eq. (13) that in the coherent limit and for normal incidence
AO(F, W) = (27)%8(F).

Thus .
o 2me 9, 1 2mc 1 2me 1
I(sz) _/_ dsy 1(8) = TDCOS 0@ (TQ) S (Tg) ) (14)

1 Sz
where s, = sinfl, ¢ being the speed of light in vacuo. Eq. (14) shows a well known fact that measuring
intensity at different directions behind the grating we can determine the spectrum of incident coherent
radiation (using, of course, detector with known spectral sensitivity).



5 Partially coherent beam

In the general case when the grating is illuminated by a partially coherent beam the measured quantity
T (s;) is expressed by the formula

I(sz) = /OOO dw @(w)% cos? 0 S(w)D ju (ksx - Q%W) : (15)

where

1
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The last approximation holds when ji(f,w) is not negligible only for |f| < k. Realizing this constraint
we could also presume that cos @ is determined only by s, so that we can not take 1t into account in
integration over s,. The quantity (%sx — ZT”,W), as a function of frequency w, may be, in general,
very different from the delta-function.

The question arises under what conditions can the relation (15) be approximated by Eq. (14),
i.e., when the angular spread of each frequency component may be neglected and the quantity
[ (%sx — ZT”,w) can be replaced by 276 (%sx — 2%)

Let us suppose that the spatial Fourier transform of the degree of spectral coherence ji(f,w) =10
for [f| > ak, where 0 < & < 1, and for each w. This means that the beam has a very small divergence.
Let also s, > «. Then the function (%sx — ZT”,W) will be nonzero only for frequencies w from the

following range

T(sx—l—a)_l <w< T(sx—a) (17)
We can introduce the “width” of i (%sx — ZT”,W)
27c¢ 2«
Aw = A 52 —ao?
Let us set
27c 1
wp = — —.
0 A s,

If « < s, then
2 A
Aw & wo—m = —awg (18)
S T
and it is clear that Aw < wg. If, in addition, the spectrum of radiation S(w) varies slowly in
comparison with g (%sx — ZT”,w) on the frequency range specified by inequalities (17) and if similar
restriction holds also for the spectral sensitivity of detector ®(w) we can express Eq. (15) in the
approximate form

I(sz) @(WQ)% cos? HS(WO)D/O dw f1 (%sx — 2%,(.«;) . (19)
Otherwise, when the spectral line is too narrow it will appear broadened.

Note that the key condition a < s, 1s usually very well satisfied in real optical spectrometers.
For example, for grating with 1000 lines/mm (A = 10~° m) the angle corresponding in the first order
to the wavelength A = 550 nm (w & 3.4 - 1015s71) is about 33°, i.e., 5, ~ 0.55.

However, the problem remains regarding the value of the last integral in Eq. (19). In order that
Eq. (19) had the same form as Eq. (14) corresponding to the coherent case, the last integral in Eq. (19)
should be equal 27¢/s,. Tt is satisfied, e.g., when the degree of spectral coherence at the source plane
is independent on frequency, at least in interval given by Eq. (17).

If the degree of spectral coherence p varies with frequency so slowly that in interval (17) the
function g can be approximated by the first two terms of its power expansion with respect to variable
w then

o0 / 27T
d [ ('i . — — /
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where ko = wp/c. Here we have used the relation

/ dfy p(fe,w) =27 for each w, (21)

which follows from the obvious fact that p(0,w) = 1. The function j(fy,w) is still assumed to be
zero for |f| > ak and it is still presumed that s, > a. If u(p}, p,;w) has, in addition, the following
property of symmetry,

1Py, 0;w) = p(—plp, O;w) (22)
for all p/, and w, the function fi(fy,w) is also symmetric and the last integral in Eq. (20) has zero
value. Eq. (19) can be replaced by Eq. (14).

If the degree of spectral coherence of the secondary source obeys the scaling law#2, ie., if
f(fo,w) =k~ h(f:/k) (the circumflex denotes the one-dimensional Fourier transform), then

< fw 27 e c - 2re o 1 .
/0 dwu(zsx—x,w)_/o dw ;h(sx—m)_c/_adq Sx_qh(q). (23)

Here we have used the fact, that il(q) = 0 for |q| > «, which follows from the assumption that
i(fp,w) =0 for |fy| > ka. Since sy >> o the last expression in Eq. (23) can be approximated by the
formula

c [“ . 2me

Se J_a Sy

where the relation (21) has been employed again. Thus the grating “gives” actually the spectrum like
in the coherent limit. This case is physically important because most common thermal laboratory
sources obey the scaling law [1].

6 General scalar approach

We will now return to Eqgs. (4), (6) and (7) and will describe the case of a general grating and the
effect of finite aperture. Let the cross-spectral density at the initial plane have the form

W (o) py,w) = X*(py,w) X (pg,w)pi(py — p1,w), (25)

where u(p',w) is the degree of spectral coherence of a secondary source and
X(p,w) = M(p)A(p) [S()]*. (26)

Here A(p) involves the aperture function and the normalized distribution of the square-root of light
intensity at the initial plane. M(p) is the complex amplitude transmittance of the diffraction grating;
it 1s a periodic function which may be represented in the form

M(p) = i Yn €XP [mi—gfl : p] : (27)

n=—oQ

where 4, are constants. The symbol S(w) denotes the source spectrum.
Using Eq. (5) we obtain the formula

4 - ~ ~ 4
F W(lnlt)(pla p2a“):| (flafZ) = (27‘-)2)(* (fl,W)X(fZ,W) * /,L(fl,(.d)(s(fz - fl)
1

= (2n)? /ﬂmd?g )N(*(€+f1 —fz,w)f((ﬁ,w)ﬁ(fz — & w), (28)




where i denotes the four-dimensional convolution and
X(f,w) = M(£) ¥ A() [Sw)]"/?. (29)

The tilde denotes the two-dimensional Fourier transform [as in Eqgs. (12) and (13)] and ¥ denotes
two-dimensional convolution. Evidently,

M) =2 7n6<f—ni—7;/1) (30)
and than -
X(f,w) = [S@)]"* Y 7.4 (f—ni—:A) . (31)

On substituting from Eq. (31) into Eq. (28) and using Eqgs. (4) and (6) we finally obtain the following
expression for the detected intensity at the direction s:

Lcos?l O e - o\ o
1(5) = (27" Z Z Ym Yn /Wdzf A (f_mFA)A<f_nFA)

m=—0o0 Nn=—00

1
‘Z—jﬁ (‘isL - f,w) . (32)

C
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Here the summation is taken over all orders of the diffraction grating. The term designated as “17,
together with the integration over the variable f| represent the effect of finite aperture. The term “2”
corresponds to the elementary case which has been discussed in the previous sections.

7 Conclusions

We have described the effect of a diffraction grating illuminated by partially coherent radiation in
the scalar approximation. We have shown that the angular distribution of the intensity of radiation
in the far zone behind the grating is not, in general, determined by the spectrum of radiation in
the grating plane alone but that it also depends on the coherence properties of the radiation. We
have found conditions, however, under which this effect is negligible. These conditions are satisfied
in many common practical situations.
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Footnotes

#1  Three-dimensional vectors are typed by boldface letters with arrows, two-dimensional vectors by
boldface letters without arrows.

#2 u(p,w) = h(kp) and than j(f ,w) = k=2h (f/k) where h is any “reasonable” function; h(0) = 1.
See Ref. [1].
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Fig. 1  Illustrating the notation.




