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Quantum mechanicsis a “non-local” theory in a certain sense. The non-locality manifests
itself, e.g., in correlations of results of space-like separated measurements performed on
two parts of so-called entangled states. These correlations are “stronger” then any
correlations following classical (local) conceptions. However, no measurable quantum
mechanical events can break causality. No entangled state can serve for instantaneous (or
superluminal) transfer of information. The proofis, at least from the view of Copenhagen
interpretation, rather simple. It will be recapitulated briefly in this contribution.

1. Introduction

Quantum theory can be viewed from different philosophical positions. One can
accept a (more or less positivistic) attitude, that a theory represents just a set
of relations between measurable quantities, and not to care about what, e.g., the
wave function is, as it cannot be measured directly. Besides, one can admit that
the chance, i.e., probabilistic behavior, is inherent to microscopical phenomena and
that there is no way to avoid it. Similar views were held by Niels Bohr (even if
Bohr probably was not a positivist).

Such opinions are, however, very different from the “ideal of classical physics”
defended by Albert Einstein. From Einstein’s point of view, based on realism,
a theory rather reflects behavior of real objects, whose existence is not brought
into question. The classical ideal is also strictly deterministic. From this position,
quantum theory appears as an uncomplete, only temporary, theory, whose stochastic
character reflects just our present ignorance of some hidden parameters.

Extensive discussions between Bohr and Einstein about how to understand quan-
tum mechanics surely contributed to the formation of the Copenhagen interpre-
tation. Besides, in 1935 they brought Einstein, together with B. Podolsky and
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N. Rosen, to the formulation of a gedanken experiment [1] employing two particles
prepared in a special state to show the simultaneous existence of position and mo-
mentum, i.e., to demonstrate the overcoming of the uncertainty principle (this is
why this experiment is called the EPR paradoz). The key premises of EPR were

assumptions of locality and reality:

If at the time of measurement the two systems no longer interact, no real change
can take place in the second system in consequence of anything that may be done to

the first system.

If, without in any way disturbing a system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical quantity, then there exists an
element of physical reality corresponding to this physical quantity.

In 1952 David Bohm showed that the EPR gedanken experiment can also be
reformulated for discrete non-commuting observables, namely for different spin pro-
jections [2]. And in 1964 John Bell derived his famous inequality and showed that
it is possible to arbitrate between the two above mentioned approaches (Bohr’s and
Finstein’s) in a laboratory [3]. Tt opened the field for experimental tests of quantum
theory vs. local realistic theories and brought to light the miraculous phenomenon

of quantum “non-locality”.

2. Quantum correlations

In general, a quantum system consisting of two subsystems (e.g., of two particles
with spin %) may occur in a so called entangled state®. I.e.; in a state whose state
vector can be written in no way as the only product of any two single-particle states
of the subsystems®. Note, however, that even the total state of the system is a pure
one, neither one of the correlated subsystems is in a pure quantum state.

In case of an entangled state results of certain measurements on the both subsys-
tems (e.g., measurements of spin projections on some axes) are mutually strongly
correlated. These correlations cannot be explained by the notion of local “hidden”
variables that would determine results of all potential measurements on the both
subsystems and that would obtain random but correlated values at the moment
when the entangled state was born. It looks like that when a quantum measure-
ment is performed on one part of the system the other part (the other particle,
e.g.) “gets to know” immediately the result no matter how far it is. Quantum
measurement on one subsystem affects the state vector of the whole system.

If the quantum description of reality was uncomplete then a probability distri-

20f course, more than two parts of the quantum system may be entangled [4]. However, we will
be most interested in systems divided to two spatially separated entangled parts.

b1t has no direct connection with symmetrization of the wave function of indistinguishable parti-
cles [5].
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bution of different results of measurement would just reflect our ignorance of an
exact actual state of the system. Then, in the moment when we would enrich our
knowledge (e.g., from the result of measurement), the probability distribution would
change immediately in the whole space. This i1s because our information on the sys-
tem would change. It would be O.K. But, if the quantum state tells us everything
about the system what can be told, if the wave function is really “physical”, then
its immediate change — an “action at distance” caused by a measurement process —
seems to contradict to the causality principle®.

However, various experimental tests which have been realized so far seem to
confirm quantum mechanics with a good precision [6-8]. It implies that there is
no classical theory with local hidden variables which would give, in general, the
same predictions as quantum mechanics. Correlations between particles being in an
entangled state are of the quantum nature. They are “stronger” than any classical

ones.

3. Quantum measurement

What “really” happens at quantum measurement? Nothing detectable (like
an energy, e.g.) is immediately transferred at a distance during a wave function
collapse. For measurable quantities causality is not violated! The measurement
results on the two subsystems may be correlated but the particular values measured
are random. Two distant observers can discover the correlation only after they
compare their measurement results. In this sense uncertainty protect quantum
mechanics from violation of causality.

It is a difficult question what does the quantum measuring act mean in reality.
In quantum mechanics, physical quantities are not straight characteristics of the
system, they are, to some extent, defined by the classical measurement apparatus
and their valuess may depend on the context of measurement. The essence of
quantum theory is to provide a mathematical representation of states defined by
practical preparation procedures together with rules for computing the probabilities
of various outcomes of any test realized by a macroscopical apparatus. Collapse of
the wave function is abstraction which covers up various very complex processes.
Nevertheless, it works well. Of course, the part of physical system, we describe by
quantum formalism, may be enlarged to involve some components of a measuring
apparatus. The boundary between quantum system and classical measuring device
i1s not fixed, it escape us as a line of horizon. Clear physical explanation of the

collapse 1s not known. So 1t is difficult to answer seriously question like “how much

CConsider, e.g., a situation when measurements on two distant subsystems are observed from two
different inertial frames. Let in the first frame the measurement on the first subsystem precede
the measurement on the second one. It may happen that in the second frame succession of the
measurements is inverse. Which measurement caused a collapse of the wave function?
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time 1t takes?” etc. What is clear is that the quantum system watched become
entangled with the measuring apparatus during the act of measurement so that,

strictly speaking, it cannot be described by a pure state in that stage.

Next we will work with wave-function collapse as with an instantaneous process

in accordance with Copenhagen interpretation of quantum mechanics.

4. Superluminal signaling

For us it is interesting, that even though the projection of a quantum state, as
a consequence of measurement, takes place at once in the whole space, it cannot
be utilized for an immediate information transfer at a distance. Probably the first
paper dealing explicitly with the matter appears in 1978 [9], but the idea is older
[10]. Later more formal discussions appeared (e.g. [11], where it has been shown
that impossibility of faster-than-light signaling is a consequence of the fact that the

theory is linear and that observable quantities are related to Hermitian operators).

For a simple system composed of two %—spin particles or of two linearly polarized
photons (with correlated spins or polarizations, respectively) it can be shown, by
elementary algebra of goniometric functions, that the results of measurement of
projection of spin or polarization on any axis performed on either particle are quite
random. However, knowing the results of measurement on the other particle of the
pair one can remark correlation. No manipulation of one member of EPR, pair can

influence the marginal statistics of measurements on the other member [12].

The aim of this paper is to recall the important fact of impossibility of instanta-
neous (or superluminal) quantum communication and to present a simple “quantum
mechanical exercise” proving it for an arbitrary (at least two component) quantum

system.

Let us note again that our following considerations will be based on “orthodox”
quantum theory. E.g.  in [13] it is asserted, that a “non-orthodox” approach to
the process of the wave function “collapse” (considering different durations of the
process for two observers) might lead to admitting the superluminal signals. Nev-
ertheless, considerations given in [13] was shown to be probably wrong [14]. Also
some non-linear modifications to the Schrodinger equation might, perhaps, allow a

superluminal signaling, see e.g. [15].

5. Conditional probabilities

Let us assume a quantum mechanical system consisting of two (spatially sepa-
rated) subsystems I and II. They may be, e.g., two particles, but both subsystems
may also represent rather complex entities. Let {|I;,}} and {|II,)} are orthonor-

mal bases in the subsystems I and II, respectively. An arbitrary pure state of the
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system may then be expressed in the following form

[¥) = &mnlIm)|11n), (1)

where 5" |&mn|? = 1. Let further O and Op denote sets of Hermitian operators
acting only on the subsystem [ or II, respectively.

The question is whether such state |1) and such operators A,B € Oy and C € Oy
exist that an observer Pr (carrying out measurement on the subsystem I) can
determine, from any found eigenvalue of the operator C or at least from the statistics
of the measured eigenvalues, whether an experimentalist Py has measured (on the
subsystem IT) the observable corresponding to the operator A or to the operator
B. The negative answer to this question means impossibility of an instantaneous
transmission of information.

Let us suppose that the observer Py performs measurement of observable X €
Ojr and then observer P; measurement of observable C € ;. Let the operator
X has eigenvalues {x,}. For each eigenvalue there is a projection operator into

corresponding eigenvector or into corresponding subspace in case of degeneration:
P, =11 ® Z |2ni) (2nil, (2)
i

where |z,;) are orthonormal eigenstates or orthonormal base vectors in subspaces
corresponding to particular eigenvalues (¢ goes from 1 to the dimension of n-th
subspace); 1; denotes a unit operator acting on the subspace corresponding to the
subsystem I. Since {|zn;)} is a complete set these projectors represent decomposi-

tion of identity (in the whole Hilbert space):
d>op,, =1 (3)
n
Similarly, if the operator C has eigenvalues {¢, } one can introduce projectors
Pcn = Z |cnz><cnz| & iII~ (4)
i
The probability that the observer Pr will obtain an eigenvalue ¢ and, withal,
the observer Pj; an eigenvalue xp, is
2
(WP, Py ) = el (ay | 1)) . (5)
]
Of course, the experimentalist Pr does not know the result of the measurement of
the distant observer Prr. Thus, the probability that P; will measure eigenvalue cg,
when Pjr measured some observable X, is given by the following formula (we must
sum over all possible results of the measurement of Prr)

pE =2 (PP ) = > lenil @ [ 19)]7 (6)
l

lij
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The observer P, seeking possibility of instantaneous signaling, would need his
results depended on what the observable was measured by Py (irrespective which
factual eigenvalue Py obtained). T.e., he would like to find whether X = A or B.
A really instantaneous transfer would demand that each single measurement of the
observer Py enabled him to discern if P;; had measured A or B. In other words, the
set of eigenvalues of C would have been split into two disjunct subsets corresponding
to two different measurements of the observer Pyy.

However, transmission of information could work even if only the probability,
that Pr measured some value ¢j, depended on what Pr had measured (at least
for some k’s). In such case a transmitted message should be appropriately redun-
dant but the information could be delivered. Possibly, the transfer of one bit could
be repeated several times to obtain a statistically significant result. It would not
be actually an instantaneous transfer but it could still be superluminal. Another
possibility would be to use many parallel transmissions under the same conditions.
Nevertheless, such situation may be described by the only (but more complex) quan-
tum state given by Eq. (1) and the problem is reduced to the previously mentioned
case.

Now, let us calculate the probabilities p;. Using Eq. (3) one can directly see
that

pr = ([P, ) (7)
does not depend on P, at all. Or, substituting explicitly from Eq. (1) into Eq. (6)

one obtains

2

D12 Eonfenil L) (| )

lij |mn

Pk

> GnnbopImleri)(erillo) | D (I |z (i | 11,)

mnopi lj

(I | ) =6y

D Enbon{mleri)(eri| L), (8)

mn ot

where the asterisk denotes complex conjugation and 6y, is the Kronecker symbol.
The orthogonality of |II,) and completeness of |z;;) were used. The last expression is
quite independent of |z,) or of anything connected with X. Thus the probabilities
pi of results of measurement performed by P; are independent of what quantity
(observable) was measured by Pp. This must be valid for an arbitrary state |¢).

In other words, marginal distributions are always completely local.
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6. A few additional remarks

As already mentioned, the state |¢) may be rather general and both the subsys-
tems can be considerably complex. For instance, more than two correlated particles
may be present?, a part of which is at disposal of the observer Py and a part at
disposal of Ppr (the operators A and B may act, e.g., on different particles). Also
some finite reservoirs (“environments”) may be included in both subsystems, etc.

Since |¢) may be an arbitrary state the proof holds not only for perfect, but
also for partial entanglement.

Our observers could try to clone (to make copies of) quantum states of some
particles, then to perform measurement on the copies to estimate the quantum state
influenced by the measurement of the distant observer, and, consequently, to find
what the distant observer has measured. A nice proof that a general quantum state
cannot be perfectly cloned is given in [16]. There it is shown rather graphically that
linearity of quantum mechanics forbids such replication at any quantum system.
Besides, any finite quantum apparatus intended for a cloning can be involved either
in one or in both subsystems considered above.

It was indicated that the violation of C'P invariance could permit faster-then-
light communication [17]. However, this opinion has been disproved [18]. Clearly,
the proof presented here does not assume C'P conservation, explicitly nor implicitly.

It is worth stressing that the proof is based on linearity of quantum mechanics
(any state may be expressed as a superposition of base states) and on the fact
that each observable is represented by a Hermitean operator (Hilbert space can be
decomposed into a direct sum of mutually orthogonal subspaces corresponding to

its eigenvalues).

7. Mixed states

The proof can easily be generalized for mixed states. A mixed state can be
described by a density (or statistical) operator p. This is a positive Hermitean
operator with unit trace. Using the above defined bases, this operator takes the

form

p= primn T ) (I (T, (9)

klmn

with primn being the corresponding matrix elements. The probabilities pg intro-

duced above for a pure state can now be rewritten as
Py = ZTY(PCkle ﬁ)
1
= > {ewil(ail pleg)ens)

lij

dThe subscripts m and n enumerating the bases {| I )}, {| 1)} would then represent multi-indices.
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= Z Pmitn {Inleri)(crilIm)- (10)
mnli
Evidently, it is independent of |2,;) again. This probability distribution is the same
for all X € Oyr. It depends only on the operator C € Oy and on the state p.
Put it differently, if one does not know the result of the measurement of an
observable X then the system after the measurement is described by a changed

density operator px (von Neumann’s “process 17):

p—px = _(wnilleni) [2n:) (@i (11)

ni

The reduced density operator gy of the subsystem I (obtained by tracing over the
subsystem IT) is the same irrespective whether the change (11) has taken place or

not:

pr=Trgp="Trppx. (12)
Here Tryrp =3, (I, |p|11,).

8. POVM

One can even consider more general kind of measurement. Instead of von Neu-

, . - )
mann’s projectors, positive operators ¢, (for observer Pr) and x, (for observer Pjy;
n enumerates possible measurement results) may be used (see, e.g., [5]). These

operators need not be projectors but they must satisfy conditions:
ch Ii, Zkui. (13)
k k

Again, it can be readily verified that the marginal probability distribution of the

results of measurement on the subsystem I,
pr = ZTr(ckxlp) =Tr(crp), (14)
1
does not depend on what measurement was performed on the subsystem II.

9. Conclusions

Standard interpretation of quantum mechanics does not allow instantaneous
transmission of information. Quantum “non-locality” appears in strong quantum
correlations but causality is never violated for measurable events. Quantum corre-
lations are a real phenomenon but they can be detected only in coincidence, 1.e.,

comparing the results of both distant observers.
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