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Abstract. The possibility of observing interference with two modes of
different frequencies in a one-photon state by means of parametric up-
conversion is studied. This phenomenon could be utilized for discernment
between pure and mixed states. There is also a close connection to the question
of the extent of inde� niteness of the photon’ s path.

1. Introduction
In recent years, much effort has been paid to the study of various low-intensity

optical interference effects on both a theoretical and an experimental basis.
Experiments of this kind make it possible to test the foundations of quantum
theory and this research plays an important role in the endeavour to understand
quantum mechanics on the whole. The experiments performed so far cover, for
example single-photon interference experiments (including interference of inde-
pendent beams [1, 2]) demonstrating, amongst other factors, the wave–particle
duality, experiments with fourth-order interference (employing photon pairs
generated by frequency down-conversion) which were designed for testing Bell’ s
inequalities, and interference experiments with non-classical light. A comprehen-
sive review with a number of references can be found in [3].

In the present paper we shall deal with the possibility of `mediating’
interference between two modes of different frequencies at the one-photon level.
As a motivation for this, we shall show how to use the interference effects to
demonstrate the relation between the degree of entanglement and the extent of
diagonalization of the density matrix relating to one subsystem. Of course, this is
not the only possible application.

Interference experiments can provide information about the off-diagonal
elements of the density matrix. For example, let us consider two partially
entangled particles, say, two photons with partially correlated polarizations. The
fact that the entanglement is imperfect can be found from a coincidence
measurement on both particles (two-photon interference), but it also manifests
itself in the form of the density matrices describing both subsystems (both
photons) separately [4]. A general quantum state of the two photons mentioned
above can be written as follows:

|y l = a |V l 1|V l 2 + b |H l 1|H l 2 + g |V l 1|H l 2 + d |H l 1|V l 2, ( 1)
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where |a |2 + |b |2 + |g |2 + |d |2 = 1 and |V l , |H l represent an orthonormal basis
(vertical and horizontal linear polarizations) of each subsystem (the subsystems
are differentiated by subscripts 1and 2). Tracing over the subsystem 2, one obtains
the following statistical (or density) operator of the subsystem 1 (in a certain sense,
this is a quantum analogue of the classical coherence matrix)

^q (1) = Tr2 |y l k y | =
i,j= V,H

q
(1)
ij |i l 1k j|2, (2)

with q
(1)
ij being the corresponding matrix elements:

q (1) =
|a |2 + |g |2
a *d + b g *

a d * + b * g
|b |2 + |d |2

(3)

(an asterisk means complex conjugation). A similar result can be obtained for the
subsystem 2 by tracing over the subsystem 1.

In general, a state with perfect entanglement can be written as

2- 1/2[|Al 1|C l 2 + exp (i ) |Bl 1|Dl 2],
where |Al 1, |Bl 1 represent an orthonormal basis of the � rst subsystem (� rst
particle), |C l 2, |Dl 2 an orthonormal basis of the second subsystem (second particle)
and  is an arbitrary phase factor. The index of correlation² [4] of such states is
maximized (IC = - 2kB ln ( 1

2)) and the density matrices describing both subsystems
separately differ from the unit matrix only by a number factor:

q (1) = q (2) =
1
2

0
0
1
2

. (4)

This means that they have the same diagonal form in an arbitrary basis. If, for
example, |a | /= |b | /= 0and g = d = 0 in equation (3), then the density matrix is also
diagonal but only in our chosen basis ³ [5].

Another extreme case of equation (1) is a general product state

(a|V l 1 + b|H l 2)(c|V l 1 + d|H l 2),

with |a|2 + |b|2 = 1 and |c|2 + |d|2 = 1. Then

q (1) =
|ac|2 + |ad|2

a*b
ab*

|bc|2 + |bd|2 . (5)
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² The degree of entanglement and information carried by density matrices of the
subsystems can be well expressed through the index of correlation (based on the entropy
approach) I C = S 1 + S 2 - S which, in fact, represents the mutual information.
S 1(2) = - kB Tr1(2) [^q 1(2) ln ^q 1(2)] is the entropy of the subsystem 1(2), S is the total entropy
and kB denotes the Boltzmann constant.

³ In fact, such bases in the subsystems can always be found in which a decomposition of
state (1) will contain at most two terms and the density matrices of the subsystems will be
diagonal. The existence of these bases follows from Schmidt’ s theorem.



If either a or b is zero, then the off-diagonal elements vanish. However, it is only a
special case strongly depending on the particular basis.

From the example stated above, it is apparent that the off-diagonal elements
of the density matrix describing only one particle of the (possibly entangled) pair
can carry some information about the extent of entanglement. There is also a
connection with the notion of decoherence caused by a mutual interaction of the
subsystems in the past [6]. Thus it may be interesting to measure these off-
diagonal elements.

Let us brie� y look at the simple interference experiment shown in � gure 1. Let
us suppose that one photon of the pair (whose polarization state is characterized by
the density matrix q (1)) enters the interferometer. Expressing, in a standard way,
the output � eld operators in terms of the input � eld operators, including the effect
of polarizing beam splitter PBS (in the � gure, the vertical polarization is led to the
upper arm and the horizontal one to the lower arm), phase shifts in both arms of
the interferometer (connected with propagation times), and the effect of the half-
wave plate `̧ /2’ turning the polarization axis by 90Â (which makes possible the
interference at the last beam splitter BS), and assuming that light enters only
through one input port (in the other the vacuum state is supposed), one can readily
� nd expressions for the photon-number operators n̂1 and n̂2 in the modes entering
the detectors D1 and D2 and for the corresponding mean numbers of photons. The
mean number of photons at D1 (for example) is

n1 = 1
2 - |q VH| cos [D u + arg ( q VH)], ( 6)

where D u is the difference between the phase shifts in the lower and upper arms of
the interferometer and q VH is the density-matrix element (see equation (2)). Thus
the visibility reads

6 1 = 2|q VH|. ( 7)

This means that we can measure the modulus of the off-diagonal elements of the
density matrix (in principle, it is also possible to � nd their phases; there is an
analogy with the reconstruction of the correlation function in the Young two-slit
interference experiment [7]). The measurements can be performed in various
bases, for example rotating the apparatus from � gure 1 appropriately, we can
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change between different linear-polarization bases. If the particle pertains to a
perfectly entangled pair, there is no interference in any basis.

It is easy to provide conditions for the interference of two modes with different
linear polarizations. We simply turn the polarization axis of one of them by means
of a ¸/2 plate. There is no measurable energy exchange in this process and we
cannot learn which path the photon has taken. Another situation occurs when we
are dealing with modes differing in frequencies. For example, photon pairs
produced by frequency down-conversion exhibit just energy (frequency) correla-
tions [8, 9]. Here, modes of many different frequencies are always present.
However, in the case of perfect energy correlation (de� ned (for a pair of photons)
by

x

h ( x )|x l 1|x 0 - x l 2, (8)

where h ( x ) is some properly normalized function, x 0 is a constant (pumping
frequency), and |x l 1, |x l 2 represent the eigenstates of the free Hamiltonians of the
subsystems corresponding to energy " x ) the density matrix of each subsystem
expressed in energy representation is always diagonal. This form corresponds to a
statistical ensemble of individual monochromatic photons with probability dis-
tribution |h ( x )|2 (or |h ( x 0 - x )|2 for the other subsystem). On the contrary, when
the pair is in a product state, there are always some non-zero off-diagonal elements
in the density matrices of the subsystems (in this case each subsystem can be
described by a pure state). Thus the interference measurement of the off-diagonal
elements could again give some notion of the extent of entanglement. How do we
change the mode of frequency x 1 to another mode of some different frequency x 2

without allowing `which-path information’ to be read and thereby destroying
interference? In the next section we shall try to � nd at least a partial answer to such
a question.

2. Interferometer with frequency conversion
We shall study an interferometer with a frequency conversion device in one

arm as shown in � gure 2. For simplicity we shall assume the input state (entering
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Figure 2. Outline of the proposed experimental arrangement.



one port of the � rst beam splitter) as a pure one-photon state containing only two
modes with frequencies x 1 and x 2:

N(|x 1l + |x 2l ); ( 9)

N is a normalization constant. It is also assumed that x 1 > x 2. At the other input
the vacuum state is supposed. The input � eld is divided at the � rst frequency-
dependent beam splitter so that the component of frequency x 1 is re� ected to the
upper arm and the component with frequency x 2 is transmitted to the lower arm of
the interferometer. In the lower arm, there is a nonlinear crystal pumped at
frequency x 0. Within the crystal, the frequency up-conversion process occurs. Let
the frequency of the pump beam be such that the up-converted radiation has just
the frequency x 1, that is

x 0 = x 1 - x 2.

Further, let us assume perfect phase matching. (Of course, it affects the geometry
of the experimental arrangement but, to keep lucidity, this is not fully respected in
the scheme in � gure 2.) Under these conditions, the interaction Hamiltonian for
the three-mode parametric interaction in the interaction picture takes the form [10]

HI = " gâ†
1â2â0 + Hc, (10)

where g is a real coupling constant, âj and â†
j ( j = 0, 1, 2) are the annihilation and

creation operators of the corresponding modes respectively, and Hc denotes
Hermitian conjugation. Then the unitary time evolution operator is

U(t, t - ¿) = exp - i
"

HI¿ , (11)

with ¿ being an interaction time. What does the interaction time mean here? The
crystal may be mounted in the experimental set-up for rather a long time.
However, in practice we hardly meet ideal monochromatic states or their simple
combinations. Usually we dispose of localized wave packets and such wave packets
spend only some delimited time inside the crystal. This � nite time interval can be
regarded as an effective duration of the interaction. Thus, even though we shall
work with the idealized model with three monochromatic modes, we shall assume a
� nite effective interaction time ¿. Now we expand the exponential in equation (11)
and retain only the � rst two terms of the expansion and neglect all the others,
supposing that the conditions for doing so (short effective interaction time and
suf� ciently low ef� ciency of the process) are ful� lled. This means that we shall
neglect low probable backward processes and any other more complicated
transitions. The approximated evolution operator then reads

U(t, t - ¿) < 1̂- i(g¿â†
1â2â0 + Hc). (12)

We start with the input state given by equation (9). Let us further assume that
the mode 1 leaving the up-converter via the path C is not populated at the
beginning, that is there is a � eld vacuum there. We shall study the interference at
the output beam splitter of the interferometer in two cases: � rstly when the up-
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converter is pumped by a � eld in a number state, and secondly when it is pumped
by a � eld in a coherent state. It seems that, in case of the number-state pumping, it
is possible to � nd out (monitoring the number of photons in the pump beam)
whether the up-conversion process has occurred or not, that is to get which-path
information. Therefore no interference should be expected. However, uncertainty
in the photon number in the coherent state raises hopes to observe some
interference.

Let us designate the annihilation operators of the input � eld corresponding to
two modes with frequencies x 1 and x 2 (incoming from the upper side of the � rst
beam splitter; see � gure 2) as b̂1 and b̂2 respectively. The annihilation operators
related to the other (unused) input port will be designated as ê1 and ê2 (for x 1 and
x 2 respectively). Further, let ĉ denote the annihilation operator of the � eld (of
frequency x 1) entering the second beam splitter from the path A and let d̂I and d̂II

be the annihilation operators of the modes exiting the interferometer and
immediately entering the corresponding detectors. Of course, â0, â1 and â2

correspond to modes entering or exiting the up-conversion crystal and
having frequencies x 0, x 1 and x 2 respectively. The attenuator can be regarded
as a beam splitter with amplitude re� ectance 2 and transmittance 4 (which will
be assumed to be real). The annihilation operator corresponding to the mode
at its unused input port will be labelled f̂ (in this port the vacuum state is
supposed).

Thus, if the � rst beam splitter ideally divides both frequency components, we
can express the annihilation operators ĉ and â2 in terms of b̂1, b̂2 and ê1, ê2, f̂:

ĉ = i2 exp (iu ÂA) f̂ + 4 exp (iu A) (ib̂1 + ê1), (13)

â2 = exp (i u B) (b̂2 + iê2). (14)

Here u A = ( x 1 /c) z A and u B = ( x 2 /c) z B are the phase shifts associated with the
propagation along the path A (of the length z A) and B (of the length z B) respectively
(see � gure 2); u ÂA = ( x 1 /c) z ÂA, where z ÂA is the distance between the attenuator and
the second beam splitter. Similarly, assuming the second beam splitter to be
lossless with splitting ratio 50% : 50%, one can express the detector-mode operators
d̂I and d̂II in the following way:

d̂I =
1

21/2 [îc + exp (iu C) â1], (15)

d̂II =
1

21/2 [̂c + i exp (iu C) â1], (16)

where u C = ( x 2 /c) z C is the phase shift associated with the path C. Using the
annihilation operators d̂I and d̂II (and the corresponding creation operators), one
can de� ne the mean numbers of photons nI and nII detected in detectors DI and
DII respectively. (If only one frequency component is present, these quantities
may substitute the more general detection rates. In our case, when only one photon
is in the system, these quantities are also proportional to the probabilities of
detecting the photon at the � rst or at the second detector.) The related photon-
number
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operators are

n̂I = d̂†
I d̂I = 1

2{b̂†
1b̂1 4 2 + â†

1â1 - b̂†
1â14 exp [- i( u A - u C)] - â†

1b̂1 4 exp [i( u A - u C)]
+ terms containing ê†

1 or f̂ † on the left and/or ê1 or f̂ on the right}

(17)
and

n̂II = d̂†
IId̂II = 1

2{b̂†
1b̂14 2 + â†

1â1 + b̂†
1â14 exp [- i( u A - u C)] + â†

1b̂1 4 exp [i( u A - u C)]
+ terms containing ê†

1 or f̂ † on the left and/or ê1 or f̂ on the right}

(18)

The terms containing the operators of modes e1 and f are not stated here explicitly
because, assuming the vacuum state at the appropriate inputs, they clearly give no
contribution to the mean photon numbers calculated below.

The visibility is de� ned by the formula

6 i =
ni max - ni min

ni max + ni min
, (19)

where i = I,II and the minimal and maximal values are taken with respect to the
phase-shift variables.

First, we shall assume the pumping of the nonlinear medium in the form of a
number state (Fock state). The � eld entering the interferometer is considered in
the form of a superposition of two one-photon states corresponding to two
different frequencies, as we have stated above (for simplicity, only discrete values
of frequency are considered now so that the normalization constant N from
equation (9) is equal to 2- 1/2). Thus the state vector describing the initial state
of the � eld (at time t = 0) can be expressed as

|y f (0) l =
1

21/2
(b̂†

1 + b̂†
2)

(â†
0)n

(n!)1/2 |vacl . (20)

Owing to the interaction it develops into the state vector (we are still working in
the interaction picture)

|y f (¿) l = U(¿, 0)|y f(0) l < |y f (0) l - ig¿ exp (iu B) 1
21/2

n1/2

[(n - 1)!]1/2 â†
1(â†

0)n- 1|vacl .
(21)

Here we made use of the commutation relations of creation and annihilation
operators and of the fact that any annihilation operator acting on the vacuum state
gives zero. It is evident from equation (21) that, measuring the number of photons
in the pump beam behind the crystal, one may obtain either n or n - 1. The latter
result indicates that the up-conversion has occurred. This enables us, at least in
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principle, to discern by which path the photon came to the last beam splitter of the
interferometer. The mean number of photons impinging on the detector DI is

n
(f )
I = k y f (¿)|n̂I|y f(¿) l = 1

4 ( 4 2 + ng 2
¿

2). (22)

This expression is independent of any phase shifts at any arm of the inter-
ferometer. Thus the visibility is zero. For the detector DII, the results are the
same. No interference appears as we have expected.

Now we shall analyse the situation when the pump � eld is in a coherent state of
a complex amplitude a . Let the � eld entering the interferometer be the same as in
the previous case. The corresponding initial state vector is given by the formula

|y c(0) l =
1

21/2
(b̂†

1 + b̂†
2) exp

|a |2
2

¥

n= 0

a n

n!
(â†

0)n|vacl . (23)

The � nal state after the interaction is then

|y c(¿) l = U(¿, 0)|y c(0) l

< |y c(0) l - ig¿ a exp (iu B) exp
|a |2

2
1

21/2 â†
1

¥

n= 0

a n

n!
(â†

0)n|vacl . (24)

This form was obtained employing the fact that the coherent state is an eigenstate
of the annihilation operator. Using equations (17), (18) and (24), one can express
the mean numbers of photons registered by (ideal) detectors DI and DII:

n
(c)
I = k y c(¿)|n̂I|y c(¿) l = 1

4 [4 2 + |a |2g 2
¿

2 - 2|a |4 g¿ cos ( D u - µ)], (25)

n
(c)
II = k y c(¿)|n̂II|y c(¿) l = 1

4 [4 2 + |a |2g 2¿2 + 2|a |4 g¿ cos ( D u - µ)], (26)

where D u = u A - u B - u C and µ = arg ( a ). Clearly, the interference appears now.
Substituting equations (25) and (26) into equation (19), we obtain the visibilities ²

6
(c)
I = 6

(c)
II =

2|a |4 g¿

4 2 + |a |2g 2¿2
. (27)

One can even notice that, if 4 = |a |g¿, then 6
(c)
I = 6

(c)
II = 1. That is, introducing

proper losses into the upper arm of the interferometer, the visibility may be
increased up to unity (of course, at the expense of decreasing the mean number of
photons). In the case of coherent pumping, the behaviour of the quantum system is
similar to the case of classical waves.

The higher terms in the expansion of the evolution operator given by equation
(11) do not in� uence the crucial fact of the occurrence or absence of interference in
the cases presented above.

The wave–particle duality is manifested here. Any uncertainty in the number
of photons in the pump beam always induces uncertainty in the which-path
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² If the examined input state contained, in addition, the vacuum state in coherent
superposition, the visibility would not be changed; only the mean numbers of photons
would be reduced by some factor.



information concerning the photon in the interferometer, and interference appears.
It is discussed in more detail in section 3.

From the practical point of view, the coherent-state pumping is of interest; it is
experimentally feasible and it may be utilized for the purposes mentioned in the
previous section, that is for the measurement of the off-diagonal elements of the
density matrix of the input � eld, as will be shown in section 4.

3. The effect of pump-� eld statistics
In order to demonstrate how the uncertainty of the photon number of the

pump � eld invokes interference, let us consider a very simple example. Let the
pump � eld be in a superposition of the one-photon and zero-photon state (in the
mode 0 of frequency x 0) and let the input � eld be in the same state as introduced
above. Thus

|y (0) l =
1

21/2
(b̂†

1 + b̂†
2)( a 1̂+ b â†

0)|vacl , (28)

with |a |2 and |b |2 represent the probabilities of � nding no photon or one photon
respectively, and, of course, |a |2 + |b |2 = 1. After interaction, the system comes to
the state

|y (¿) l < |y (0) l - ig¿ b exp (iu B) 1
21/2 â†

1|vac l . (29)

Then the mean number of photons detected in detector DI is

k y (¿)|n̂I|y (¿) l = 1
4 [4 2 + |b |2g 2¿2 - 2|a b |4 g¿ cos ( D u + µ)], (30)

where µ = arg ( a b *). (The result for the detector DII differs only in the sign of the
last term.) Thus the visibility (for both detectors) is

6 =
2|a b |4 g¿

4 2 + |b |2g 2¿2
=

2(|b |2 - |b |4)1/2 4 g¿

4 2 + |b |2g 2¿2
=

2s n 4 g¿

4 2 + ng 2¿2 , (31)

where s 2
n = k (n̂0 - k n̂0l )2 l is the photon number variance of the pump � eld and

n = k n̂0 l is its mean photon number. For example, if the attenuator is set so that
4 = g¿, then the visibility takes a simple form

6 =
2(|b |2 - |b |4)1/2

1+ |b |2
=

2s n

1+ n
, (32)

which is plotted in � gure 3.
However, in general, the visibility cannot be expressed as a function of the

photon-number variance of the pump beam. Let us suppose the pumping to be in
some general (arbitrary) quantum state, so that

|y (0) l =
1

21/2
(|b1l + |b2l )|pumpl |vacrest l , (33)

where |bi l = b̂†
i |vac1,2l , i = 1, 2, represent one-photon states of the input � eld
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corresponding to the modes of frequencies x 1 and x 2, and |pumpl denotes the state
of the pump � eld (the mode 0). Other modes (e1, e2, f and a1) are assumed to be in
the vacuum state (|vacrest l ) at the beginning. Calculating, in the usual way, the
state |y (¿) l , one can express the mean number of photons at the detector DI (or, by
analogy, at DII)

k y (¿)|n̂I|y (¿) l = 1
4{4 2 + ng 2¿2 - 2|x |4 g¿ cos [D u + arg ( x )]}. (34)

Here n = k pump|â†
0â0|pumpl and x = k pump|â†

0|pumpl . Then the visibility is
given by the formula

6 =
2|x |4 g¿

4 2 + ng 2¿2 . (35)

4. Measurement of off-diagonal elements of the density matrix
Now we shall show how to employ the knowledge obtained in section 2 to

determine the off-diagonal elements of the density matrix of the input � eld
occurring in a mixed state consisting of two modes of different frequencies (by
analogy to the previously mentioned case with the polarization states).

The input � eld will be assumed in some general (mixed) one-photon state
consisting of two modes with frequencies x 1 and x 2 (as the basis in this subspace
we use the states |bi l = b̂†

i |vac1,2l ; i = 1, 2). The pump � eld (the mode 0 of
frequency x 0) will be assumed to be in a coherent state |a l of the complex
amplitude a . No other modes will be populated at the beginning (|vacrest l ). This
state of the system can be described by the following statistical operator:

^q (0) =
i,j= 1,2

q ij|bi l k bj| Ä |a l k a | Ä |vacrest l k vacrest|, (36)
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Figure 3. Relation between the visibility and the uncertainty of the photon number of the
pump beam: simple example.



where q ij are matrix elements characterizing the input � eld. From the facts that the
density operator has a unit trace and that it is Hermitian, it follows that
q 11 + q 22 = 1 and q ij = q *

ji. The � rst expression can be understood as that the total
probability of � nding a photon in either of the two modes is unity. Because of time
evolution, the density operator after the interaction takes the form

^q (¿) = Û(¿, 0)^q (0)Û†(¿, 0). (37)

The mean number of photons impinging on the detector DI is then given by the
formula

nI = Tr [^q (¿)n̂I]
< 1

2{q 11 4 2 + q 22|a |2g 2¿2 - 2|q 12||a |4 g¿ cos [D u - arg ( a ) + arg ( q 12)]}. (38)

The visibility (both at the detector DI and DII) then reads

6 =
2|q 12||a |4 g¿

q 114 2 + q 22|a |2g 2¿2
. (39)

It is evident that adjusting the attenuator properly so that 4 = |a |g¿, the
expression for the visibility essentially simpli� es to

6 = 2|q 12|. (40)

This expression is rather similar to equation (7) and it enables us to determine the
modulus of the off-diagonal elements of the density matrix describing the input
� eld.
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