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Abstract. An experimental comparison of several operational phase concepts is presented.
In particular, it is shown that statistically motivated evaluation of experimental data may lead
to a significant improvement in phase fitting upon the conventional procedure of Noh et al
(1993 Phys. Rev. Lett. 71 2579). The analysis is extended to the asymptotic limit of large
intensities, where a strong evidence in favour of multi-dimensional estimation procedures has
been found.
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1. Introduction

‘The essence of quantum theory is its ability to predict
probabilities for the outcomes of tests, following specified
preparations’ [1]. From a pragmatic point of view the
quantum state represents only our information on the system
corresponding to a particular preparation by a classical
apparatus. According to quantum theory, this seems to be
the most complete information. However, the accessibility
of this information is questionable. Not knowing the
preparation procedure, one does not know the quantum state
of the system. There is no way to measure it for a single
realization of a quantum system. The situation gets better if
an ensemble of systems prepared in the same quantum state
is available. Then it is possible to measure complementary
observables in different experiments, and the quantum state of
the system can be inferred. Since real ensembles are always
finite, only the particular numbers of occurrence of different
results can be measured instead of probabilities. This is
a paradigm for an arbitrary measurement. However, this
scheme could seem purposeless unless theoretical predictions
are compared with experiments. In the quantum domain this
is generally not at all easy, and in practice many sophisticated
theories cannot be demonstrated on their experimental
counterparts.

The estimation of phase differences in interferometry
appears to be a nice example of the above-mentioned scheme,
where the predictions of quantum theory can be followed
by an experimental realization. Optical measurements in
the domain of classical wave optics are well established and
belong to the most precise measurement schemes currently
available. Significantly, such schemes may be analysed in
the framework of quantum phase.

Quantization based on the correspondence principle
leads to the formulation of operational quantum phase
concepts [2, 3]. Further generalization may be given in the
framework of quantum estimation theory; the prediction may
be improved using the maximum-likelihood (ML) estimation.
This improvement was tested experimentally in matter
wave optics with neutrons, and a statistically significant
improvement was observed [4]. This is a remarkable result,
since the phase estimation is rather uncertain for neutrons
due to technical limitations of neutron interferometry; for
example, where the visibility of interference fringes is far
below the ultimate value of 100%. In this paper the same
theoretical background of optimal phase estimation will be
used for the testing of phase resolution with photons.

Optical measurements offer many advantages. Current
optical technology enables us to achieve visibility of
interference fringes close to unity, and to very precisely
set the intensities of light pulses at levels well below one
photon on average. As the main objective, different strategies
for accurate phase estimation will be specified and their
consequences for achieved precision will be derived.

This paper is organized as follows. The mathematical
tools are reviewed in section 2, where the operational phase
concepts are naturally embedded in the quantum estimation
theory. The experimental set-up is described in section 3.
A comparison of several phase estimation procedures based
on the experimentally measured data is given in section 4.
Finally, section 5 deals with the phase estimation in the
asymptotic regime.
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2. Phase estimation

The operational phase concepts can naturally be embedded
in the general scheme of quantum estimation theory [5, 6]
as in [4, 7, 8]. Let us consider the eight-port homodyne
detection scheme [2, 9] with four output channels numbered
by indices 3, 4, 5 and 6, where the actual values of intensities
are registered in each run. Assume that these values fluctuate
in accordance with some statistics. The mean intensities are
modulated by a phase parameter θ̄

n̄3,4 = N

2
(1 ± V cos θ̄ ),

n̄5,6 = N

2
(1 ± V sin θ̄ ),

(1)

where N is the total intensity and V is the visibility of in-
terference fringes. The true phase shift inside the interfer-
ometer θ̄ , which is a nonfluctuating parameter controlled by
the researcher, should carefully be distinguished from the
estimated phase shift, which is a random quantity. Here-
after, the latter is denoted by θ . This device, if operated with
Gaussian signals, represents nothing but a classical wave pic-
ture of the original eight-port homodyne detection scheme.
Equivalently, it also corresponds to a Mach–Zehnder inter-
ferometer, when the measurement is performed with zero
and π/2 auxiliary phase shifters. In this case, data is not
obtained simultaneously, but is collected during repeated ex-
periments. Providing that a particular combination of outputs
{n3, n4, n5, n6} has been registered, the phase shift can be in-
ferred. The point estimators of phase corresponding to the
ML estimation will be used here [10, 11]. In accordance
with the ML approach [12], the sought-after phase shift is
given by the value, which maximizes the likelihood function.
Provided that the noise is Gaussian, the likelihood function
corresponding to the detection of given data readings

L ∝ exp

{
− 1

2σ 2

6∑
i=3

[ni − n̄i]
2

}
. (2)

Here the variance σ 2 represents the phase insensitive noise
of each channel. A notation analogous to the definition of
phase by Noh et al [3] (NFM) may be introduced:

eiθNFM = n3 − n4 + i(n5 − n6)√
(n3 − n4)2 + (n5 − n6)2

, (3)

V ′ =
√

(n3 − n4)2 + (n5 − n6)2. (4)

The likelihood function (2) may be maximized by the choice
of parameters for phase shift and visibility, respectively [4]

θ = θNFM, (5)

V = min

(
2V ′∑6
i=3 ni

, 1

)
. (6)

Hence, the operational phase concept of Noh et al [3]
coincides with the ML estimation for waves represented
by the continuous Gaussian signal with phase independent
and symmetrical noises. These rather strict assumptions
are incompatible with the nature of signals encountered in

experiments; such restrictions would be, however, natural in
the classical theory.

The optimum prediction is different for Poissonian
statistics. Based on the Poissonian likelihood function

L ∝
6∏

i=3

n̄
ni

i . (7)

ML estimation gives optimum values for phase shift and
visibility [4]

eiθ = 1

V

[
n4 − n3

n4 + n3
+ i

n6 − n5

n6 + n5

]
, (8)

V =
√(

n4 − n3

n4 + n3

)2

+

(
n6 − n5

n6 + n5

)2

, (9)

provided the estimated visibility (9) is smaller than unity.
In the opposite case it is necessary to maximize the
likelihood function (7) on the boundary (V = 1) of
the physically allowed region of the parameter space
numerically. Relations (8) and (9) provide a correction of the
Gaussian theory with respect to the discrete signals. Besides
the phase shift, visibility of interference fringes and the total
input intensity can be evaluated simultaneously.

The apparent difference between relations (5) and (6)
and (8) and (9) represents the theoretical background of
the presented treatment. Obviously, both predictions will
coincide provided that there is almost no information
available in the low-field limit N → 0. Similarly in the
strong-field limit N → ∞, the phase of the light is well
defined and both inferred values of the phase approach
the same value. Possible deviations may appear in the
intermediate regime N ≈ 1. The test of the difference
between (5) and (8) is proposed through controlled phase
measurement. The phase difference was adjusted to a certain
value and estimated independently using both methods (5)
and (8) in repeated experiments.

To compare two or more phase estimators, some measure
of the estimation error is needed. Dispersion, defined as

σ 2 = 1 − |〈eiθ 〉|2, (10)

can do the job well. Here, the average is taken over posterior
phase distribution of the corresponding phase estimator.
The dispersion (10) is a compact space analogy of the
averaged quadratic cost function (variance), frequently used
in estimation theory [5].

The evaluation of the average quadratic cost (10) is not
the only way to compare efficiencies of different estimation
procedures. Another possibility is to use the rectangular cost
function

C(θ − θ̄ ) =
{

−1 |θ − θ̄ | � �θ

0 |θ − θ̄ | > �θ .
(11)

This choice of the cost function corresponds to the following
evaluation the experimental data. Each sample of data
consisting of numbers n3, n4, n5 and n6 of counted photons
is processed using the NFM formula (3) issuing phase
prediction θNFM. The relative frequency fg(�θ), which is
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proportional to the average cost of the Gaussian estimator
〈C(θ−θ̄ )〉, characterizes how many times the estimated phase
θNFM falls within the chosen phase window �θ (confidence
interval) spanning around the true phase shift. The same
procedure is repeated for phase predictions based on the
Poissonian phase estimator (8) yielding the relative frequency
of ‘hits’ fp(�θ). The quantity

�E = fP(�θ) − fG(�θ) (12)

represents the difference in efficiency of the ML and NFM
phase estimations for the given phase window �θ and given
input intensity N . If this quantity is significantly positive,
the ML estimation is better than its NFM counterpart. On
the other hand, if �E is close to zero, both data evaluation
procedures are statistically equivalent and no discrimination
is possible.

3. Experimental set-up

The laboratory set-up (see figure 1) is based on a single-
mode-fibre Mach–Zehnder interferometer carefully balanced
and adjusted for maximum visibility. A semiconductor laser
source (SHARP LT015) produces 4 ns long pulses with a
repetition rate of 130 kHz. The initial pulse intensity is
about 107 photons per pulse. This is decreased by 11 dB
due to losses in the fibres and other components of the
set-up, and precisely adjusted by artificial attenuation in
the programmable attenuator (JDS Fitel HA9) to reach the
required level at the detectors. The input coupler FC (SIFAM)
divides the pulses between the arms of the interferometer
(each 4 m long). Both arms contain planar phase modulators
PM1,2 (UTP). Only PM1 has been used for phase settings, the
other is included just for symmetry reasons. Both modulators
also work as linear polarizers (extinction ratio 1 : 106) to
improve the degree of polarization. Input polarization to the
modulators is set by polarization controllers PC1 and PC2.
Attenuator ATT in the upper arm of the interferometer helps
balance the losses in both arms of the interferometer to reach
maximum visibility. The length of the arms is balanced by a
variable air gap (AG). The polarization controller PC3 is used
to match the polarization in the arms at the output variable
ratio coupler SVRC (SIFAM). The resultant interference
is detected using silicon photon-counting detectors (EG&G
SPCM-AQ) with less than 70 dark counts per second and a
quantum efficiency of 55%. The signals from the detectors
are processed using detection electronics based on time-to-
amplitude converters and single-channel analysers (EG&G
Ortec) and recorded by a computer, which also controls
the driving voltage of the phase modulator, programmable
attenuator setting and laser operation as well. In this set-up
we have reached interference visibility of up to 99.8%.

The whole interferometer is placed in a polystyrene
box to minimize thermal drift of the fringes. After initial
warm-up, the phase stability of the device is better than
π/3000 s−1. During the measurement, active stabilization
of the interference pattern is performed each 5–10 s.

4. Measured data evaluation

Unfortunately, commercially available photodetectors for
measurement of weak quantum signals fail to discriminate the
number of detected photons. Only the presence or absence
of the signal can usually be detected. The impossibility of
counting photons is circumvented as follows. According
to the well known polynomial theorem, the sum of two
or more Poissonian signals is a Poissonian signal again,
the mean simply being replaced by the sum of the means
of its constituents. It is therefore possible to carry out
measurements with very weak signals of intensity, say,
0.01–0.001 photons per pulse so that the probability of two
photons being in the same pulse (double-detection) is very
small, and then collect an appropriate number of individual
yes–no detections to obtain desired ‘input’ intensity N .
For example, an experimental run with input pulse mean
intensity N = 10 can be simulated by a sequence of 10 000
measurement with mean input intensity Np = 0.001 photons
per pulse. The probability of double-detection in a single
run is p < 10−6 for a Poissonian light source. Hence
the probability of single double-detection during the whole
sequence of measurements is less than 1% and the probability
of triple-detection or several double-detections is entirely
negligible. This procedure enables us to effectively simulate
the results of experiments with intense pulses N � 1 and
ideal photodetectors. In the text, whenever an experimental
sample is mentioned, it should be clear that we actually
refer to a sum of many experimental samples measured with
intensities well below a single-photon per pulse.

The difference of dispersions (10) of the Gaussian and
Poissonian phase estimators found in our experiment is
shown in figure 2 for a fixed true phase θ̄ = π/3. The
number of experimental samples used for calculation of the
dispersions varies from 1000 samples for input intensity
N = 60 to more than 100 000 samples with N = 0.1. The
error bars arising from a limited number of samples are the
result of numerical simulation. Figure 2 agrees well with
the qualitative reasoning of the previous section. The most
distinct difference between the dispersions of the ML and
NFM estimators is seen for the input mean number of photons
N ≈ 7.5. Thus, it can be said that as long as interference
and phase measurements are concerned, discrete signals with
Poissonian statistics are distinguishable from the classical
wave for only a relatively small range of input intensities.

The difference in efficiency of the ML and NFM phase
estimation (12) calculated from experimental data is shown
in figure 3. The difference �E was calculated using 7500
experimental samples measured in experiment with N = 10
photons and visibility of 99.6%. The chosen input intensity
roughly corresponds to the maximum seen in figure 2. Since
the experimental data are limited to a finite number of
samples due to experimental conditions and available time,
the estimated �E would be slightly different in repeated
experiments. Statistical significance of the experimental
results is demonstrated using computer simulation again.
Standard deviation corresponding to 7500 measured samples
is shown in figure 3 as error bars for each phase window.

A significant difference between the effectiveness of
classical and optimal treatments is apparent in figure 3. The

239
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Figure 1. Scheme of the laboratory set-up. FC, input fibre coupler; PCx, polarization controllers; PMx, phase modulators; ATT, attenuator;
SVRC, output variable ratio coupler; Dx, detectors.

σ
σ

Figure 2. The experimentally observed difference between
dispersions of the NFM and ML estimators as a function of the
input mean number of photons N for fixed true phase θ̄ = π/3.
Error bars corresponding to 68% confidence intervals are shown.

∆

∆θ

Figure 3. Experimentally obtained �E (squares) compared with
theoretical values (circles); for the definition of �E, see
equation (12); �θ is the phase window. Error bars corresponding
to 7500 measured samples are shown.

optimal treatment provides an improvement in estimation
procedure, and the difference is beyond the statistical error by
more than 10 standard deviations in the optimum case. High
stability and visibility of interference fringes in the optical
interferometer along with a high repetition rate of the pulsed
laser make the improvement over the NFM phase prediction
more evident than in a similar comparison performed with

the neutron interferometer set-up [4]. Notice the dependence
of the precision gain �E on the width of the chosen phase
window. Obviously, no better performance of the ML method
can be expected for large values of the phase window �θ ;
any sensible statistical method would yield quite reasonable
results. Likewise, no real improvement over the Gaussian
estimate can be expected when �θ is close to zero, because
too few data would then fall within the window. The largest
difference is about 6% in the window of the width of about
0.5 rad.

5. Asymptotic behaviour

As intensity of the input light increases, both estimations of
phase shift yield more sharp and precise results. The error
of the best-known proposed phase measurements scales as
N−1 for large input intensities [13, 14]. Our photodetection
scheme cannot compete with such measurements. On the
other hand these methods necessitate the use of exotic
states such as two-mode Fock states, etc, which are still
impossible to prepare in contemporary laboratories. Since
the experimental equipment is always limited, the only
way to improve precision of phase measurements lies in
careful evaluation of the measured phase sensitive data and
distillation of all available phase information. Therefore, it
is worthwhile to compare the performance of the NFM and
ML estimations in the limit of high intensities.

To get some qualitative feeling of how both estimators
approach the above mentioned limit we redrew figure 2 with
differently scaled vertical axes, see figure 4. It can be seen
that the relative difference of both dispersions monotonically
increases with N and finally approaches some constant value
different from zero. This means that during the transition
from N ≈ 10 to higher values of N , both estimators first scale
with slightly different powers of N , and for high intensities
both powers reach the same value and the ratio of the Gaussian
and Poissonian dispersions approach some constant.

It is easy to calculate the behaviour of the dispersion of
the Gaussian phase estimator for N → ∞. The dispersion
becomes

σ 2
G ≈ 1

V 2
N−1 + O

(
1

N2

)
. (13)

Readers interested in details are referred to appendix A. As
can be expected, the error of NFM phase measurement is
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σ
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Figure 4. Observed relative difference between dispersions of the
NFM and ML estimators. All the parameters are the same as in
figure 2.

proportional to N−1/2. This precision represents the so-
called standard quantum limit. Unfortunately, it is impossible
to derive a simple expression similar to equation (13)
for the Poissonian estimator. However, such a formula
is easily obtained provided that the physical constraint
V � 1 is released. Thus, throwing the estimated
value of visibility away and interpreting equation (8) as
an estimator of the unknown phase shift valid for each
sample {n3, n4, n5, n6}, the asymptotic dispersion of such an
unconstrained estimation reads

σ 2
P ≈ 1

V 2

(
1 − V 2

2
sin2 2θ̄

)
N−1 + O

(
1

N2

)
. (14)

It is obvious that omitting useful information gained from
the data makes the unconstrained estimation somewhat less
efficient than the original constrained one.

We can see from equations (13) and (14) that, in the limit
of low visibility, both the NFM and ML phase predictions
are equivalent. This result is in agreement with properties
of the well known discrete Fourier transform (DFT) phase
estimator [15] in the same regime†. On the other hand,
ML estimation always gives better results than NFM theory,
provided that the visibility is high. For some values of the
true phase shift, reduction in the dispersion down to 50% is
possible.

The ultimate limit to the resolution of the particular
estimator is set by the well known Cramér–Rao inequality.
Provided that the visibility and input intensity are under
control in the experiment, the phase shift θ̄ remains the
only parameter to be estimated. For such a single-parameter
problem, the Cramér–Rao lower bound (CRLB) on the
dispersion‡ of any phase estimator is given as follows

σ 2
CRLB = (E{[(∂/∂θ̄) ln p(n3, n4, n5, n6|θ̄ )]2})−1. (15)

Here the symbol E denotes averaging over observed data.
Upon substitution of the joint Poissonian distribution of the

† We note in passing that DFT can in fact be regarded as a generalization
of NFM phase concept to a greater number of auxiliary phase shifts [4].
‡ Actually, the CRLB holds for variance rather than for dispersion. Since all
the relevant phase uncertainties are small in the limit of high input intensity,
both quantities coincide in this case.

sample {n3, n4, n5, n6} to equation (15) and making similar
approximations to those used in derivation of equation (13),
we end up with

σ 2
CRLB = V 2 − 1 − 1

4V 4 sin2 2θ̄

V 2 − 1 − 1
2V 2 sin2 2θ̄

V −2N−1. (16)

Two interesting observations follow from (16). First, notice
that for low visibility, the dispersion of the NFM phase
prediction (13) attains the CRLB. This means the NFM
estimation is best possible in this limit. Second, for
perfect experimental set-up (V = 1), the CRLB is simply
σ 2

CRLB = 1/2N . Thus the resolution of the unconstrained
ML estimation can still be improved a bit. In deriving
equation (16) we supposed that the value of visibility
and input intensity of the laser beam are known. Such
knowledge represents some additional information about the
experimental set-up. Let us assume that the input intensity
and visibility are really under control and, in addition, the
visibility is equal to unity. In this case the Poissonian
likelihood function (7) depends only on the value of the
phase shift θ̄ . Now the single-parameter ML estimation
of the phase shift θ̄ consists of maximizing the likelihood
function L(θ̄ , V = 1) with respect to the single parameter
θ̄ . This procedure is just what we have done in the case of
the many-parameter ML estimation equations (8) and (9),
when the experimental sample yielded an unphysical value
of visibility V > 1. The only difference is that in the
case of the single-parameter ML estimation we maximize the
likelihood function on the boundary for any detected sample
{n3, n4, n5, n6}. We may ask whether the single-parameter
phase estimator achieves the best phase resolution σ 2

CRLB =
1/2N . An explicit calculation (for details see appendix B)
shows this is really the case. Although it may seem that the
single-parameter ML estimation thus gives best results, some
caution is necessary when visibility (or another parameter) is
not known precisely or fluctuates. For example, estimation
on the boundary V = 1 leads to a strongly biased phase
prediction provided the actual visibility differs from unity, as
is demonstrated in figure 5. In this particular case, the bias
caused by dismissing the possibility V < 1 is independent of
the input light intensity N . For larger intensities it dominates
the uncertainty of estimated phase and the single-parameter
ML estimation may be outperformed by the Gaussian (NFM)
one. Therefore, one should always estimate all parameters,
which are not under the researcher’s control together with
the parameter of interest regardless of smaller theoretical
effectiveness of such a complex estimation procedure.

Now let us return to the many-parameter constrained ML
estimation. In this case a particular detection {n3, n4, n5,
n6} is processed either by equation (8) (when applied to all
samples, σ 2 is given by equation (14)) or via maximization of
likelihood function (7) on the boundary (when applied to all
samples, σ 2 = 1/2N ). Although we do not switch between
these methods at random, because the choice depends on
the particular sample, the mean of both dispersions gives
us a rough estimate of the performance of the constrained
ML phase prediction. A more precise value can always
be obtained with the help of computer simulation. The
performances of various phase estimators are summarized
in table 1 for a perfect experimental set-up V = 1.

241
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θ

Figure 5. Bias of the single-parameter phase estimator for
expected visibility V = 1 as a function of the true phase shift θ̄ .
Actual visibility of interference fringes varies from V = 1
(straight line) to V = 0.1 (most curved line) in steps �V = 0.1.

Table 1. Asymptotic dispersion and overall quadratic cost of
various phase estimators. For comparison, CRLB is shown. Note
that phase prediction of the ML estimation with physical
constraint on the inferred value of visibility is superior to the
prediction without the constraint.

Estimator σ 2 C̄ ≡ ∫
σ 2 dθ̄

NFM 1/N 2π/N

Unconstrained ML (1 + cos2 2θ̄ )/2N 3
2 π/N

Constrained ML ≈(1 + 0.5 cos2 2θ̄ )/2N ≈ 5
4 π/N

CRLB 1/2N π/N

An experimental comparison of the three phase
estimations in the asymptotic regime is shown in figure 6.
For comparison, the theoretical values of dispersions given by
equations (13) and (14) are also shown. The dispersions were
determined using 10 000 measured samples with N = 160
for each value of the true phase shift θ̄ = kπ/16 rad,
k = 0, 1, . . . , 8. More than 109 weak laser pulses were
sent through the interferometer to obtain the figure. Several
important conclusions can be drawn from figure 6.

(1) We can see that the uncertainty of the constrained
ML estimation is definitely below the uncertainty of
the unconstrained estimation in agreement with our
arguments presented in this section. It means that
insisting on the physical constraints† of allowed results
of estimation or reconstruction procedure is important
not only for interpretation reasons, but it also makes the
estimation more efficient.

(2) The observed values of dispersion exhibit a systematic
error. The additional noise above the theoretical
uncertainty is caused by inherent phase fluctuations
in the experimental set-up, originating in phase drift
and the inaccuracy of adjusting the phase difference,
and their magnitude can be estimated from figure 6 as
0.020±0.003 rad‡. This value is in excellent agreement
with the value 0.019 rad obtained by an independent

† Here non-negative definiteness of the intensity.
‡ Most of this value originates in the inaccuracy of phase difference
adjustment. The phase drift between two successive calibrations of the
interferometer was negligible.

σ

Figure 6. Asymptotic dispersion of the NFM estimator; theory
(solid line) and experimentally obtained values (squares).
Asymptotic dispersion of the unconstrained ML estimator; theory
(dashed curve) and experimentally obtained values (triangles).
Experimentally obtained dispersion of the constrained ML
estimation (circles). The corresponding input mean number of
photons and the estimated visibility are N = 160 and V = 99.2%,
respectively.

method§. Hence, our statistically motivated evaluation
of experimental data can be used for inferring the amount
of fluctuations, and therefore it provides an independent
and nontrivial way for calibrating an interferometer.
Moreover, a slightly different sensitivity of different
phase estimators to various parameters of the set-up
makes it possible, at least in principle, to distinguish
between different sources of noise. This is another
interesting feature of the method we propose.

(3) In section 4 we could see that the most distinct
difference between semiclassical and fully quantum
phase concepts occurs in the regime, where the intrinsic
phase uncertainty of light is much larger than phase
fluctuations caused by any reasonable imperfections
of the experimental set-up. Therefore, though clearly
visible in figure 6, the ‘external’ phase fluctuations
may be completely neglected in figure 2. However,
with increasing intensity the (unavoidable) fluctuations
become comparable with the intrinsic phase uncertainty,
and for even larger N the accuracy of any phase
measurement is governed by the external influences
rather than by the theoretical limit of the corresponding
phase estimation. The statistics of light are then no
longer reflected in its phase properties, and different
quantum phase concepts become indistinguishable. Not
only does this provide another evidence for the fact
that the NFM phase concept differs from its ML
counterpart only for a narrow range of intensities, as
we already stated in section 4, but it also shows how
the operationally defined quantum phase approaches its
classical limit.

§ In between two successive calibrations of the interferometer, the phase
difference was repeatedly measured with intense light, then the value of
the true phase was subtracted, and the standard deviation of the resulting
ensemble was calculated.
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6. Conclusion

Theoretical and experimental justifications of operational
quantum phase concepts have been addressed in this paper.
Statistically motivated evaluation of the interferometric set-
up has been presented. The choice of the optimum phase
estimator strongly depends on the researcher’s knowledge
of the interferometric set-up and on the nature of the
signal being detected. Two important cases—the NFM and
ML estimators, resulting from the classical and quantum
descriptions of the experiment, respectively, have been
compared. Differences between both treatments have been
measured experimentally and have shown to be statistically
significant in the limited range of input intensities. In
particular, no difference between the NFM and ML phase
predictions have been observed in the regime of a very
small number of particles, which is usually considered as
the domain of quantum physics. This detailed analysis
allows us to quantify the amount of the noise associated
with the phase. The lack of knowledge of the parameters
of the interferometric set-up has also been considered. In
the asymptotic limit of large input intensity, the intrinsically
biased ML estimation procedures yield sensible results only
provided that all the uncertain parameters of the set-up are
estimated together with the unknown phase shift. This can
be interpreted in the framework of more complex estimation
procedures—the so-called quantum state reconstructions.
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Appendix A. Asymptotic dispersion of the
Gaussian (NFM) estimator

To calculate the dispersion of the phase estimator, we need
to evaluate the expectation of the sine and cosine functions
of the inferred phase, e.g.

〈cos θ〉 =
∑

n3,...,n6

cos[θ(n3, n4, n5, n6)]
6∏

i=3

P(ni). (A1)

Here, the inferred phase shift θ conditioned by the detection
{n3, n4, n5, n6} is given by equations (5) and (8) for the
NFM and ML estimations, respectively. Now, suppose the
interferometer is fed by a strong pulse with N � 1. Provided
the true phase shift θ̄ �= kπ/4, k ∈ N , we also have
n̄i � 1, i = 3, 4, 5, 6, and the Poissonian photocount
distribution P(ni) can be approximated by Gaussian with
the same variance, near its peak:

P(ni) = n̄
ni

i

ni!
e−n̄i ≈ e−(ni−n̄i )

2/2n̄i

√
2πn̄i

, (A2)

n̄i � 1, ni − n̄i � n̄i . (A3)

Note that although the distribution now becomes symmetric
(i.e., the estimation is unbiased for large N ), the noise remains
phase sensitive even for high input intensity in contrast with
the assumption hidden in the NFM theory (2). Using the
Gaussian phase formula (3) in (A1), we obtain the expectation
value of the cosine phase function in the following form:

〈cos θ〉 =
∫

n34√
n2

34 + n2
56

P(n34)P (n56) dn34 dn56, (A4)

where n34 = n3 − n4, n56 = n5 − n6 and we have used
the fact that the numbers of counted photons appear in the
Gaussian exponential phase estimate (3) only in terms of their
differences. The probability distribution of the differences
can be calculated from the photocount distributions following
the simple rule

P(nij ) =
∫ ∫

P(ni)P (nj )δ(ni − nj − nij ) dni dnj , (A5)

where ij = 34, 56. For Gaussian probability distributions
we have

P(n34) = 1√
2π(n̄3 + n̄4)

e− (n34−n̄34)2

2(n̄3+n̄4) , (A6)

for example. Since the signal to noise ratio is large in the limit
of high intensity, it is legitimate to split the counted numbers
of photons (or their differences) into their mean values and
small fluctuating parts

ni = n̄i + �i, i = 34, 56. (A7)

Now we expand the estimated sine and cosine phase
functions keeping only the fluctuation-independent term and
the second-order terms in the fluctuations. For cos θ we get

n34√
n2

34 + n2
56

≈ n̄34√
n̄2

34 + n̄2
56

− 3

2

n̄34n̄
2
56

(n̄2
34 + n̄2

56)
5/2

�2
34

+
1

2

n̄34(2n̄2
56 − n̄2

34)
2

(n̄2
34 + n̄2

56)
5/2

�2
56. (A8)

The expansion of sin θ is obtained exchanging 34 ↔ 56.
Substituting equations (A6) and (A8) into equation (A4) and
using the following relations:

〈�2
34〉 = n̄3 + n̄4, 〈�2

56〉 = n̄5 + n̄6, (A9)

n̄2
34 + n̄2

56 = N2V 2, n3 + n4 = n5 + n6 = N, (A10)

the first set being implied by equation (A6), we arrive at
an approximate mean value of the cosine function of the
estimated phase

〈cos θ〉 ≈ cos θ̄ − 1

2NV 2
(cos3 θ̄ + cos θ̄ sin2 θ̄ ). (A11)

An analogous expression for sin θ is obtained exchang-
ing cos θ̄↔ sin θ̄ in equation (A11). Finally, using equa-
tion (A11) and a similar expression for sin θ in the dispersion
formula (10) and neglecting terms of the order 1/N2, we ar-
rive at the asymptotic dispersion of the Gaussian estimating
procedure (13). Since a finite change in the effectiveness of
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the estimation caused by an infinitely small change of the es-
timated parameter is unphysical, the derived expression for
the asymptotic dispersion also holds for the isolated values
of the true phase for which our procedure fails.

In the case of ML estimation we can proceed in a
completely analogous way. Starting from the expansion
of the Poissonian phase estimator (8) in fluctuations of the
number of counted photons, we obtain, by a straightforward
but a rather lengthy calculation, desired expectation values
of the cosine and sine phase functions

〈cos θ〉 ≈ cos θ̄ +
6∑

i=3

Ci(θ̄ , V , N)n̄i, (A12)

〈sin θ〉 ≈ sin θ̄ +
6∑

i=3

Si(θ̄ , V , N)n̄i . (A13)

Here Ci and Si are the coefficients of the terms of the Taylor
series, quadratic in corresponding fluctuations �i . When an
explicit form of the coefficients is substituted into (A12), it
is then easy to obtain the asymptotic dispersion (14) of the
unconstrained Poissonian ML estimator (8).

Appendix B. Asymptotic dispersion of the
single-parameter Poissonian estimator

As above, we will suppose that detected numbers of photons
can be decomposed into their mean values and fluctuating
parts, small with respect to the means, as follows; ni =
n̄i +�ni . Inspection of the Poissonian likelihood function (7)
shows that the point θ is a local maximum of L if and only if
the condition

d

dθ̄
ln[L(θ)] = 0 (B1)

holds. Assuming a perfect experimental set-up, V = 1, the
derivative of the log-likelihood function becomes

L′
log(θ̄) = −n3

sin θ̄

1 + cos θ̄
+ n4

sin θ̄

1 − cos θ̄
+ n5

cos θ̄

1 + sin θ̄

−n6
cos θ̄

1 − sin θ̄
, (B2)

where L′
log ≡ d ln(L)/dθ̄ . Now we make use of the fact that

the result of unconstrained ML estimation (8) is not so bad
and in particular it lies close to the true global maximum of the
likelihood function (7). The purpose is two-fold. First, the
estimated phase (8) is a good starting point for finding a root
of the expression (B2) with the help of some approximation
method; second, it automatically selects the global maximum
of L among all possible roots of equation (B1).

In order to improve our initial guess θ0:

θ0 ≡ arg{eiθ }, (B3)

where exp(iθ) is given by equation (8), we use the Newton
method. Since the second derivation of log-likelihood always
differs from zero, the algorithm converges quickly and one

step of the method is usually enough to find the global
maximum with sufficient accuracy. The improved value of
the estimated phase shift thus reads

θ = θ0 − L′(θ0)

L′′(θ0)
. (B4)

Now we expand the sine and cosine phase functions around
θ0 keeping terms up to the second order in the correction.
The expectation values of the two functions become

E

{
cos θ

sin θ

}
= E

{
cos θ0

sin θ0

}
± 1

2
E

{
sin θ0

cos θ0

L′(θ0)

L′′(θ0)

}

−1

6
E

{
cos θ0

sin θ0

[ L′(θ0)

L′′(θ0)

]2
}

. (B5)

Finally, using equations (8), (9), (B2) and (B3) in (B5),
expanding the result to the second order in fluctuations �i ,
replacing Poissonian photocount distributions by Gaussian
with the same variance, carrying out the average, substituting
the resulting expectation values of the sine and cosine phase
functions into equation (10), expanding the dispersion in
1/N and keeping terms at most linear in 1/N , we arrive
at the asymptotic dispersion of the one-parameter ML phase
estimation in the form

σ 2 = 1

2N
+ O

(
1

N2

)
. (B6)

The enormous amount of calculation work necessary to
obtain this result was carried out with the help of the Maple
V symbolic mathematical language.
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