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1 Department of Optics, Palacký University, 17 listopadu 50, 772 00 Olomouc,
Czech Republic
2 Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 842 28 Bratislava,
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Abstract
The possibility of producing entangled superpositions of strong coherent
states is discussed. A recent proposal by Howell and Yeazell (2000 Phys.
Rev. A 62 012102) of a device that entangles two strong coherent states is
modified. It is shown that the modified scheme can generate non-classical
states that violate Bell inequality. Moreover, a detailed analysis of the effect
of losses and decoherence on the degree of entanglement is accomplished. It
reveals the high sensitivity of the device to any disturbances and the fragility
of generated states.
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1. QND entangling device

Recently, an interesting idea has been proposed [1] on how
to entangle two strong coherent fields with a single photon
(that can appear in one of two different paths) and generate
a six-mode Schrödinger cat-like state utilizing non-linear
Kerr interaction. The idea was inspired by recent work
on a similar subject [2]. The original scheme [1] for
entangling ‘macroscopic’ fields is outlined in figure 1 without
a beamsplitter (BS) and detectors D1 and D2. The idea is as
follows: first, a non-separable single-photon state

(|1〉12|0〉13 + i|0〉12|1〉13)/
√

2 (1)

is produced using the single-photon source (SPS) and a 50:50
beamsplitter. Second, an attempt is made to transfer the which-
path uncertainty of the photon into the entanglement of strong
coherent fields generated by the coherent sources (CS) by
means of quantum non-demolition measurement (QND) of
the number of photons in modes 12 and 13. QND measuring
devices operate by the cross-Kerr interaction described by the
Hamiltonian

HQND = h̄π(n̂12n̂23 + n̂13n̂33), (2)

where n̂ are photon-number operators of the corresponding
modes. The strengths of the interactions (2) are carefully
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chosen to yield the accumulated phase shift of π in modes
23 or 33 provided a single photon is present in modes 12 or 13,
respectively. This means that the presence of a single photon,
for instance, in mode 12 will cause the outputs of modes 24
and 25 to be switched completely. Working in the Schrödinger
picture, the output six-mode state can be straightforwardly
calculated as follows

|
〉 = 1√
2
(|φ1〉|0〉12|1〉13 + |φ2〉|1〉12|0〉13) , (3)

where

|φ1〉 = |α2〉24|0〉25|0〉34|α3〉35

|φ2〉 = |0〉24|α2〉25|α3〉34|0〉35. (4)

Here α2 �= 0 and α3 �= 0 are complex amplitudes proportional
to the amplitudes of the coherent fields fed into the inputs 21
and 31.

However, if we are interested only in the modes 34, 35
and 24, 25, we cannot see any entanglement among them.
It is the photon leaving the apparatus in modes 12 and
13 and carrying which-way information which destroys the
entanglement among the remaining four modes. This is the
weak point of the original scheme. To erase the which-way
information that resides in the 12 and 13 two-mode field, we
propose to superimpose these modes at a 50:50 beamsplitter as
shown in figure 1. Two single photon detectors D1 and D2 are
attached to the outputs of the beamsplitter. After mixing the
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Figure 1. Entangling apparatus. QND=quantum non-demolition
measuring devices; CS=coherent state sources; SPS=single-photon
source; BS=beamsplitter; D1, D2=single-photon detectors.

12 and 13 beams at the beamsplitter the state of the six-mode
field reads

|
〉 = 1

2
[−(|φ1〉 − |φ2〉)|0〉14|1〉15

+ i (|φ1〉 + |φ2〉)|1〉14|0〉15] . (5)

Now, depending on the result of the single-photon detection,
the four-mode state of interest becomes

|
1〉 = N+(|φ1〉 + |φ2〉), (6)

if the D1 detector fires, or

|
2〉 = N−(|φ1〉 − |φ2〉), (7)

if D2 does. N+ and N− are normalization factors 3. We recall
that for |α2|, |α3| � 1 the four-mode states |φ1〉 and |φ2〉 are
well separated ‘macroscopic’ states. In such a way, a perfect
source of the ‘macroscopic’ entangled field can be realized
using a gate triggered by the D1 and D2 detectors so that only
one of the states (6) and (7) is allowed to go through.

Ignoring the result of the single-photon detection one gets
a mixture of states |
1〉 and |
2〉. The idea used in this report
to modify the original scheme is in fact an implementation of
the well known and much discussed quantum eraser [3].

Actually, the amended set-up (figure 1) is unnecessarily
too complicated; it contains redundant parts. One can
easily do with just one QND device. Let us remove the
rightmost Mach-Zehnder (MZ) interferometer and its QND
device from the set-up. The output state will change (up
to the normalization) into the superposition (|0〉34|α3〉35 +
|α3〉34|0〉35), supposing that a click at detector D1 has been
registered. After using two additional beamsplitters in 34 and
35 paths and re-labelling the output modes, the four-mode
entangled state equivalent to (6) (or (7)) is obtained again.
Moreover, on the same basis even multipartite GHZ states of
coherent fields can be produced by simple beamsplitting.

2. Entanglement and nonlocality

Before discussing decoherence, which could be a serious
obstacle in realizing the ‘macroscopic’ entangler in the

3 N± = [2 ± 2 exp(−2|α|2](−1/2).

laboratory, let us briefly discuss some interesting properties
of the ‘cat’ state (7). First of all one may ask to which extent
the state (7) is entangled. We will adopt mutual information
as a convenient measure of entanglement [4]. It is defined by
the difference between the sum of von Neumann entropies S1

and S2 of subsystems 1 and 2 and the von Neumann entropy
of the composite system S:

I = S1 + S2 − S. (8)

Here subsystem 1 consists of modes 24 and 25; subsystem 2
consists of modes 34 and 35. Mutual information (8) is zero
if the subsystems 1 and 2 are uncorrelated (ρ = ρ1 ⊗ ρ2). Its
maximum value still explainable by classical correlations is
I = S 4.

We will consider symmetric inputs α2 = α3 = α �= 0.
Notice that defining new orthogonal vectors

| ↓〉i = 1

2

[(
1

M+
+

1

M−

)
|0α〉i +

(
1

M+
− 1

M−

)
|α0〉i

]
,

| ↑〉i = 1

2

[(
1

M+
− 1

M−

)
|0α〉i +

(
1

M+
+

1

M−

)
|α0〉i

]
,

where i = 1, 2 andM± are normalization factors 5, the state (7)
can be rewritten to the form resembling the spin 1/2 singlet
state:

|
2〉 = 1√
2
(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2). (9)

For this reason, state (7) shows properties completely
analogous to the properties of the spin 1/2 singlet state for
any value of α �= 0. Namely, the mutual information between
the systems 1 and 2 is maximal,

I = 2 ln 2 (10)

and independent of α. This maximally violates the 2 × 2 Bell
inequalities [6] and can be simply proven in the following way:
noting that the two-dimensional subspace spanned by vectors
| ↑〉, | ↓〉, living in the Hilbert space of the first system, is
isomorphic to a spin-half particle space, one can define unitary
operations

| ↑〉i → 1√
2
(cos θi | ↑〉i + sin θi | ↓〉i )

| ↓〉i → 1√
2
(− sin θi | ↑〉i + cos θi | ↓〉i ) (11)

which are in a sense analogous to spin rotations. The Bell-
type experiment then consists of two ‘rotations’ according to
the recipe (11) performed by two possibly space-like separated
observers, followed by realistic yes–no detection performed on
each spin-like system. Let us assign them values zi = −1, 1
if the states | ↓〉 or | ↑〉 are detected. Each detection has
only two possible outcomes. The results X and Y of the local
measurements (including ‘rotations’) performed by the first
and second observer, respectively, can be expressed as

X(θ) = z1(θ), Y (θ) = z2(θ). (12)

4 The diagonal representation of the density matrix of two correlated
subsystems displaying maximum classically allowed correlations is of the
form ρ̂ = ∑

i p(ai , bi )|ai〉1|bi〉2〈bi |2〈ai |1. Then one gets S = S1 = S2.
5 M± = [1 ± exp(−|α|2)]1/2.
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After the experiment is repeated many times and the two
observers compare their notes, the following quantity can be
estimated

B = |C(θ1, θ2) + C(θ1, θ
′
2) + C(θ ′

1, θ2) − C(θ ′
1, θ

′
2)|, (13)

where the correlation function

C(θ1, θ2) ≡
∑
j,k

XjYk p(Xj , Yk|θ1, θ2).

As with the two spin-half particles the use of (7) and (11) in (13)
gives Bmax = 2

√
2, for an optimum set of angles. This result is

independent of amplitude α, similar to the mutual information.
This exceeds the local realistic limit Bcl

max = 2 [7]. Thus, from
the point of view of entanglement and local realism the four-
mode state (7) is equivalent to the maximally-entangled state of
two spin-half particles. This is, of course, a consequence of the
fact that the ‘cat’ state (7) is nothing else but a representation
of the maximally-entangled spin state in a larger space—in the
space of four harmonic oscillators.

3. Decoherence

So far we have assumed that the entangling device was
ideal. This seems natural if fundamental aspects of thought
device are discussed. However, if one seriously thought
of experimental implementation of the entangling device in
figure 1, such an assumption would clearly be non-realistic,
and various imperfections and unavoidable losses would have
to be considered.

The entangling device can be divided into two
parts, the one-photon MZ interferometer and coherent-state
MZ interferometers, with grossly different sensitivity to
imperfections and losses. This can be illustrated in the
simple case of losses modelled e.g. by the presence of an
auxiliary beamsplitter in the paths of modes 23, 33, and 12.
In the latter case one can always balance the one-photon
interferometer by introducing the same amount of losses in
mode 13, recovering the ideal output state (7) at the expense
of a decreasing generation rate [8]. In such a case, if the
photon is detected behind the interferometer, no information
on its path is available and entanglement in the whole state
is kept (if the losses were not balanced, one path would
be more probable). In contrast, a similar compensation of
losses in the coherent-state interferometers cannot help to
save the entanglement. It is not difficult to see why. The
fractions of the strong coherent beams reflected out of the
coherent-state interferometer always carry a good deal of
which-way information about the photon in the one-photon
MZ interferometer, that can be extracted, e.g. by means of the
phase measurement performed on them. Needless to say, in the
limit of large α, when the phase of the reflected beam becomes
sharply defined, the reflected beams carry perfect which-way
information about the photon propagating through the one-
photon interferometer; this degrades the output state (7) to the
mixed state.

Another likely cause of the loss of entanglement of the
output state are decoherence effects due to the entanglement
of the quantum system with environment. First, let us discuss
decoherence in the one-photon Mach-Zehnder interferometer

consisting of modes 12 and 13. We will assume the following
simple (but rather general) model of decoherence,

|0〉12|g〉env → |0〉12|e1〉env,

|1〉12|g〉env → |1〉12|e2〉env, (14)

where |g〉env, |e1〉env and |e2〉env are three possibly non-
orthogonal states of environment. Although explicit
calculation of mutual information and Bell inequality violation
is tedious, it is not difficult to obtain the results for large
amplitude α � 1. Denoting a the overlap a = |〈e1|e2〉|,
the mutual information of the output state for large |α| reads

I ≈ 2 ln 2 +
1 + a

2
ln

(
1 + a

2

)
+

1 − a

2
ln

(
1 − a

2

)
,

|α| � 1. (15)

Similarly, the maximum of the Bell correlation function is
reduced to

Bmax ≈ 2
√

1 + a2, |α| � 1. (16)

Note thata2 equals the Ivanovics–Dieks–Peres lower bound [9]
on the probability of the occurrence of an inconclusive result
for error-free discrimination between the two non-orthogonal
states of environment and, therefore, also between the states
|0〉12 and |1〉12. Hence, one can say that as the amount
of principally accessible which-way information about the
photon in the one-photon MZ interferometer increases, the
entanglement and non-classical character of the output state
of the entangling machine become gradually destroyed.

Equations (15) and (16) should be compared with
the corresponding formulas for an entangling machine
with (balanced) losses present in the coherent state MZ
interferometers. We will model the losses by placing four
auxiliary beamsplitters with the same reflectivity R into 22,
23, 32 and 33 paths. The resulting asymptotic entanglement is

I ≈ 2 ln 2 +
1 + e−2R|α|2

2
ln

[
1 + exp(−2R|α|2)

2

]

+
1 − e−2R|α|2

2
ln

[
1 − exp(−2R|α|2)

2

]
,

|α| � 1, R → 0 (17)

and corresponding asymptotic maximum of the Bell
correlation function is given

Bmax ≈ 2
√

1 + e−4R|α|2 , |α| � 1, R → 0. (18)

Notice that equations (17) and (18) can be obtained from
equations (15) and (16) simply by substitution

a2 → e−4R|α|2 . (19)

Again, this can be interpreted in terms of available which-
way information. Now, the which-way information is gained
by discriminating between (non-orthogonal) states |α√

R/2〉
and | − α

√
R/2〉 of the beams reflected out of paths 23 and

33. The optimum error-free discrimination is done by mixing
the beams with the reference coherent beams |iα√

R/2〉 at two
mixing beamsplitters [10]. The probability of the inconclusive
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Figure 2. (a) Mutual information I and (b) the maximum value of the Bell correlation function Bmax are shown for different input mean
numbers of photons |α|2 and reflectivities R of the beamsplitter’s simulating losses.

result: no photons detected after the mixing at both outputs,
is Pinconcl. = exp(−2R|α|2) in either case. The path of the
photon is revealed by getting at least one conclusive result
out of the two ideal error-free measurements in the right
and left part of the entangling apparatus. The probability
of the unfortunate event of getting two inconclusive results
is P total

inconcl. = P 2
inconcl. = exp(−4R|α|2), which is just the

right-hand side of equation (19). This suggests that the
loss of entanglement and non-locality caused by both effects,
the decoherence in the one-photon interferometer and losses
or decoherence in the coherent-state interferometers, have
common information-theoretical origin.

Although equations (17)–(18) and (15)–(16) have the
same functional dependence on the amount of available which-
way information, their implications for the feasibility of the
generation of the ‘macroscopic-cat’ state (7) dramatically
differ. The decoherence in the one-photon MZ interferometer
is not a key limiting factor for engineering such superpositions
for equations (15) and (16) does not depend on the intensity
of the input coherent state |α|2. In contrast to this, the relative
amount of losses in the coherent-state interferometers which
can be tolerated exponentially decreases with increasing input
intensity, see equations (17) and (18). This precludes the
entangling of arbitrarily separated coherent states.

Forgetting about macroscopical separability, the presented
device can still be a useful tool for generating interesting non-
classical states. This is illustrated in figure 2. The degree
of entanglement I in the presence of small losses is shown
in figure 2(a). Notice that for large |α| the entanglement
of the output state is extremely sensitive to the presence of
losses. With an increasing amount of losses the output state
becomes a mixed state and the correlations between output
modes become explainable classically. However, it can be
seen that the generation of output states having non-classical
correlations is possible for small input intensities. A similar
discussion also holds for the maximum attainable value of the
Bell correlation function Bmax, see figure 2(b). Here part of the
figure significantly exceeding the local-realistic limit B = 2
in a small area adjacent to plane R = 0 indicates the range

of parameters for which the generation and detection of non-
classical states is possible.

It follows that the experimental generation of non-classical
states using the proposed device is possible for small intensities
|α|2. Such states are interesting from the point of view of
possible experiments on quantum nonlocality, or experiments
utilizing quantum entanglement, but they are far from being
entangled ‘macroscopic’ states.

4. Conclusion

We have shown that the ‘entangling’ apparatus proposed
in [1] can be modified to produce entangled pairs of coherent
states, which can be used to test nonlocality. Our device
also uses a Kerr nonlinear medium which helps to extend
the one-photon non-separable superposition to the four-mode
entangled superposition of strong coherent fields. The new
important point is a post-selection based on interferometric
measurement on the one-photon subsystem. This erases
which-way information that has prevented the creation of
the desired entangled state. We have proved that the states
prepared by our prescription can violate Bell-like inequalities.
We have also studied to what extent losses and decoherence
can degrade the produced state. This is important with
respect to potential experimental realization. Unfortunately,
the preparation procedure is very sensitive to decoherence
and especially to losses in the strong-field interferometers.
However, a set of realistic values in parameter space still exists
for which entropy of states exceeds the classical level and even
Bell inequality can be violated.
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