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Abstract
Two new protocols for secret-information splitting among many participants
are proposed. One of them uses only bipartite entangled states (Bell states)
and the other one multi-partite entangled states. We prove their security
against the family of rather general intercept–resend attacks and discuss the
possibility of an experimental realization.
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1. Introduction

In their concurrent 1979 papers [1, 2] Blakely and Shamir
presented a method for splitting secret information called
secret sharing. They showed how to divide a sequence of
bits into n pieces reconstructible from any k � n pieces.
The keystone of secret sharing is the impossibility of the
reconstruction of the sequence from any k − 1 pieces. Such a
scheme was called the (k, n) threshold scheme.

Later, a generalization of secret sharing on the area of
quantum information was also considered. On the one hand,
a quantum state serves as an intermediary for distribution of
classical information. The Hillery et al paper [3] devoted to
this topic first deeply studied the possibility of using GHZ
states for classical information splitting. Security aspects were
analysed at length and the study showed that an eavesdropper’s
actions would lead to his or her disclosure. A link between
eavesdropping in this scheme and the violation of one type
of Bell inequality was revealed in [4]. The authors of [5]
dealt with the possibility of using pseudo-GHZ states for secret
sharing. On the other hand, the secret alone can be in the form
of an unknown quantum state. Progress in this direction was
made in [6] where the authors gave a construction of a quantum
threshold scheme and discussed the role of the no-cloning
theorem. Close connection between quantum secret sharing
and error-correcting codes was discussed in [7]. The way to
share a secret in the form of a continuous-variable quantum
state was investigated in [8].

All quantum cryptographic protocols derived from the
original BB84 protocol [9] are essentially indeterministic. This
means that not every photon is a carrier of a key bit. There

also exist several proposals of deterministic (direct) protocols.
A pioneering contribution on this topic was first proposed
in [10, 11]. These protocols do not need to establish a secret
key. The principle can be explained in the following way:
first, the cipher is sent through a quantum channel and later, if
no eavesdropper is detected, the key is transmitted classically.
Recently, another scheme for direct communication has been
devised [12]. The principle is similar but this protocol employs
four different entangled states (Bell states). One of two
entangled particles always goes from the sender (Alice) to the
recipient (Bob) and back again. To be more specific, Alice
generates one of four Bell states and sends one ‘travel qubit’
(TB) from every pair to Bob. This enables her to encode two
bits of the message. Bob chooses at random one of four
Pauli operations (including identity) and applies it on TB.
Then he sends TB back to Alice. Bob’s operation changes the
original Bell state to some another Bell state (the set of four
Bell states is closed with respect to the Pauli transformations).
Then, Alice performs measurement in the Bell basis on both
particles. If she is assured that no eavesdropper (Eve) was
present she announces the results of her measurement publicly
(it is supposed that Eve cannot manipulate the public channel).
In such a case, Bob is the only person who knows the operations
performed on the TBs and thus he is the only one who is able
to determine the original Bell states prepared by Alice. Eve
can apply the following attack: she cuts the quantum channel,
stores Alice’s TB and sends TB from her own Bell state
towards Bob. When she gets this TB back she deduces Bob’s
operation and performs the same operation on the stored TB.
Then she sends it back to Alice. She would stay undisclosed.
Therefore, beside the above-described procedure, Alice and
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Bob must switch to a ‘correlation’ (test) measurement (CM)
from time to time in order to reveal such intrusions. At
random instants Bobs decides to hold TB. Then Alice and Bob
make measurements on their qubits in one of two conjugated
bases. Bob announces his result and Alice verifies the expected
correlation.

It is worth mentioning that the random selection of one
of two conjugated bases is not necessary. There is no
difference whether Eve knows the basis or not. The continuous
eavesdropping causes 50% error rate on average (which is
better than the 25% stated in [12]). The reason is that the man-
in-the-middle attack erases any correlation between Alice’s
and Bob’s results.

In the present paper we propose two distinct protocols
for the direct quantum distribution of a message among N
parties. Direct quantum distribution means that no key is
established. We show the way for deterministic secret-message
sharing. The only way to uncover the message sent by Alice
is cooperation of recipients. Our schemes are based on the
Boström protocol transferred into the secret-sharing context.
Further, we discuss a general family of intercept–resend attacks
(IR attacks) on the proposed schemes and bring in security
analysis. Another possible attack on legal participants’ Pauli
operations is also considered.

The paper is organized as follows. In section 2 we
introduce two proposed schemes (‘ring’ and ‘star’) explained
on the simplest nontrivial case of three participants. Both
arrangements are followed by the detailed security analysis.
We classify two basic ways of eavesdropping: internal
(someone from the legitimate participants cheats) and external
(Eve). Then, in section 3 we generalize the secret-sharing
protocols for N participants and M < N cheaters. We
conclude with the discussion on the feasibility of an
experimental realization in section 4. The reader can find some
detailed calculations in the appendix.

The following terminology is used: an n-dimensional
standard basis is the set of 2n different states obtained by the
sequence of Pauli transformations σX from the state |0〉⊗n .
Similarly, if we denote the state 1/

√
2(|0〉⊗n + |1〉⊗n) as the

nGHZ (generalized GHZ) state, then the nGHZ basis is the
set of 2n different maximally entangled states created with the
help of Pauli operations from the nGHZ state. Solely in the
next section, by GHZ states are meant 3GHZ states.

2. Secret sharing for tripartite system

2.1. Ring arrangement

The first way to distribute information between two recipients
is the following: Alice, Bob, and Charlie constitute a ring or
loop (see figure 1(a)). Alice has four Bell states at her disposal:

|�±〉 = 1√
2
(|0〉A |1〉BC ± |1〉A |0〉BC),

|�±〉 = 1√
2
(|0〉A |0〉BC ± |1〉A |1〉BC).

(1)

She chooses one of them and sends a qubit to Bob at first.
Bob applies at random one of four Pauli transformations,
{1I, σX , σY , σZ }, and sends the particle towards Charlie.

Figure 1. Ring and star arrangement for a direct tripartite secret
sharing with an external attack. Eve is also listening to traffic on a
public channel.

Analogously, Charlie applies a random Pauli transformation.
When it is completed he sends the qubit back to Alice.
The qubit makes a sight-seeing tour along the route
A → B → C → A. Then Alice performs measurement in
Bell basis (1) on both particles and proceeds in the same way
as in the above-recapitulated two-party protocol. Also, in this
tripartite protocol the participants must realize CM from time to
time. This is the way to detect Eve’s activities. Let us describe
it in short. When a qubit arrives at Bob’s side Bob does not
apply a Pauli operation but he performs a measurement on the
qubit in a standard basis {|0〉, |1〉}. He announces the result
on the public channel. Alice then measures her qubit in the
same basis and compares the results. The second alternative
is that CM is performed by Charlie (i.e., Charlie decides to
stop the qubit and makes the measurement). Charlie’s result
is also published. But in this case, Alice needs to know Bob’s
operation, too. When Bob reveals it she is able to test the
correctness of measured correlations (she knows the original
Bell state).

How is this protocol immune against an external attack?
To be able to uncover the information sent by Alice, Eve needs
to determine the total transformation resulting from Bob’s and
Charlie’s operations. Therefore she intercepts the qubit on
the edge A–B and substitutes it by a qubit from her own Bell
state. On the edge C–A she catches the transformed qubit and
makes a Bell measurement on ‘her’ pair of particles. Then
she knows the overall transformation performed by Bob and
Charlie. She applies this transformation to the original qubit
and sends the qubit back to Alice. However, Eve’s intervention
causes discrepancies in the results of CMs. The error rate is the
same no matter whether CM is performed by Charlie or Bob
and it is equal to 1/2 because Alice’s and Bob’s (Charlie’s)
results are completely uncorrelated after the intervention. The
probability that Bob (Charlie) gets the ‘wrong’ result with
respect to Alice’s is 1/2.

The case with a spy inside is more interesting. It is not
difficult to realize that CM performed by a cheater (and Alice)
cannot expose him because in such a case the situation is
under his control. So, let us analyse the case when CM is
performed by a honest party. First suppose that Charlie cheats.
He ‘bypasses’ Bob and instead of the original qubit he sends
him a faked qubit (a part of Charlie’s own Bell state) in order
to read out Bob’s operation. Then he applies any operation
on the original qubit and returns it to Alice. If Bob and Alice
perform CM they notice 50% error rate on average. This is
the consequence of Charlie’s intervention, that causes Alice’s
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and Bob’s results to be uncorrelated. If the average numbers of
CMs realized by Bob and by Charlie are the same then the total
error rate is 1/4 (on average). The situation when Bob cheats
leads to the same result. Bob substitutes Charlie’s qubit with a
‘Bell fake’. After Alice and Charlie have performed CM, Alice
waits for the declaration of Bob’s fictitious transformation, in
this case. But there is no way for Bob to change (ex post)
the reality that the results of CM are uncorrelated. Again, the
overall error rate is equal to 1/4. We can see that if the rate
of CMs is the same for both Bob and Charlie the error rate is
independent of the position of a cheater. Of course all the three
parties must agree in advance that from N sent qubits some N1

have to be used for CMs.

2.2. Star arrangement

The second way of the distribution of secret information is
based on multi-partite entanglement. Alice uses one of eight
three-particle maximally entangled states (GHZ states) of the
form

|�〉klm = 1√
2
(|0, l, m〉 + (−1)k |1, l ⊕ 1, m ⊕ 1〉), (2)

where the convention is used that | j, l, m〉 = | j 〉A |l〉B |m〉C;
k, l, m ∈ {0, 1}; x ⊕ y = (x + y) mod 2. She
sends corresponding qubits towards Bob and Charlie (see
figure 1(b)). They perform Pauli transformations randomly
and independently and return the qubits to Alice. When
the qubits are back Alice makes a measurement in the GHZ
basis (2)—she reads out the transformed GHZ state. Finally,
Alice announces the resulting state. To decode Alice’s message
(i.e., the GHZ states chosen by Alice) Bob and Charlie have
to come together and share the knowledge on their single
qubit operations. To avoid IR attacks Bob and Charlie have
to perform CMs. This means that either of them may order
stopping qubits and making one-particle measurements in the
standard basis. The results are announced on the public
channel for Alice’s security analysis. The instants of CMs
must be random and the probability of performing CM must
be the same both for Bob and Charlie.

Let us focus on several features of the states of the form (2)
before we come to the security analysis. First, it is known that
TrAB |�〉〈�| = TrAC |�〉〈�| ∝ 1I for all states (2). The unit
trace over Alice and Bob or Charlie assures that neither Charlie
nor Bob is able to extract the information (Alice’s state) alone.

Second, we see that TrA |�〉〈�| 	∝ 1I for any state (2).
What is really important is the fact that the trace over Alice
leads to two different results for two different sets of GHZ
states. A direct measurement on the density matrix coming
from Alice enables Eve to distinguish two groups (let us call
them ‘families’) of four GHZ states (that with l = m and
l 	= m)—see the appendix. This implies that Eve could obtain
some information about Alice’s message. Hence Alice may not
use all the states (2) for encoding the message. She is forced
to encode information within only one family (even publicly
known). Thus, she can send only two bits of information in
one run. The restriction to one fixed family must be part of the
protocol.

A final note is devoted to the algebra used. Bob and
Charlie can assemble 16 operators of the type �BC

rs = σB
r ⊗σC

s

where r, s ∈ {0, 1, 2, 3} which are mapped onto {I, X, Y, Z}.
However, because

σB
r ⊗ σC

s |�〉klm = eiφσB
3−r ⊗ σC

3−s |�〉klm , (3)

where φ is an unimportant global phase factor, there are only
eight different transformations of Alice’s states. The set of
GHZ states is closed with respect to these operations.

Now, let us analyse the security of the protocol against
existent intrusions. As in the case of the ring arrangement
we consider two types of attack. First, we will study an
external attack (Eve is an intruder and Bob and Charlie are
honest). Eve’s strategy for an IR eavesdropping is apparent.
She just stores the qubits from Alice in a quantum memory
and resends her own GHZ state. Eve cannot manipulate qubits
more sophistically (POVM etc) because the states from the
particular family have the same partial trace.

After storing the qubits, Eve sends qubits from her own
GHZ state towards Bob and Charlie. They perform random
Pauli operations and send the qubits back. Applying their
local operations they transform Eve’s original state into another
GHZ state. So, if Eve makes a measurement in the GHZ
basis (2) she can learn the joint transformation of Bob and
Charlie. Then she just properly transforms Alice’s state. The
way to detect this attack is to perform CMs as described
next. To illustrate an eavesdropping let us consider that
Alice prepares the state |�〉 = 1√

2
(|000〉 + |111〉). In the

case of CM she awaits result |000〉 or |111〉, both with the
probability one-half. After Eve’s attack Alice’s particle is
no longer entangled either with Bob’s or Charlie’s photon.
Results of their measurements are uncorrelated. In order to
stay henceforth undisclosed Eve would have to assure the
right correlations at CM. But she does not know the state
generated by Alice. This means that she sends a state of the
form |�〉fake = 1√

2
(|x00〉 ± |x̄11〉). The probability that Alice

measures |0〉 and Bob and Charlie measure |00〉 is 1/4. The
same holds for |1〉 and |11〉 respectively. The error rate in this
case is equal to 1/2 and has the same value for all combinations
of GHZ states sent by Alice and Eve3.

What about the enemy within? Suppose, e.g., that Charlie
is a cheater. He has access to all quantum channels as Eve has
and he wants to acquire all information without cooperation
with Bob. An attack consists in substitution of a qubit from
an original GHZ state prepared by Alice that aims to Bob by
a qubit from Charlie’s own Bell state. This enables Charlie to
find out Bob’s operation. Both recipients (Bob and Charlie)
decide equiprobably to perform CM. Of course, if Charlie is
a cheater then once he decides to execute CM he will not
substitute Bob’s qubit. Simply, Charlie does not disclose
himself. His attack affects just CMs ordered by Bob. The
error rate is thus equal to 1/4 only (in about a half of Bob’s
CMs Charlie hits the correct result). The error rate is less than
in the case of an external eavesdropper. To avoid this ‘security
attenuation’ the following modification of the protocol is
required: Alice prepares her GHZ state as before. But, when
Bob and Charlie receive the qubits they must ask Alice what

3 Eve could moreover rotate particular qubits in every GHZ state but it can
be shown that she cannot decrease the overall error rate in this way. Next,
even a simplified version of this attack is known. Eve can separately deceive
Bob and Charlie. Instead of a faked GHZ state Eve can send two (generally
different) Bell states to Bob and Charlie.
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Figure 2. Schematic depiction of ring (a) and star (b) arrangement
for direct N-partite secret sharing. There are M = 3 spies inside
(shaded).

to do with them. This communication proceeds on the public
channel. Alice either orders execution of Pauli transformations
or execution of CM. Now, the enemy inside cannot use the
advantage of the choice of CM. He does not know when Alice
will order CM. Therefore, for this modified protocol the error
rate is equal to 1/2 even for the eavesdropping by a dishonest
recipient.

3. Secret sharing for N -partite system

3.1. Generalized ring arrangement

Now we generalize the previous arrangements for N partners
(see figure 2). Let us have N − 1 participants on a chain plus
Alice (see figure 2(a)) and start with the external type of attack.
Eve stops and stores a qubit coming from Alice and sends a
faked qubit from her own Bell state. Behind the last participant
Eve picks the qubit up. Then she measures in the Bell basis and
reveals the overall transformation. Finally, Eve executes such
a transformation on Alice’s qubit and sends it back to Alice.
Again, the only way of detection of such an attack is CM. This
means that one of the participants decides to stop the qubit
and performs measurement in the standard basis. The result is
announced on the public channel and Alice performs the same
measurement. If the participant who orders CM is not in the
first position on the chain Alice needs the Pauli operations of
all previous participants. Then, the measurement results are
compared and the correctness is verified. Eve’s probability of
success is equal to 1/2. This implies an error rate of 1/2. This
value is independent either of the number of participants or of
the position of the chosen participant in the chain.

At first sight the situation is a little bit more complicated in
the case of generalized internal attack. M cheaters from N −1
participants can be deployed in many ways. Fortunately, it
makes no difference which position is occupied by honest and
dishonest participants. Bad boys ‘overbridge’ every legal user
and tap their Pauli operations. Now, we are able to derive the
formula for the error rate when M spies are present among
N − 1 participants

ε = N − 1 − M

2(N − 1)
. (4)

This stems from the fact that if CM is ordered by a honest
party the probability of disclosing bad boys is equal to 1/2.

Table 1. Dependence of the number of states (5) and operations (6)
on the number of partners.

Partners States Operations

2 4 4
3 8 16
..
.

..

.
..
.

N 2N 4(N−1)

The probability of ordering CM by a honest party is N−1−M
(N−1)

.
For N = 3, M = 1 we get an error rate of 25% as should be.

3.2. Generalized star arrangement

Alice uses maximally entangled states of the form

|�(k1, . . . , kN )〉 = 1√
2

[
|0〉1

N⊗
i=2

|0 ⊕ ki〉i

+ eiπk1 |1〉1

N⊗
i=2

|1 ⊕ ki〉i

]
. (5)

The protocol alone is the same as in the tripartite version. The
only difference now is that Alice sends N − 1 qubits (instead
of two qubits) from the state (5) towards N − 1 participants
(see figure 2(b)). Operations applied by recipients,

�N−1 = σ 1 ⊗ · · · ⊗ σ N−1, (6)

transform any state from this set to some other one. However,
independently of the rapidly growing number of operators (6)
with increasing N (see table 1), many of them have the same
effect (up to a global phase factor) on states (5). To be specific,
we observe that the number of different transformations is
always equal to the number of states, i.e. 2N .

Again, irrespective of the number of participants Alice
can safely send only two bits of information at once. This is
due to another feature of the states (5). If we trace over one
qubit (e.g. Alice’s one) in all 2N states we obtain 2N /4 different
density matrices (i.e., 2N /4 different families of states). This
means that four different states have the same reduced density
matrix. To avoid the leakage of information Alice may encode
only ‘four digits’ from an arbitrary family, i.e. two bits of
information. The arrangement is the same as in the three-
participant case: the family of chosen states in our protocol is
fixed and publicly known. One can see that Eve is certainly
able to make up a unitary gate which discriminates families
of an arbitrary nGHZ state (generalized version of the family
discriminator presented in the appendix).

External IR attack. For successful eavesdropping Eve should
tap the wires going to all (N − 1) receivers (they are
considered to be honest). She retains qubits sent by Alice and
substitutes these original qubits with faked qubits stemming
either from own generalized nGHZ state of the form (5) or
from N − 1 generally different Bell states (technologically
simpler solution for her). Recipients perform Pauli operations
and send the qubits back. All qubits are caught by Eve
who makes a measurement in the nGHZ basis and compares
sent and received states. This way she deduces the overall
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transformation. Finally, she applies the same transformation
on original Alice’s qubits and sends them to Alice.

CMs are executed in the same way as in the three-party
protocol. If any of the partners decides to perform CM
(measurement on an ‘own’ qubit in the standard basis) other
participants do the same as well. Under the above described
circumstances the resulting error rate ε = 1/2 for arbitrary N .
The growing number of partners leaves the error rate constant.

Internal IR attack. The strategy of cheaters in the case of an
internal IR attack is the following. Suppose that M of N − 1
receivers can cheat. These criminals survey the other quantum
channels and they are able to fob off their own qubits in suitable
states. They store qubits coming from Alice and send qubits
from their own nGHZ (now N − M-partite) state to N −1− M
remaining recipients. The next scenario is the same as before:
all (honest) parties carry out Pauli transformations. Spies find
out the collective transformation made by the honest users (by
measurement in the corresponding nGHZ basis) and apply the
same transformation on original Alice’s qubits.

As in the three-participant illustration, it is necessary to
distinguish situations when CM is ordered by Alice and when
it is ordered by some of the recipients. In the first case the
error rate is 1/2 because the cheaters do not know when CM
is ordered.

If CM is not ordered by Alice but by recipients the
situation is different. CM is ordered equiprobably by honest
and dishonest users and the overall error rate is equal to

ε = 1 −
[

M

N − 1
1 +

N − 1 − M

N − 1

1

2

]
= N − 1 − M

2(N − 1)
. (7)

This expression is quite accidentally the same as in
equation (4). But now the situation is entirely dissimilar. In
contrast to the ring arrangement now every user owns one qubit
from the generalized nGHZ state and thus every one can order
CM. We suppose that M cheaters cooperate together (they act
like ‘one man’). When they decide to order CM they do not
substitute Alice’s qubits by qubits from a faked nGHZ state.
This means that they are overall successful with probability
equal to M

N−1 . Even if CM is ordered by some of the honest
recipients at the same time as the intruders they cannot be
detected. In the opposite case when CM is ordered by some of
the N−1−M well-mannered users but not by any intruder then
the probability of the cheaters’ success is equal to N−1−M

N−1
1
2 .4

Other than IR attack. We claimed that Eve’s best strategy is
IR attack and that any other information within a fixed family
is inaccessible to her. In this context we should prove that any
measurement by Eve on the qubits returning from recipients
(after their operations have been applied) cannot give her any
useful information (if she does not affect qubits on their route
to recipients). Applying the family discrimination (described
in the appendix) Eve could measure the family of the state
modified by recipients without disturbing the state (this family
is different, in general, from the original one). By comparing
her measurement result with the known family of Alice’s
original state she could therefore get certain information on

4 Note that in the case of the ring arrangement it does not matter whether CM
is ordered by Alice or by recipients.

the Pauli operations used by recipients. But this information
is not complete. It just enables Eve to discriminate a few
classes of operations but it gives her no chance to deduce the
state sent by Alice from Alice’s announced final-measurement
result. The key point is that this information does not contain
the knowledge on the changes of mutual phases in the total
state as well as the exact knowledge which particular qubits
were flipped.

4. Experimental realization

We have proposed two arrangements that differ in several
respects. One aspect is the feasibility of experimental
realization. In recent years, great progress in the generation of
multi-partite entangled states was made [13–18]. But it is still
impossible to compare the experimental feasibility of these
techniques with Bell state generation and detection. Therefore
in the following we will only focus on the ring arrangement
where the Bell states are used.

If we are interested only in the linear optical
implementation it is known that it is possible deterministically
to detect only two of four Bell states [19, 20]. This represents
an important practical obstacle. Allowing auxiliary photons,
the discrimination of all Bell states with the probability
arbitrarily close to one is possible by means of linear optics [21]
but the scheme is still unfeasible for experimental realization
with contemporary technology.

In the sections above we have described the quantum-
cryptographic protocols under perfect (i.e., unrealistic)
conditions. We did not take into account errors in the
transmission or detector inefficiencies. The lost particles
do not represent a problem: Alice simply repeats the last
transmission step. No information can leak. More difficulties
stem from errors caused by decoherence, misalignment, etc.
It was said that at the end of the transmission Alice decides
whether to publicly announce measured states or not. Her
decision acts up to the measured error rate. However, Alice
cannot distinguish the technological error rate and errors
caused by Eve’s activities. Here one may ask: if Alice
measures error rate ε′ how much information was a contingent
attacker able to gain?5 Let N be the overall number of sent
bits, N1 � N the number of CMs and K � N the number of
Eve’s IR attacks. Then, K1 = K N1

N is the number of attacks
detectable with the help of CM and the measured error rate has
the form ε′ = K1

N1
ε where ε is the error rate for the continuous

eavesdropping calculated above. If we put these two fractions
together we find that

K = ε′

ε
N, (8)

where ε′ is the measured error rate. So, if there was an
eavesdropper Alice would be able to calculate how much
information has leaked.

5. Conclusion

We have described two distinct schemes (the ‘ring’ and the
‘star’) for N -partite secret sharing in the spirit of direct

5 Of course, Alice can always decide not to announce the measured states.
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Figure 3. Eavesdropping gives rise to a detectable error rate. In the
case of the star arrangement the error rate is different if the CM is
ordered by a sender (Alice) or by the recipients. E/I means
external/internal type of attack.

message transmission. The security of these two sharing
schemes against the family of intercept–resend attacks has
been analysed. The summary of our results is given in
two tables in figure 3. We have assumed two models of
attack: first, the external type of attack, and second, the
internal one with M treacherous recipients who want to
reconstruct the message without cooperation with the honest
ones. The two proposed topological arrangements for the
secret-sharing procedure differ in one important aspect. From
the viewpoint of technological requirements and a possible
practical realization the ring arrangement is more feasible even
for sharing among many partners. The fact that using multi-
partite entanglement in the case of the star arrangements does
not bring better values of error rates is slightly startling.
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Appendix

We argued that Eve would be able to distinguish
deterministically the family of the 3GHZ states generated by
Alice without affecting them. Here is the recipe to ‘separate’
two families of eight 3GHZ states of the form (2). Let us define
a specific unitary operation acting on states from both families.
For the first family we have

(1IA ⊗ UBCE)

(
1√
2
(|x00〉ABC ± |x̄11〉ABC) ⊗ |0〉E

)

= 1√
2
(|x00〉ABC ± |x̄11〉ABC) ⊗ |1〉E (9)

and for the second family the action is

(1IA ⊗ UBCE)

(
1√
2
(|x01〉ABC ± |x̄10〉ABC) ⊗ |0〉E

)

= 1√
2
(|x01〉ABC ± |x̄10〉ABC) ⊗ |0〉E . (10)

The operator UBCE has the form

Figure A.1. The circuit corresponding to unitary operation (11).

UBCE =




0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




(11)

and is acting on both Bob’s and Charlie’s qubits and Eve’s
ancilla in the state |0〉E. The gate UBCE can be realized by two
Toffoli gates as depicted in figure A.1. Clearly, Alice’s qubit
stays untouchable. If Eve projectively measures on her ancilla
she is able to distinguish the two families. The gate serves as
a ‘family discriminator’. It is possible to enhance such a type
of measurement to higher dimension for nGHZ states of the
form (5).
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