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Programmable quantum multimeters are devices that can realize any generalized
quantum measurement from a chosen set (either exactly or approximately). Their
main feature is that the desired positive operator valued measure (POVM) is se-
lected by the quantum state of a program register. In particular, programmable
quantum devices that can accomplish any projective measurement on a single
qubit are described. There are two limit cases: Deterministic devices giving an
erroneous result from time to time and probabilistic devices that operate error-
free but sometimes lead to an inconclusive result. The intermediate cases are also
discussed as well as the optimality of such multimeters. Another example of a
quantum multimeter is a programmable device for unambiguous discrimination of
pairs of non-orthogonal states. Simple optical implementations of some of these
devices are proposed and experimental results are presented.

1 Introduction

By quantum multimeters we mean programmable quantum measurement de-
vices that can accomplish any desired POVM from a chosen set. Particular
POVM on the “data register” is selected by the quantum state of a “program
register”.1 Even non-orthogonal states of the program register can correspond
to different POVM’s. The multimeter itself is represented by a fixed joint
POVM on the data and program systems together. Each outcome is asso-
ciated with the corresponding outcome of the “programmed” POVM on the
data alone. From the mathematical point of view the realization of a particu-
lar quantum multimeter is equivalent to finding POVM for the discrimination
of certain mixed states.

In this contribution we will deal with several examples of quantum mul-
timeters including two experimental implementations. First, we will focus on
the projective measurements on a qubit. I.e., programmable quantum multi-
meters that can accomplish any von Neumann measurement on a single qubit
will be considered. Because it is impossible to encode an arbitrary projective
measurement on a qubit into a finite-dimensional program state exactly they
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can do it only approximately.1,2 However, there are still two different ways
how to “approximate” such measurements. The first one can be called “de-
terministic”. Such multimeters always give a result but errors may appear.
The second way is “probabilistic”. These multimeters fail from time to time
(i.e., give an inconclusive result with a certain probability) but in the case of
successful operation they never make an error. Second, we will discuss an ad-

justable discrimination of two non-orthogonal states. Programmable quantum
device for error-free discrimination of various pairs of non-orthogonal states
of a qubit will be briefly described. The selection of the pair of states to be
discriminated unambiguously depends on the state of a program register.

2 Projective measurements on a qubit

Let us suppose we would like to measure a qubit in the basis represented
by two orthogonal vectors |ψ〉 and |ψ⊥〉. We want this measurement basis
be controlled by the quantum state of a program register, |φp(ψ)〉. An ideal

multimeter should give two results, 0 and 1, according to

|ψ〉 ⊗ |φp(ψ)〉 → 0, |ψ⊥〉 ⊗ |φp(ψ)〉 → 1.

Such an ideal measurement cannot be implemented exactly for all ψ’s. So,
our task is to find such a POVM (on the data qubit and the program register)
that represents the closest approximation to this demand.

2.1 Deterministic multimeters

In this case we always obtain one of the two results 0 or 1, but errors may
appear.3 We need two-component POVM, A0, A1, acting on data and program
(A0, A1 ≥ 0, A0 + A1 = 1I). Optimal multimeter must maximize the mean
fidelity (i.e., minimize the error rate) whereas the mean fidelity is defined as
follows:

F =

∫

ψ

dψ
1

2
Tr

[

|Ψ〉〈Ψ|A0 + |Ψ⊥〉〈Ψ⊥|A1

]

= Tr [R0A0 +R1A1] , (1)

where the two relevant input states of the multimeter are

|Ψ〉 = |ψ〉 ⊗ |φp(ψ)〉, |Ψ⊥〉 = |ψ⊥〉 ⊗ |φp(ψ)〉,
with |ψ〉 and |ψ⊥〉 being the basis vectors corresponding to program |φp(ψ)〉,
and

R0 =
1

2

∫

ψ

dψ |Ψ〉〈Ψ|, R1 =
1

2

∫

ψ

dψ |Ψ⊥〉〈Ψ⊥|. (2)

Integration goes over all orthonormal bases of a qubit.
The optimal POVM that maximizes the mean fidelity must fulfill the

following extremal equations:

(λ−R0)A0 = 0, λ−R0 ≥ 0, (λ−R1)A1 = 0, λ−R1 ≥ 0, (3)
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where λ is a Lagrange multiplier.
This problem is formally equivalent to the determination of the optimal

POVM for deterministic (but erroneous) discrimination of two mixed states
R0 and R1.
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2.2 Deterministic multimeter with program |ψ〉⊗N

Now let us assume the situation when the program register consists of N
copies of the state |ψ〉. I.e., the program state is |φp(ψ)〉 = |ψ〉⊗N . In this
particular situation the optimal POVM has the following form:3

A0 = Π
(N+1)
+ , A1 = 1I − Π

(N+1)
+ , (4)

where Π
(N+1)
+ is the projector onto the symmetric subspace of the Hilbert

space of N + 1 qubits. Notice that this is a projective measurement. This
POVM leads to maximal mean fidelity

F =
2N + 1

2N + 2
. (5)

In the limit of an infinitely large program register (N → ∞), the ideal pro-
jective measurement on the data qubit would be approached (F → 1).

2.3 Optical implementation – an experiment

In this paragraph we will show that the simplest deterministic multimeter
with only one program qubit (i.e., |φp(ψ)〉 = |ψ〉) can easily be implemented
on the ground of experimental quantum optics.5

The corresponding POVM on the data and program reads

A0 = 1I −A1, A1 = |Ψ−〉〈Ψ−|, (6)

where

|Ψ−〉 =
1√
2
(|0〉d|1〉p − |1〉d|0〉p).

Here the subscripts d and p label the states of data and program qubits,
respectively. So, one have to discriminate the singlet from the triplet Bell
states. The theoretical value of the mean fidelity is 3/4.

The qubit states |0〉 and |1〉 can be encoded into vertical and horizontal
polarizations of photons. One photon represents the data and the other one
the program. It is an easy exercise to show that in the setup displayed in
Fig. 1 only the input state |Ψ−〉 leads to a coincident detection.

Here are the experimental results for three different program states of the
form cos θ |V 〉 + sin θ |H〉:

θ 0◦ 45◦ 90◦

F 0.749 0.694 0.747
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Figure 1. Experimental setup. Notation: NLX – nonlinear crystal, HWP – half-wave plates,
F – long-wave pass filters (cut-off at 670nm), L – lenses, PoC – polarization controller,
C – fiber coupler, D – detectors.

The deviation from the theoretical value 3/4 is mainly due to a non-unit
visibility.

2.4 Deterministic multimeter with the program |ψ〉|ψ⊥〉
Here we will focus on a slightly different program state consisting of two
orthogonal states that define the required measurement basis: |φp(ψ)〉 =
|ψ〉|ψ⊥〉. Now the optimal POVM on data and program reads3

A0 =
1

2
Π

(3)
+ + |φ1〉〈φ1| + |φ2〉〈φ2|, A1 = 1I −A0, (7)

where

|φ1〉 =
1

2
√

3
[(
√

3 + 1)|0〉d|01〉p − (
√

3 − 1)|0〉d|10〉p − 2 |1〉d|00〉p],

|φ2〉 =
1

2
√

3
[(
√

3 + 1)|1〉d|10〉p − (
√

3 − 1)|1〉d|01〉p − 2 |0〉d|11〉p].

The mean fidelity is

F ′ =
1

2

(

1 +
1√
3

)

(8)

It equals the optimal fidelity of the estimation of |ψ〉 from a single copy of
|ψ〉|ψ⊥〉. So, the best strategy is to estimate state |ψ〉 first and then measure
the signal qubit in the corresponding basis.

It was shown6 that the state of two orthogonal qubits |ψ〉|ψ⊥〉 encodes
the information on the state |ψ〉 better than the state of two identical qubits
|ψ〉|ψ〉. One would thus expect that the state |ψ〉|ψ⊥〉 should also give an
advantage when used as a program for the multimeter. Surprisingly, this is
not the case and we see that it is better to use two identical qubits |ψ〉|ψ〉.
With such a program we can achieve fidelity F = 5/6 ≈ 0.833 that is greater
than F ′ = (1 + 1/

√
3)/2 ≈ 0.789.
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Figure 2. Dependence of the mean fidelity of conclusive results on the probability of incon-
clusive result.

2.5 Error-free probabilistic multimeters

Now we will turn our attention to the devices that probabilistically realize
exact projective measurement on the data qubit. I.e., they never make an
error but from time to time they can give an inconclusive result. We will
analyze this case only for program state |φp(ψ)〉 = |ψ〉|ψ⊥〉. It can be shown7

that the optimal three-component POVM on data and program reads

A0 =
2

3
[|φ1〉〈φ1| + |φ2〉〈φ2|] , A1 =

2

3
[|ψ1〉〈ψ1| + |ψ2〉〈ψ2|] , A? = 1I−A0−A1,

(9)
where

|φ1〉 =
1√
2
(|0〉d|01〉p − |1〉d|00〉p), |φ1〉 =

1√
2
(|0〉d|11〉p − |1〉d|10〉p),

|ψ1〉 =
1√
2
(|0〉d|10〉p − |1〉d|00〉p), |ψ1〉 =

1√
2
(|0〉d|11〉p − |1〉d|01〉p).

The probability of the inconclusive result is 2/3.

2.6 Multimeters with fixed fraction of inconclusive results

The deterministic multimeters and the error-free probabilistic multimeters
can be considered as special limiting cases of a more general class of optimal
multimeters that yield inconclusive results but, simultaneously, the fidelity of
conclusive results may be lower then one. The optimization task is: For given
probability of inconclusive result maximize the mean fidelity.

If program state |φp(ψ)〉 = |ψ〉|ψ⊥〉 is assumed then the optimal mean
fidelity of conclusive results depends on the probability of inconclusive result
in the way depicted in the graph in Fig. 2.7
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3 Universal discriminator

Let us suppose that we want to discriminate unambiguously between two
known non-orthogonal states of a qubit. However, we would like to have a
possibility to “switch” (to program) the apparatus in order to be able to work
with several different pairs of states. As a program register we will use another
qubit.1 The two input states of the data qubit that are in correspondence with
the program setting may never be wrongly identified (but from time to time
we can get an inconclusive result). Let us stress the quantum nature of the
“programming”: The states of the program register that represent different
programs can be non-orthogonal.

To characterize the pair of states classically one needs an infinite number
of bits of classical information. Our procedure requires only a single qubit for
the same job.

3.1 Universal discriminator – an experiment

Let us consider two input states of a qubit, that should be discriminated, in
the following form:

|φ±d 〉 = α |Vd〉 ± β |Hd〉. (10)

The state of a program qubit for the unambiguous discrimination of states
(10) is chosen to coincide with |φ+

d 〉:

|ψp〉 = α |Vp〉 + β |Hp〉. (11)

Here |V 〉 and |H〉 denotes two orthogonal polarization states of photons. So,
the total state of the data and program

|φ±d 〉 ⊗ |ψp〉 =
√

2

[

α2 ± β2

2
|Φ+〉 +

α2 ∓ β2

2
|Φ−〉 + αβ |Ψ±〉

]

, (12)

where the Bell states are used:

|Ψ±〉 =
1√
2

(|Vd〉|Hp〉 ± |Hd〉|Vp〉) , |Φ±〉 =
1√
2

(|Vd〉|Vp〉 ± |Hd〉|Hp〉) .

Clearly, if we were able to detect Bell states |Ψ+〉 and |Ψ−〉 we could unam-
biguously discriminate states |φ+

d 〉 and |φ−d 〉. However, we can identify these
two Bell states by means of coincidence detection – see Fig. 3. If detectors
D1 and D4 or D2 and D3 click together state |Ψ−〉 was present in the in-
put (this corresponds to the recognition of state |φ−

d 〉). If detectors D1 and
D2 or D3 and D4 click in coincidence the state |Ψ+〉 was present in the in-
put (so, |φ+

d 〉 is detected). If both photons enter the same detector either
|Φ+〉 or |Φ−〉 was present in the input (this represents the inconclusive re-
sult of the discrimination). The probability of successful discrimination is
p = 2|αβ|2 = 2(|α|2 − |α|4).
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Figure 3. Universal discriminator. Notation: BS – beam splitter, PBS – polarization beam
splitter, HWP – half-wave plate, QWP – quatre-wave plate (they serve for polarization
setting), M – mirror, D – detector.
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