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Abstract

As it is very difficult to prepare a good approximation of one-photon states, practical quantum cryptography uses highly
attenuated laser pulses which can well be represented by coherent states with average photon number below one photon. In
such a case more than one photon may appear in some pulses. Thus an eavesdropper has a chance to split the signal and gain
some information on the key without disturbing the transmission in a substantial way. In this paper we derive the number of
bits an eavesdropper can gain by this sort of attack and the question of limits on the average number of photons in a pulse is
discussed. It is assumed an eavesdropper may have detectors with 100% efficiency, she can store the ‘extracted’ qubits, she
can non-destructively measure the number of photons, and also she is able to perform ‘cascade’ beam splitting resulting in
extraction of just one photon. Besides, it is assumed that she can replace a lossy communication line by a lossless one.
q 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

In principle, quantum cryptography offers uncon-
ditional security. Therefore its potential practical ap-
plications are taken very seriously today and many
groups work on its technical realization. However,
reality is harder than the Platonic world. There are
several problems in practice. First, each real appara-
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tus and transmission line exhibit losses, imperfec-
tions, and misalignments. This results in non-zero
error rates during transmissions even in the absence
of an eavesdropper. The unconditional security is
imperilled. Fortunately, it seems that if the techno-
logical error rate is low enough, quantum key distri-

Ž .bution QKD could still be unconditionally secure
w x1–7 . The principle of security of quantum cryptog-
raphy lies in the overlap of the signal states used. A
proof of security will not need to make any reference
on the physical implementation of these states as
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long as they have the correct overlap probabilities
and if the recipient is able to detect exactly the same
set of states as are sent. But the latter condition
represents a serious difficulty in practice, because
real detectors are usually not able to distinguish the
number of impinging particles. This fact may jeopar-
dize the security even if information is encoded into

Žother degrees of freedom e.g., polarization of light
.or phase differences in an interferometer . Clearly,

an eavesdropper can split the signal without the
Žrecipient detecting it he is not able to distinguish,

< : < :e.g., the states m and n for m/n and m,n)0;
losses and a non-unity detection efficiency make the

.situation even more complicated . A way out from
this impasse is to use for each bit exactly one

Ž .particle e.g., a photon as an individual particle
cannot be split.

The most suitable carrier of information seems to
be light, however, the detectors of light suffer with
the above-mentioned disability and, besides, it is not
easy at all to prepare anything close to a single
photon. Instead of one-photon states of light, highly
attenuated laser pulses are usually used. If the spec-
tral width of the pulse is much lower than its mean
frequency, a real weak laser pulse may well be
described by a monochromatic coherent state. In
practice, the mean photon number is usually set to
0.1 . In such a case there are, on the average, 90.5%
of laser pulses containing ‘no photon’, 9% with ‘one
photon’, and 0.5% with ‘more than one photon’. The
ratio of ‘one-photon pulses’ to ‘multi-photon ones’
increases with decreasing the mean photon number
per pulse. However, herewith the transmission rate
decreases rapidly. Still, there are some pulses re-
maining that contain more than one photon. The
eavesdropper can try to split them in order to learn
partial information without being disclosed.

A simple beam-splitting attack was first analyzed
w xin Ref. 8 . Generalized versions of attacks of this

w xkind were presented in Refs. 9,10 . These works
deal with attacks involving beam splitting and quan-
tum non-demolition measurement, and discuss the
advantages of the use of quantum bits produced via
parametric down conversion.

In the present paper we discuss a generalized
beam-splitting attack including a full discussion of
the statistics involved. The legitimate communicating
parties are, by tradition, named Alice and Bob, and

an eavesdropper is called Eve. We assume the BB84
w xtransmission protocol 11 : Alice sends random bits

encoded into two orthogonal states in one of two
conjugated bases, which are also randomly chosen.
Bob randomly and independently of Alice changes
the same two bases in which he detects quantum
states of the photons conveying qubits.

It is shown that beam splitting represents a rather
effective attack. A necessary condition for security
is derived, i.e., the limits to the values of mean
photon numbers and losses are set. The discussed
attack is related to specific technical conditions,
particularly Alice transmits coherent states, whereas
Bob’s detectors distinguish just the presence or ab-
sence of the field.

In the Sections below we employ the following
notations:
m – the mean photon number in a laser pulse at the

output of Alice’s part of the apparatus;
h – intensity transmittance of the transmission line;L

h – intensity ‘transmittance’ of Bob’s part of theB
Ž .apparatus including detection efficiency ;

N – the total number of laser pulses sent.

2. The number of key bits Eve can obtain by
‘beam-splitting’

Clearly, the average number of bits an eavesdrop-
per can gain in this way is equal to at most one half
of the number of all pulses ‘containing’ more than

Ž .one photon i.e., two or more photons . The reason
for the one half is that Alice and Bob coincide just

Žin one half of bases, on the average. Thus when
.Alice sends coherent states

N
Žmax . ymN s 1ye 1qm . 1Ž . Ž .E 2

Even for such a rough estimation there is, in princi-
ple, a set of mean photon numbers m and losses
characterized by transmittances h and h , for whichL B

secure communication is possible. However, a realis-
tic consideration of Eve’s abilities enables us to
make a more precise estimation.

Owing to the losses of the transmission line and
of Bob’s terminal, not all N Žmax . bits become part ofE
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the key. Since Eve is capable of learning determinis-
tic information about these bits, an optimum strategy
for her is to maximize Bob’s chances of detecting
these bits. Within the framework of the beam-split-
ting attack, she achieves this goal by splitting off as
little as possible, i.e., just one photon.

Let us assume the following attack when Eve
replaces the current lossy transmission line by a

Ž .lossless one and then measures non-destructively
numbers of photons in laser pulses during quantum
key distribution. We will not be concerned with
cases when she finds 0 or 1 photon, as in these cases
she can gain no information through the discussed

Ž .attack of course, she can then apply other strategies .
If she detects the number of photons nG2, she will
‘repeatedly split’ the beam and measure photon
numbers in order to finally separate exactly one
photon for her own purposes and to sent the rest of

Žny1 photons to Bob the higher the number of
resent photons, the higher the probability of Bob’s

. 1detection . In practice, the portion of photons trans-
ferred to Bob will perhaps be smaller, nevertheless
the described case can be regarded as a possible limit
and the ‘worst’ value 2. Eve keeps the earmarked
photons and after the public comparison of Alice’s
and Bob’s bases she makes measurements on them.
Knowing bases used for transmission, Eve can then
obtain deterministic information on all bits of the
key originating from ‘multi-photon’ pulses, i.e., she
can get all the bits when Bob has detected a split
‘multi-photon’ pulse and when he agreed with Alice
in the basis.

< :Let us now assume that states n arrive at Bob’s
Ž .part of the apparatus each with probability p n .

1 As a ‘practical’ approximation of this process Eve can, e.g.,
diverge a small fraction of the beam and measure the photon
number. If she finds zero, she repeats the procedure with the ‘rest’
of the beam. After some time she gets, with a high probability,
just one photon.

2 Detector efficiencies and losses of Bob’s terminal are as-
sumed out of Eve’s control. However, as detection efficiency
depends on the wavelength, Eve could try to shift the wavelength
of the resent signal in order to increase the number of Bob’s
detections. Even if Alice and Bob do not operate at the ‘most
effective’ wavelength, this intervention can be countered by insert-
ing narrow-band filters in front of Bob’s detectors.

Then photocount statistics at the outputs are de-
scribed by the Bernoulli distribution:

`
nymn mp m s h 1yh p n . 2Ž . Ž . Ž . Ž .Ý B Bž /m

nsm

If Bob’s detectors are only able to distinguish the
presence or absence of the field, the detection proba-
bility is given by the sum

`

Ps p m . 3Ž . Ž .Ý
ms1

Since we are only interested in pulses with origi-
nal number of photons llG2 and since in such cases

< :Eve always sends to Bob states lly1 , the particu-
Ž .lar form of p n defined above is

0 for ns0,1,
nq 1mŽ .p n s 4Ž .ymŽ .p nq1 s e for nG2,½ Poisson Ž .nq1 !

where the fact that coherent states exhibit a Poisso-
nian photon-number distribution was used.

Finally we obtain the following formula for the
detection probability at Bob’s detectors

` `

nym mP h ,m se hŽ . Ý ÝB Bž /m
nsmms1

=
mnq1

nym
1yhŽ .B nq1 !Ž .

` nq1 nm nymse Ý Ý ž /mnq1 !Ž .ns1 ms1

=
nymmh 1yhŽ .B B

eyh B m 1
yms1y ye 1y ,ž /1yh 1yhB B

5Ž .
where simple reordering of summations is applied
and the following expressions are employed:

n
nymn mh 1yhŽ .Ý B Bž /m

ms1
n

nym nn ms h 1yh y 1yhŽ . Ž .Ý B B Bž /m
ms0

n
s1y 1yh , 6Ž . Ž .B

` nq1 ` kx x
xs y1yxse y1yx .Ý Ý

nq1 ! k !Ž . Ž .ns1 ks0

7Ž .
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Thus the average number of key bits Eve can
obtain, by the attack discussed, is

yh mBN N e 1
ymN s Ps 1y ye 1y .E ž /2 2 1yh 1yhB B

8Ž .
ŽFor small m we obtain expansion to the second

N 2.order : N f m h .E B4

3. Excluding ‘one-photon’ pulses by Eve

Eve can perpetrate the iniquity that she stops all
pulses in which she has found only one photon. If
she also replaces the lossy line by a lossless one,
Bob need not ever notice a decrease of data rate.
Since actual numbers of detected qubits fluctuate, a
slight decrease of data rate is hardly detectable. If
losses on the line exceed a certain limit, Bob could
even receive more qubits than expected.

In other words, communication can be secure
only if the number of key bits Bob has received is
greater than the number of key bits Eve could over-
hear. Otherwise Eve can know all bits of the key and
neither Alice nor Bob can detect it.

For given losses and a given mean photon num-
Ž .ber, Bob expects if no Eve is present about

N
N s 1yexp yh h m 9Ž . Ž .B L B2

Ž .bits of sifted key after comparing bases . This esti-
mation holds for the situation when Alice sends
coherent states and Bob can detect and distinguish
only two cases: no photon and one or more photons
Ž .he cannot measure the number of photons . So,
from the inequality N )N it follows thatB E

1 1yhB
1Gh ) ln .L

h m exp yh m yh exp ymŽ . Ž .B B B

10Ž .
ŽWith increasing h decreasing losses in Bob’s ter-B

.minal , the lower bound of h decreases, but cannotL
Ž .fall below the limit value 1y ln 1qm rm. For too

low transmittances of the line, QKD is totally inse-
cure. However, the limitation may not be fatal. There
is still some room for certain practical applications,
e.g., ‘local’ cryptosystems within buildings or cities.

w xA system built in our laboratory 14,15 with a line
0.5 km long has h s0.63 and h s0.19. ThusL B

Ž Ž .. Žinequality Eq. 10 is fulfilled for all m-2.68 of
course, the actual value of m must be considerably

.lower – see next Section .

4. Optimization

Taking the beam-splitting attack into considera-
tion naturally leads to the question what mean pho-
ton number is optimal to render the particular imple-
mentation of QKD as efficient as possible, while
maintaining its security. Beam-splitting attacks rep-
resent a very effective strategy which enables Eve to
gain deterministic bits of the key without making
disturbances detectable by Alice and Bob. A good
eavesdropping strategy would then be to combine the
generalized beam-splitting attack with some kind of

Ž .optimal attack possibly coherent applied to the
w xremaining one-photon pulses 1–3,5–7 . However, it

has not been settled yet, which of attacks on one-
photon pulses is the optimal one, nor was reliably
determined the ultimate amount of information Eve
could acquire through measurements on one-photon
pulses, while producing a given error rate.

The optimal value of the mean photon number not
only depends on the information that Eve might get
through beam splitting and measurements on one-
photon pulses, it is also affected by the particular
error correction and privacy amplification procedures
that are to be employed.

If Eve has only partial information on the key and
if Alice and Bob can estimate the upper limit of her

w xinformation 1,2 , it can still be possible to ensure
secure communication by force of a mathematical

w xprocedure called priÕacy amplification 8,12,13 .
However, the newly obtained key may be consider-
ably shorter.

Privacy amplification is applied after error cor-
rection to the corrected key. The corrected key has
the same length or is shorter 3 than the sifted key.
Reliable privacy amplification must take account of
all possible Eve’s attacks. Besides, part of the result-

3 If one wants to stop extra flow of information to Eve during
error correction, some bits must be discarded.
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ing key is also consumed for authentication of auxil-
iary, but necessary, public discussion. So, to guaran-
tee secure QKD, the total number of corrected-key
bits N should be equal to or greater than the sum ofC

the number of bits discarded during privacy amplifi-
cation N ,the number of bits consumed for authen-PA

tication N , and – of course – the number ofAu

‘effective’ bits N intended for later cryptographicK

use:

N GN qN qN . 11Ž .C PA Au K

Assuming no eavesdropper, the average number
of corrected-key bits N can be estimated asC

N
N s f ´ 1yexp yh h m , 12Ž . Ž . Ž .C L B2

Ž .where 0F f ´ F1 is a function of error rate ´ . This
function is given by the particular error-correcting
procedure.

If the generalized beam-splitting attack is sepa-
rated from all other attacks on one-photon pulses,
one can write

N sN qN qN . 13Ž .PA E Other Secur

Ž .The quantity N is defined by Eq. 8 , N de-E Other

pends on the length of the sifted key and on the error
rate, and N is the privacy amplification com-Secur

pression decreasing Eve’s information to an arbitrar-
ily low level defined by a security parameter d .

The total number of secret bits needed for authen-
tication depends on the length a of the authentication
tag and on the length of the authenticated message;
since the positions of bits in the train of pulses must

w xbe sent, this is proportional to log N 14,15 . How-2

ever, a shared secret sequence of this size has to be
exchanged between Alice and Bob just once. Later

Žon it suffices to renew to ‘refuel’ from the transmit-
.ted key only a much shorter password used for

one-time pad encryption of the authentication tag
w x16 , so N sa.Au

Clearly, for given transmittances h and h , aL B
Ž .maximal tolerable error rate ´ , function f ´ , pa-

rameters a and d , and the length N of the requiredK
Ž .final key, one can optimize Eq. 11 with respect to

m in order to minimize the total number of laser
pulses N.

Ž Ž ..There are cases in which inequality Eq. 11
cannot be fulfilled for any finite N. For some param-

eters of the apparatus, the number of transmitted bits
N is always lower than the number of bits requiredC

by ‘auxiliary’ procedures – ‘always’ means for any
m and N. If the length N of corrected key is notC

large enough to cover demands on the right-hand
Ž .side of Eq. 11 , secure communication cannot be

established. E.g., if the losses of the transmission
Ž .line are too high, Eq. 11 cannot be satisfied for any

m irrespective of the value of N, because N wouldE

always be too large. In other words, if Eve replaces a
lossy line by a lossless one, then she can know even
more deterministic bits than Bob expects to obtain.

A particular example of an optimization process
performed with our laboratory prototype of
quantum-cryptographic apparatus can be found in

w xRef. 14 .

5. Conclusions

It has been shown that the use of weak coherent
states for quantum key distribution with a lossy
channel enables a very efficient attack based on
beam splitting. If the transmittance of the line is

Žlower than a certain limit depending on the losses of
the recipient’s apparatus and on the mean photon

.number per laser pulse , QKD becomes insecure. In
spite of this, a large set of reasonable values of line
transmittance h , Bob’s apparatus efficiency h , andL B

a mean photon number m exist that secure communi-
cation is possible even if such an attack is taken into
account.
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