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Analogy between optimal spin estimation and interferometry
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Abstract

A scheme for optimal spin state estimation is considered in analogy with phase detection in interferometry. Recently
Ž . Ž .reported coherent measurements yielding the average fidelity Nq1 r Nq2 for N particle system correspond to the

'standard limit of phase resolution 1r N . It provides the bound for incoherent measurements when each particle is detected
separately and information is used optimally. For specific states, improvement up to the value 1rN is possible in quantum
theory. The best results are obtained combining sequentially coherent measurements on fractional groups of particles.
q 2000 Elsevier Science B.V. All rights reserved.

PACS: 03.65.-w

1. Introduction

w xRecently Peres and Wootters 1 formulated a
conjecture: coherent measurement performed on the
collective system is more efficient than sequential
measurements of individual particles. This idea has

w xbeen further developed by Massar and Popescu 2 .
They formulated this conjecture as a proposal for a
‘quantum game’. The player has N identical copies
of 1r2 spin particles prepared in an unknown pure

< :state c , and he is allowed to do any measurement.
Possible results of the measurement will be denoted
by an index r. The aim of the measurement is to
determine the original state of the system. Therefore,
in the next step the measured data should be attached

< :to a state c , which represents the players’s esti-r
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mation of an unknown true state. In the last stage of
the game the true state is compared with its estimate
and their coincidence is quantified by the so-called

<² < : < 2fidelity: c c . The runs are repeated many timesr

< :with varying true state c . The final score of the
quantum game is given by the averaged fidelity

<² < : < 2Ss c c , 1Ž .� 4r av

where averaging is carried out over the measured
�4 � < :4data and all the true states s r, c . Massar andav

ŽPopescu proved that the maximum score is Nq
. Ž .1 r Nq2 . This value cannot be reached by mea-

surements acting on isolated particles. Derka et al.
w x3 showed that this score can be obtained by coher-
ent measurement described by a finite-dimensional
probability operator valued measure.

The aim of this contribution is to address the
relation between recently optimized measurement,
repeated measurement on the Stern–Gerlach appara-
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tus and interferometry. Particularly, it will be
demonstrated that the above mentioned score repre-
sents the ultimate limitation for sequential measure-
ments performed on each particle separately for any
quantum state. This corresponds to the standard reso-

'lution 1r N currently reached in interferometry.
However, this regime does not represent the ultimate
strategy. In analogy with quantum interferometry
performance may achieve the resolution up to 1rN
provided that spin orientation is properly coded into
a quantum state of N particles. In the particular case
addressed in this contribution the optimal strategy
corresponds to sequentially performed coherent mea-
surements. This explicit example demonstrates the
complexity of optimal measurement, which can com-
bine advantages of both the coherent and sequential
measurements with groups of particles.

2. Adaptive Stern–Gerlach spin detection

Assume a standard measurement on an ideal
Ž .Stern–Gerlach SG apparatus. A sample particle is

prepared in the pure spin state

1< : ² <n n s 1q ns , 2Ž . Ž .2

where n represents the unity vector on the Poincaré
Ž .sphere, ns being its scalar product with vector of

Pauli matrices. The impinging particles will be devi-
ated up or down. In the long run of repetitions the
relative frequencies will approach the prediction of
quantum theory. Representing the setting of the SG
apparatus by a unity vector m, the probabilities of

Ž . Ž .detection ‘up’ q and ‘down’ y read

1p s 1" mn . 3Ž . Ž ." 2

What is the best possible but still feasible result,
which would predict the spin orientation with the
highest accuracy? The most accurate state estimation
may be done if all tested particles were registered in
the same output channel of the SG apparatus. In such
a case the best estimation of the spin corresponds to
the orientation of the SG apparatus. Of course, it
does not mean that the estimated direction will fit the
spin orientation exactly. Deviations are distributed
according to the posterior distribution conditioned by
the detected data. This can be handled analogously to

w xthe phase estimation 4 . The deviations between the
estimated and the true directions are given by the
Bayes theorem as the posterior probability density

Nq1
2 NP n s cos ur2 4Ž . Ž . Ž .

4p

over the Poincare sphere. The vector n is´
parametrized by the Euler angles u ,f in the coordi-
nate system where the direction of z-axis coincide

Žalways with the estimated direction i.e. with the
.orientation of SG apparatus m . Notice that this is in

accordance with the rules of the quantum game as
w xdefined in Ref. 2 . The result of the measurement is

always a specific direction, namely the setting of SG
apparatus. In this case the score reads

Nq1
2 2Ss P n d V cos ur2 s . 5Ž . Ž . Ž .H n Nq2

This is the upper bound of sequential measurements
on single particles with felicitously rotated SG appa-
ratus. This is obviously an ultimate limitation since
such results are possible and none measurement per-
formed sequentially on single particles can yield
better spin prediction. However, on the contrary to
the coherent measurements, this resolution cannot be
really achieved, but it may be approximated with an
arbitrary accuracy for N large enough.

This argumentation well agrees with the results of
w xBarndorff-Nielsen and Gill, and Gill and Massar 5 .

Asymptotical analysis shows that optimal estimator
depends typically on an unknown true state of the
system. Such optimal measurement may be approxi-
mated by separable measurements. This is the key
idea of the proposed treatment: instead of searching

Žfor mathematically optimized procedure which, of
course, depends on a particular choice of the cost

.function , we assume such hypothetic situations,
Ž .when the ‘feasible’ sequential quantum measure-

ment exhibits deterministic results. This will guaran-
tee the least spread of the parameters characterizing
an unknown state.

The possible realization may be suggested as an
adaptive scheme, where the orientation of SG device
depends on the previous results. The aim of the
scheme is to find such an orientation, where almost
all the particles are counted on the same port. This is
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Fig. 1. Numerical simulation of one-particle adaptive measurement.

obviously always a little worse than ideal case, since
some portion of counted particles must always be
used for corrections of the SG-device orientation and
are therefore ‘lost’. Differences between ideal and
realistic scheme seem to be negligible as demon-
strated in Fig. 1. An adaptive measurement is simu-
lated here. The procedure starts with projecting a
single particle into the three orthogonal randomly
chosen directions. The choice of the orientation of
the subsequent SG measurement represents its own
interesting optimization problem. Obviously, for get-
ting the best score, it seems to be advantageous to
project the particles into the most probable orienta-
tion. However, this will not reveal new corrections to
the orientation of SG apparatus well. On the other
hand, the particles may be counted with the SG
device oriented perpendicularly to the most probable
orientation. In this case the spreading of the data will
be obviously broader than in the former case, but
such measurement will be more sensitive to the
deviation from the true direction. In the simulation
scheme, the latter approach has been used and algo-

rithm for synthesis of incompatible spin projections
w xhas been used 6 . The treatment is still not optimal,

however, as will be seen in the next paragraph, the
differences seem to be unimportant.

3. Analogy between spin estimation and interfer-
ometry

There is a clear analogy between spin measure-
ment and phase interferometry. As the proper resolu-
tion measure, the dispersion of phase may be defined

w xas 7,8

22 � 4D s1y cosu . 6Ž .av

Usually, the averaging is done over the data only.
Provided that the width of phase distribution is small,
dispersion tends to the standard variance of phase.
Using the definition of the score

1 1 � 4Ss q cosu , 7Ž .av2 2
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both the measures fulfil the relation

D2

S 1yS s . 8Ž . Ž .
4

Ž . Ž .Consequently, the value Ss Nq1 r Nq2 is
Ž .nothing else as dispersion phase variance Df

'2r N . This is the so-called standard limit of phase
w xresolution 9,10 . Any standard measurement is scaled

in this way and all the measurements differ by some
multiplicative factors only. Loosely speaking, all the
classical strategies are essentially equivalent from
this viewpoint. This is why it has perhaps little sense
to optimize further the adaptive scheme. For exam-
ple, provided that one will use the most straightfor-
ward method of spin estimation based on the mea-
surement of x, y, and z components of the spin on
the Poincare sphere always with Nr3 particles, the´
resulting score may be evaluated asymptotically as

Ž .Sf1y114r 100N . The difference between opti-
mal coherent and realistic sequential measurements
is assumed sometimes to be significant for small
number of particles. However, in this case all the
predictions are rather uncertain. In the case of phase
detection it has little sense to compare two phase
distributions, whose widths are comparable to 2p

window. Then the phase knowledge is almost equally
bad. Conventional resolution measures possess good
meaning only when the effective width is substan-
tially less than the width of the interval.

More profound analogy between the spin mea-
surement and interferometry follows from the com-

Ž . w xmon nature of the SU 2 symmetry 9 . As is well
known, the resolution up to the order 1rN may be
achieved in interferometry. In this case, however, it
is recommended to modify slightly the proposed
quantum game. Suppose that somebody wants to
communicate an orientation of the axis in 3D space.
Just an axis, not the direction of an ‘arrow’. For this
purpose N 1r2-spin particles are available and any
measurement on these particles is allowed. Instead of
N identical copies, one may consider a general quan-
tum state spanned by N particles, into which the
unknown orientation is coded. As the result of the
measurement the unknown axis should be found. The
score is defined in the same manner as before. The
questions are: ‘‘How to encode information on axis
orientation into a quantum state of the particles?

What measurement should be done in order to obtain
the best score?’’

4. Superresolution in interferometry and spin esti-
mation

Ž .Let us review briefly the description of SU 2
interferometers. The transformation of an internal
state is given by an unitary transformation of an
input state

ˆ ˆU u ,w sexp yiu J wŽ . Ž .2

ˆ ˆ ˆ'exp iw J exp yiu J exp yiw J ,Ž . Ž . Ž .3 2 3

9Ž .

ˆ ˆ ˆ Ž .where J , J , J corresponds to generators of SU 21 2 3
w xgroup 9,10 . The transformation is given by the

Ž .unity vector ns coswsinu ,sinwsinu ,cosu . In in-
terferometry, the quantity sinwrcosw corresponds to
the beamsplitting ratio, and the angle u to the phase
difference in the arms of the interferometer. An input

< :state in may be any N particle state. The measure-
ment may be represented by projectors into an output

< :state out . The posterior phase distribution corre-
sponds to the scattering amplitude

ˆ 2<² < < : <P u ,w f in U u ,w out . 10Ž . Ž . Ž .
< :Now the notation of the eigenstates j,m of total

ˆ2 ˆ‘impulse moment’ J and its third component J3

will be applied. In the case of interferometer, there is
a correspondence between annihilation operators of
two input modes and generators of ‘impulse mo-

Ž w x.ment’ given by Schwinger see, e.g., 9 . Particu-
larly, the quantum number j corresponds to the half
of total number of particles, whereas the quantum
number m corresponds to the half of the difference
of particle numbers in both the modes. Therefore the
state where N particles are located in the same mode

< :can be expressed as Nr2, Nr2 in this notation.
The given scheme encompasses the Massar–

Popescu quantum game as a special case for the
< : < :choice of the input state in s Nr2, Nr2 . Score

depends on the accuracy of detection of u variable.
The highest accuracy is achieved when the phase
shift near the zero value is detected. This corre-
sponds to the detection of the same quantum state on
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< : < :the output out s Nr2, Nr2 . The particles feeding
a single input port of an interferometer appear again
on the corresponding output port. Obviously, the
interpretation does not change provided that particles
will enter and leave the interferometer sequentially.
This is the consequence of the famous Dirac state-

w xment that ‘‘each particle interferes with itself’’. 11
Ž . Ž .Ultimate score Nq1 r Nq2 is relevant just to

this regime.
w xAs is well known in interferometry 9,10,12 ,

better resolution may be obtained provided that both
the input ports of an interferometer are fed simulta-
neously by an equal number of r particles. In the
case when the same output state appears on the
output, the phase shift prediction will be the sharpest.

< :This corresponds to the input and output states in
< : < : < :s r,0 and out s r,0 . The scattering amplitude

then depends only on the variable u as
20P u A P cosu . 11Ž . Ž . Ž .r

0Ž .The Legendre function P cosu may be approxi-r
Ž .mated by Bessel function J ru for large index r.0

Consequently, the probability distribution is not inte-

grable for r™` and must be therefore treated more
w xcarefully 13 . Particularly, it is therefore not the best

strategy to use all the energy of N states in the
single coherent measurement. The particles should
be divided into several groups and the measurement
should be sequentially repeated several times. The
accumulation of information is expressed mathemati-
cally by the multiplication of corresponding distribu-

Ž Ž ..tion functions Eq. 11 . This tends to narrowing of
the posterior probability distribution. The optimal
regime for the u detection has been roughly esti-

w xmated in Ref. 13 . Optimal number of repetitions of
the coherent measurement was expected to be ap-
proximately nf4.

Let us interpret this interferometric measurement
in terms of the spin estimation. The significant dif-
ference between spin 1r2 particles and photons is
connected with their fermionic and bosonic nature.
The input wave function constructed from fermions
must be ‘artificially’ symmetrized with respect to all
the distinguishable particles. The input state of N

< :particles Nr2,0 is therefore highly entangled su-
perposition involving all the combinations of Nr2

Fig. 2. The posterior probability distribution provided that the exactly same number of spins ‘up’ and ‘down’ has been detected. The total
number of particles is 20.



( )Z. Hradil, M. DusekrOptics Communications 182 2000 361–367ˇ366

particles with the spin up and Nr2 particles with the
ˆ2 ˆspin down. Here, the operators J and J have the3

usual meaning of the square of the total impulse
moment of N spin 1r2 particles and of the projec-
tion of this impulse moment.

Let us analyse in detail the score for such states.
As before the most favourable but still physically
‘feasible’ situation will be interpreted as an ultimate
bound of the state detection. In such a case a half of
particles will be detected with the spin ‘up’ and a
half of particles with the spin ‘down’. Assume now
that this really happened. This might occur not only
for ideal coincidence of original encoded direction
with the orientation of SG apparatus but also in the
case when the setting of SG differs from the right
spin orientation by an angle u . The probability that
this happens is proportional to the scattering ampli-

Ž Ž ..tude Eq. 11 . The probability is sketched in Fig. 2
– as can be seen it shows oscillations. The domain is

Ž .restricted to the values 0,pr2 since the method just
finds the axis but not its vector orientation. The score
is plotted in Fig. 3. As shown it does not improve
with increasing number of particles. This is caused

Žby the heavy tails of the posterior distribution Fig.

.2 , which does not contain the dominant amount of
the probability in the central peak. Nevertheless,
there is a way how to suppress this undesired be-
haviour. Provided that the measurement is repeated,
the corresponding posterior distribution will be given
by the product of partial results. Again, the most
favourable situation for spin estimation is character-
ized by the repetition of the same ‘optimal’ results,
namely by the detection of a half of particles with
the spin ‘up’ and a half of particles with the spin
‘down’. The resulting score in dependence on the
total number of particles is sketched in Fig. 3. Notice
that SG measurement must be done with the state
< :Nr4,0 in this case, since the measurement is re-
peated twice. This procedure may be further general-
ized including an arbitrary number of repetitions. As
shown in Fig. 3, the score increases up to the 5
repetitions and then starts to decrease. This seems to
be in good agreement with the rough asymptotical

w xanalysis presented in Ref. 13 , where the optimal
repetition rate has been found as 4. Note that similar
qualitative conclusions concerning repeated measure-
ments on groups of particles have been deduced in

w xRef. 14 .

Fig. 3. Ultimate values of score for several repetitions of coherent measurements on groups of particles.
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This result provides an ultimate bound in the
following sense: if the given input state is measured
with the help of SG projections, the score cannot be
better than this ultimate value. The question whether
this value may be attained is not answered here.
Intuitively, in the case of large number of particles it
might be approximated by an adaptive scheme as in
previous case of standard resolution. However, the
adaptive scheme cannot be applied to the first mea-
surement. The results may therefore appear as over-
estimated in this case. This explains why the analysis
applied here provides the score Sf0.875 for the

< :state ≠,x , whereas the result of Gisin and Popescu
w x15 gives the value 0.789. In the asymptotical limit,
the dispersion is approximately given by the relation

' '4n 2 5
Df s . 12Ž .

N N

The optimal score reads asymptotically

5
Sf1y . 13Ž .2N

One may ask whether the required states contain-
ing half particles with spins ‘up’ and half with spins

Ž .‘down’ in an arbitrary direction can be prepared
from a set of particles with all spins ‘up’, i.e. if it is
possible to ‘turn’ arbitrary quantum state into a state
orthogonal to it. The general answer is no – the
linearity of quantum mechanics does not allow this.
Particularly in case of 1r2-spin particles, if one is

< : < : < : iw < :able to do: ≠ ™x and x ™e ≠ , then for an
arbitrary state it follows from linearity of quantum

< : Ž < : < :. Ž < :evolution that C s a ≠ q b x ™ a x q
if < :. < :e b ≠ . The last state is orthogonal to C if and

Ž . Ž .only if arg a qpsarg b qf. Thus in special
Ž .situations corresponding to ‘real’ subspaces the

Žmentioned transformation is possible e.g. when spin
projections lay in a given plane, also for linear
polarizations of photon or for interferometry with
fixed splitting ratios and varied a phase difference

.only . But an arbitrary spin cannot be turned to the
perfectly opposite one.

5. Conclusions

The analogy between interferometry and spin esti-
mation has been addressed. The performance of both
the schemes discussed has been conditioned by the

realistic measurements only. As demonstrated, the
recently reported optimal spin estimation corre-
sponds to the standard quantum limit characterized

'by the resolution 1r N . It may be achieved by
coherent measurements and well approximated by
sequential ones. Beyond this regime, the quantum
theory admits the resolution up to 1rN. In the case
of a thought experiment with an ensemble of spin
1r2 particles it requires an entangled input state of
N particles. Optimal SG detection must combine
advantages of both the coherent and sequential mea-
surements. This example illustrates complexity of the
optimal treatment in estimation problems.
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