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Abstract

The question of the discrimination of the Bell states of two qudits (i.e., d-dimensional quantum systems) by means of
passive linear optical elements and conditional measurements is discussed. A qudit is supposed to be represented by d
optical modes containing exactly one photon altogether. From recent results of Calsamiglia it follows that there is no
way how to distinguish the Bell states of two qudits for d > 2—not even with the probability of success lower than
one—without any auxiliary photons in ancillary modes. Following the results of Carollo and Palma it is proved that it
is impossible to distinguish even only one such Bell state with certainty (i.e., with the probability of success equal to
one), irrespective of how many auxiliary photons are involved. However, it is shown that auxiliary photons can help to
discriminate the Bell states of qudits with the high probability of success: A Bell-state analyzer based on the idea of
linear optics quantum computation that can achieve the probability of success arbitrarily close to one is described. It
requires many auxiliary photons that must be first “combined” into entangled states. © 2001 Published by Elsevier
Science B.V.
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1. Introduction

Quantum optics and particularly linear optical
elements represent important tools for the experi-
mental investigation of the basic features of
quantum information transfer and processing and
fundamentals of quantum theory. The special in-
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terest is devoted to the study of entangled states
that are not only highly interesting by themselves
but that find also the use in quantum teleportation,
quantum dense coding, quantum cryptography,
quantum computing, etc. Closely related to many
of these issues is the so-called Bell-state analysis,
i.e., the discrimination of maximally entangled
states completing the non-local orthonormal basis
of two- or multi-particle quantum system.

The relative success concerning the discrimina-
tion of two of the four Bell states of two qudits
with certainty by passive linear optical elements
[1,2] challenges the question whether it is possible

0030-4018/01/$ - see front matter © 2001 Published by Elsevier Science B.V.

PII: S0030-4018(01)01565-6



162 M. Dusek | Optics Communications 199 (2001) 161-166

to do something similar also for the Bell states of
two qudits if their dimension d > 2. At the first
glance the direct generalization of the approach
given in Ref. [2] indicates that the limitations on
the probability of success could be less restrictive
for d > 2 than for d = 2. But when one starts to
play with possible extensions of the original Inns-
bruck scheme [1] for qudits he quickly gets into
troubles. The recent results of Calsamiglia [3] in-
dicate that it is impossible without additional
auxiliary photons. This was the motivation to
subject the problem of “generalized” linear optics
Bell-state measurement to more detailed analysis.

In the considered scheme, qudits are repre-
sented by d modes of radiation (with the same
frequencies and polarizations). The total number
of photons in these d modes is required to be one.
The ith “logical” (or computational) basis state
corresponds to the situation when exactly one
photon is present in the ith mode. Such an imple-
mentation allows us to realize any unitary opera-
tion on a single qudit (up to a global phase) in a
deterministic way by the means of passive linear
optical elements [4].

In fact, we restrict our tools to beam splitters,
phase shifters and delay lines. All of them may be
electronically switched—the conditionally dynam-
ics is allowed, i.e., some operations may depend on
the result of the measurement on selected modes
outgoing the “previous” operation. We consider
ideal detectors that can distinguish the number of
impinging photons (in a given mode). Even if such
detectors are not available in practice yet our
choice is justified as we seek for fundamental
limitations of linear optical devices.

By the Bell states of two qudits we mean the
maximally entangled states of the following form
(see, e.g., Ref. [5])

1 & .jn
|l//mn> = \/—3 Z eXp |:2TE1%:| a;bj'i[)m|vac>7 (1)
J=0

where a} and b} are bosonic creation operators in
corresponding modes of the first and the second
qudit, respectively, |vac) denotes a vacuum state,
and j@®m = (j + m)modd; m and n go from 0 to
d—1.

2. No-go theorem for the case without auxiliary
photons

Calsamiglia has shown [3] that any linear opti-
cal device that does not use auxiliary photons in
ancillary modes (however, that may include con-
ditional dynamics) cannot unambiguously dis-
criminate any state with Schmidt rank higher than
two from any set of two-qudit states spanning the
whole two-qudit Hilbert space (qudits are sup-
posed to be represented by one-photon states over
d modes). This is true even if the probability of
successful discrimination is allowed to be lower
than one. If there is a non-zero probability of some
detection event for some state from the set that has
Schmidt rank higher than two then there is always
at least one another state from the set that gives a
non-zero probability for this detection event too.

It directly follows that there is no way how to
distinguish any one of d* Bell states of two qudits
(for d > 2) without error by means of linear optics
if no auxiliary photons are involved.

3. Impossibility to discriminate a Bell state with
certainty

In the paper of Carollo and Palma [6] it is
shown under the same conditions as assumed here
(i.e., linear elements, arbitrary number of auxiliary
modes, conditional measurements, and photon
number detectors are assumed) that any two L-
photon states over M modes, randomly chosen
from a known set of K states, are completely (i.e.,
with certainty) distinguishable in the presence of
auxiliary photons only if they are completely dis-
tinguishable in the absence of auxiliary photons. It
also means that if some two states are not com-
pletely distinguishable in the case when no auxili-
ary photons are involved, then they cannot be
distinguished even if any finite number of auxiliary
photons are employed.

As stated earlier it is not possible in any way to
distinguish any one of d> Bell states from all of the
remaining states by linear optical device with no
additional photons if d > 2. In other words, to
each Bell state there is at least one another Bell
state such that these two states cannot be distin-
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guished from each other (providing d > 2). Ac-
cording to the statement given in the previous
paragraph this must stay valid even if auxiliary
photons are allowed. So it is impossible to dis-
criminate even one of d* Bell states with certainty
(with 100% probability of success) irrespective
whether auxiliary photons are allowed or not.

4. Efficient Bell-state analyzer with linear optics

Now we will show how to distinguish all the
Bell states of two qudits with the probability of
success arbitrarily close to one using only linear
optical elements (and auxiliary photons).

Recently, a scheme for ‘“non-deterministic”
quantum computation with linear optics were
proposed by Knill et al. [7,8]. It is based on a non-
linear phase shift:

OC()|0> + 061|1> + 062|2> — OC()|0> + OC1“> — OC2|2>7

where kets represent number states in a given
mode. We will denote this operation “NS”. A
simple device was designed that can perform this
operation with probability 1/4. It consists of a
couple of beam splitters and phase shifters. The
effective non-linearity is provided by a measure-
ment process. Two ancillary modes, with a single
photon in one of them, and two photon-number
detectors are necessary. The successful operations
turns up when the first detector registers one and
the second detector no photon.

Using two beam splitters and two operation NS
one can built a conditional sign-flip gate (C-SIGN)
as shown in Fig. 1. This gate inverts the sign of the
state vector of two modes when there are exactly
one photon in each of them. In the other cases
(with at most one photon altogether) the operation
does nothing:

NS

45°

NS

Fig. 1. C-SIGN gate consisting of two beam splitters and two
non-linear phase shifters NS.

D) — —[DI1),
0)[1) — [0)[1),

[1)10) — |1)]0),
10)[0) — 0)]0).

The unitary matrix representing the transforma-
tion of creation operators on the beam splitter is
supposed to be

cosf)l —sinf
( sinff  cosf > '
Particular angles 0 are written inside the corre-
sponding boxes in Fig. 1. Since this gate uses two
NS operations its probability of success is 1/16.
However, in the mentioned papers the way is
proposed how to increase the probability of the
successful action of the C-SIGN arbitrarily close to
one. This way is based on a “teleportation trick”. It

requires preparation of relatively complicated an-
cillary entangled state of 2n photons in 47 modes:

n

|60 = > (=D 10)" |0y 1))

x 10)" 410y )", (2)

where |x)” = |x)|x) ---|x), y-times. First n modes
are “‘put together” with one input mode and all
these n+ 1 modes are subjected to n+ 1 point
Fourier transform. Then the photon number
measurement is performed on the transformed
modes and according to the result one of the other
n modes is chosen as an output of the gate and its
phase is modified in general. The same action is
done with the next 2n modes and the other input
mode; see Fig. 2. It can be shown that the total
probability of the success of such a C-SIGN gate is

pz(nj—l)z' 3)

The Fourier transform, selection of modes, and
phase shifts can be implemented by linear optical
elements in a deterministic way. The state (2) can
be prepared by means of NS operations, beam
splitters and phase shifters. The probability of
successful preparation can be rather low. But we
should stress that this concerns just the prepara-
tion of an ancilla. In principle, it can be being
prepared in advance and one can try many times.
For more details, including the estimation of the
success probability of the preparation procedure
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Fig. 2. Schematic view of the setup for C-SIGN gate with the
probability of success p = [n/(n + 1)]°. Here 4n ancillary modes
are in the state given by Eq. (2).

and the number of necessary elements, see Refs.
[7,8].

Having a C-SIGN gate one can realize a gate
“C-SWAP” that conditionally swaps the two
modes of radiation (provided there is at most one
photon altogether in them). Its scheme is in Fig. 3.
If there is one photon in the mode 1 the modes 2 and
3 are swapped. If no photon is present in the mode 1
they are not changed. The probability of the success
of the C-SWAP is the same as for the C-SIGN. The
gate C-SWAP is the key ingredient to construct a
logical operation acting on two qudits x, y of ar-
bitrary dimension d that we will call “C-SHIFT"’:

y — (y —x)modd.

X — X,

For any x this operation represents a cyclic per-
mutation or “rotation’ of the values of the second
qudit. In total, d — 1 rotations are necessary—each
of them corresponds to one possible value of the
first qudit except the value zero that leads to
identity transformation. Any such rotation can be
implemented by at most d — 1 ““transpositions’,
i.e., C-SWAPs. Thus if the probability of success of

1 e —
C-SIGN 1
2
2
-45° 45°
3
3
A B

Fig. 3. C-SWAP gate that swaps the modes 2 and 3 if there is a
photon in the mode 1. (A) The scheme of the gate built from
two beam splitters and one C-SIGN gate. (B) The notation we
will use.

Fig. 4. C-SHIFT gate. An example of the network for d =3
built-up from C-SWAP gates. Here a denotes the control qudit,
b the controlled one.

the C-SWAP is p then the total probability of the
success of the C-SHIFT is at least p~V’". In par-
ticular cases it can be even better, e.g., for d = 3 the
probability of the success of the C-SHIFT is p?.
Corresponding “‘network’ is in Fig. 4. If one uses
C-SIGN gates described above with the probability
of success given by Eq. (3) then the probability of
the successful action of the C-SHIFT gate is

n 2(d—1)?
s (n +1 ) ) “)

Now we can build a Bell-state analyzer. To do it
we need our C-SHIFT gate,

C-SHIFT:  [x),[y), — ), |(v - x)modd),,  (5)

followed by a generalized Hadamard transform
acting on the first qudit,

1 & { kx}
HAD: |x), > — exp | —2ni— ||k),, (6
9 = g 2 e |~ 26 K (©)

where |j), represents the jth “logical” state of the
Ith qudit. The complete setup is shown in Fig. 5. If
the sequence of these two operations is applied on
a Bell state

Y

1 .
) = S exp 22875 |1y 7+ mmoda),

()
[see also Eq. (1)] then the output state of the two
qudits is |n),|m),. Thus, if both the qudits are rea-
lized as described above the input Bell state can be
determined by a simple photodetection.
The generalized Hadamard transform is the
unitary transformation of one qudit. As men-
tioned earlier any such operation can be realized in

Sl -
i
(=}
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Fig. 5. Scheme of the Bell-state analyzer for two qudits. It
consists of a C-SHIFT operation and a generalized Hadamard
transform.

a deterministic way with passive linear optical ele-
ments (for our implementation of qudits)—simply
by combination of beam splitters and phase
shifters. The C-SHIFT gate described above is a
non-deterministic gate. Its probability of success-
ful action is given by Eq. (4). Clearly, that value
determines also the probability of the successful
discrimination of an unknown Bell state. Increas-
ing n this probability can be made arbitrarily close
to one provided the dimension d is fixed.

Let us note, that the described approach can be
extended to the discrimination of “generalized Bell
states” of N qudits, i.e., the following maximally
entangled states that complete an orthonormal
basis in the Hilbert space of N qudits:

1 ki
|l//k1‘k2‘....,kN> = _d Z exp [27117]

% i 5+ kymodd), ®)
where k; =0,...,d — 1. In this case the C-SHIFT
operation must be applied N — 1 times: between
the first and the Nth qudit, the first and the
(N — 1)th qudit, etc. Finally between the first and
the second qudit. Then the generalized Hadamard
transform must be performed on the first qudit. If
there was a generalized Bell state (8) in the input
then the output state reads

|k1>| |k2>2 T ‘kN>N'

5. Conclusions

We have interpreted some recent results con-
cerning unambiguous state discrimination with
linear optical elements from the point of view of
Bell-state measurement in case of two qudits with

dimension higher than two. This analysis leads to
the conclusions that with no auxiliary photons it is
impossible to discriminate such Bell states without
errors and that it is impossible to discriminate such
Bell states with certainty in any way by the means
of linear optics.

On the other hand, we have shown by an ex-
plicit construction that it is possible, in principle,
to build a linear optical Bell-state analyzer capable
to discriminate all the states of the Bell basis of
two (or even more) qudits with the probability of
success arbitrarily close to one. This device is
based on the generalization of the idea of linear
optics quantum computation for qudits. The price
for the high success probability is a complicated
setup and a large number of required auxiliary
photons in rather complex entangled states.

It seems that the key ingredient that is neces-
sary for the increase of the probability of suc-
cessful discrimination is the entanglement ““added”
through the ancilla. The methods of “linear optics
quantum computation” enable us to prepare re-
quired entangled states from “separated” photons,
in principle. But the probability of the success of
such a preparation is very low. Besides this, the
preparation of single photons represents itself a
serious experimental problem as single-photon
states are highly non-classical ones. By the way,
recently it was shown for all pure input states and
for the large class of mixed states that the beam
splitter can serve for the preparation of an entan-
gled state on its output only if the input state ex-
hibits non-classical behavior [9].
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