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Unambiguous state discrimination in quantum cryptography with weak coherent states
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The use of linearly independent signal states in realistic implementations of quantum key distribution~QKD!
enables an eavesdropper to perform unambiguous state discrimination. We explore quantitatively the limits for
secure QKD imposed by this fact taking into account that the receiver can monitor, to some extent the
photon-number statistics of the signals even with todays standard detection schemes. We compare our attack to
the beam-splitting attack and show that security against the beam-splitting attack does not necessarily imply
security against the attack considered here.

PACS number~s!: 03.67.Dd, 03.65.Bz, 42.79.Sz
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I. INTRODUCTION

Quantum key distribution~QKD! is a technique to pro-
vide two parties with a secure, secret, and shared key. Su
key is the necessary ingredient in the onlyprovably secure
way to communicate with guaranteed privacy, the one-ti
pad or Vernam cipher@1#. The first complete protocol wa
given by Bennett and Brassard@2# ~BB84! following ideas
by Wiesner@3#. It uses the fact that any channel that tran
mits two nonorthogonal states perfectly automatically ma
eavesdropping on this channel detectable.

We consider the BB84 protocol in a typical quantum o
tical implementation. Ideally, Alice sends a sequence
single photons that are at random polarized in one of
following four states: right or left circular polarization, o
vertically or horizontally polarization. Bob chooses at ra
dom between two polarization analyzers, one distinguish
the circular polarized states, and the other distinguishing
linear polarized states. Following a public discussion ab
the basis of the sent signals and the measurement appa
applied to them, sender and receiver can obtain a shared
made up from those signals where the measurement de
gives deterministic results. This is thesifted key@4#. Proofs
of security of this scheme against the most general att
even in the presence of noise, have been obtained@5–7#. In
this paper we follow another goal: we would like to illum
nate to what extent very simple attacks can render Q
impossible once realistic imperfections like lossy lines a
nonideal signal states are taken into account. The difficul
implied, for example, by the use of weak coherent state
combination with lossy lines has been pointed out ear
@8–10# and this subject has been illuminated in depth in R
@11#, where bounds on coverable distances are given. P
tive security proofs for sufficiently short distances, taki
into account the realistic signals are given for individual
tacks@12# and coherent attacks@13#. The eavesdropping at
tacks that crack the secrecy of the key for setups excee
these secure distances are still quite complicated. The ea
dropper needs to perform a quantum nondemolition~QND!
measurement on the total photon number of the signal, t
he has to split a photon off the occurring multiphoton sign
@11#, store that photon, and then, finally, measure it after
public discussion.
1050-2947/2000/62~2!/022306~9!/$15.00 62 0223
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In this paper we are looking into much simpler eavesdr
ping strategies that make use of the opportunities aris
from lossy lines and nonideal signals. Such an attack
been proposed by Bennett@14# and Yuen@9#. It uses the fact
that Eve can, with finite probability, discriminate the fo
signal states unambiguously. Whenever such a discrim
tion is performed successfully, the eavesdropper knows
mediately which of the four signal states was sent and
send this information, via a classical channel, to Bob’s
tector, in front of which she places a state preparation m
chine to prepare the identified state. This way this state d
not experience the losses of the actual quantum chan
without which Eve has to invest into a perfect quantum ch
nel.

The investigation of this scenario refines Bennett’s a
Yuen’s analysis since it takes into account that, to a cer
extent, the photon statistics of the signals arriving at Bo
detectors can be monitored. The results illuminate the res
tions placed on implementations of QKD on lines wi
strong losses. Thereby we can show that the currently wid
used conditional security standard of security against be
splitting attacks@14# is incomplete. Especially, contrary t
common belief, the use of unambiguous state discrimina
can be a more efficient eavesdropping strategy than
beam-splitting attack, even for dim coherent states.

This paper is organized as follows. In Sec. II we recapi
late the principles of unambiguous state discriminatio
These are applied in Sec. III to the signal states in the BB
protocol with dim coherent signal states. In Sec. IV we
troduce an eavesdropping attack based on unambiguous
discrimination~USD attack! and analyze it in detail, taking
the photon number distribution of the signals arriving
Bob’s detectors into account. In Sec. V we discuss the r
tion between the beam-splitting attack and the USD atta
Section VI concludes the article with a short summary.

II. UNAMBIGUOUS DISCRIMINATION OF SIGNAL
STATES

Unambiguous state discrimination is possible whene
the N states in question are linearly independent. The pr
lem can be described by a measurement that can give
results ‘‘state 0,’’‘‘state 1,’’ . . . , ‘‘state N21,’’ and the re-
sult ‘‘do not know.’’ The constraint is that the measureme
©2000 The American Physical Society06-1
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results should never wrongly identify a state, and the goa
to keep the fraction of ‘‘do not know’’ results as low a
possible. This problem has been investigated by Ivano
@15# for the case of two equally probable nonorthogon
states. Peres@16# solved this problem in a formulation with
probability operator measures. Later Jaeger and Shim
@17# extended the solution to arbitrarya priori probabilities.
Peres’s solution has been generalized to an arbitrary num
of equally probable states that are generated from each o
by a symmetry operator by Chefles and Barnett@18#. Their
result can be summarized as follows: the symmetry allo
one to write the input states in the form

uCk&5 (
j 50

N21

cj expS 2p i
k j

N D uf j&, ~1!

where the statesuf j& represent some set of orthonorm
states. Note that the states

uC̃ l&5
1

AN
(
j 50

N21

expS 2p i
l j

ND uf j&

form another orthonormal set. It turns out that the optim
strategy for unambiguous state discrimination consists of
steps. In the first step a filter operation is performed such
the output states are either the orthonormal statesuC̃ l& or
some linear dependent states. This step can be described
complete positive map with the two Kraus operators. Th
are defined with the help of the minimum coefficientcmin
5minjucju as

Ayes5 (
j 50

N21
cmin

cj
uf j&^f j u, ~2!

Ano5 (
j 50

N21

A12~cmin
2 /ucj u2!uf j&^f j u. ~3!

The conditional state in the event of successful filtering
now given as

uCk
(yes)&5ANcminuC̃k& .

In a second step, we can perform a von Neumann pro
tion measurement on this state to identify unambiguously
statek via the orthonormal stateuC̃k& . The probability of
this successful identification is given by

PD5N min
j

ucj u2. ~4!

For the case of two equal probable nonorthogonal polar
tion states of a single photon a quantum optical impleme
tion following this two-step idea has been given by Huttn
et al. @19# and by Brandt@20#.

III. SIGNAL STATES

A first description of realistic signal states is that of
coherent state with a small amplitudea. This corresponds to
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the description of a dimmed laser pulse. The coherent sta
given by

ua&5e2uau2/2(
n50

`
~aa†!n

n!
u0&, ~5!

wherea† is the creation operator for one of the four BB8
polarizations that can be expressed in terms of two crea
operatorsb1

† and b2
† ~corresponding, e.g., to two linear o

thogonal polarizations! as

a0
†5

1

A2
~b1

†1b2
†!, ~6!

a1
†5

1

A2
~b1

†1 ib2
†!, ~7!

a2
†5

1

A2
~b1

†2b2
†!, ~8!

a3
†5

1

A2
~b1

†2 ib2
†!. ~9!

In terms of these two modes the signal states become th
fore

uC0&5U a

A2
L U a

A2
L , ~10!

uC1&5U a

A2
L U i a

A2
L , ~11!

uC2&5U a

A2
L U2

a

A2
L , ~12!

uC3&5U a

A2
L U2 i

a

A2
L . ~13!

We can calculate the values of thecj in terms of the overlaps
of the four states according to the formula@18#

ucj u5
1

N2 (
k,l

expF2
2p i j ~k2 l !

N G^CkuC l&

and find as a function of the expected photon numberm
5uau2:

uc0u5
1

A2
e2 m/4Acosh

m

2
1cos

m

2
, ~14!

uc1u5
1

A2
e2 m/4Asinh

m

2
1sin

m

2
, ~15!
6-2
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uc2u5
1

A2
e2 m/4Acosh

m

2
2cos

m

2
, ~16!

uc3u5
1

A2
e2 m/4Asinh

m

2
2sin

m

2
. ~17!

The minimum of these four functions depends on the va
of m. The four functions 4ucku2 are plotted in Fig. 1 from
where we can read offPD as the minimum.

It turns out, however, that for realistic sources these st
are not the correct description of the situation. The reaso
that Eve does not have a phase reference, which means
for a given polarization she does not see the coherent s
ua& but the phase averaged density matrix

1

2pEf
ueifa&^eifaudf.

This results in signal states that are mixtures of Fock st
with a Poissonian photon-number distribution described
the density matrix

r5e2m(
n

mn

n!
un&^nu. ~18!

Here the stateun& denotes the Fock state withn photons in
one of the four BB84 polarization states. The optimal str
egy to discriminate between the four possible density ma
ces can be logically decomposed into a QND measurem
on the total photon number in the modesb1 andb2 together
and a following measurement that unambiguously discri
nates between the four resulting conditional states for e
total photon number. The justification for this is that the to
photon number via the QND measurement ‘‘comes fre
since the execution of this measurement does not chang
signal states. However, given the resulting information,
know the optimal strategy on the conditional states accord
to @18#. Therefore we find that the total probability of unam

FIG. 1. The fourfold weight 4ucj u2 of the four canonical state
uf j& as a function of the mean photon numberm. The lower bound
of these four curves gives the optimum probability for unambigu
state discrimination.
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biguous state discriminationPD is given in terms of the re-
spective probabilities for each photon number subspacePD

(n)

as

PD5 (
n50

`

e2m
mn

n!
PD

(n) . ~19!

The conditional states resulting from the QND measurem
and corresponding ton photons in total satisfy again th
symmetry condition that allows to apply the results
Chefles and Barnett. We find for the four coefficients~as a
function of the photon numbern.0) the expressions

uc0u5A1

4
122(11n/2)cosS p

4
nD , ~20!

uc1u5A1

4
122(11n/2)sinS p

4
nD , ~21!

uc2u5A1

4
222(11n/2)cosS p

4
nD , ~22!

uc3u5A1

4
222(11n/2)sinS p

4
nD . ~23!

Therefore the maximum probability of unambiguous st
discrimination for a fixed value ofn is given by

PD
(n)5H 0 n<2

12212n/2 n even

122(12n)/2 n odd.

~24!

It is possible to sum up the contributions from different ph
ton numbers from the Poissonian distribution and we obt
the expression

PD5 (
n50

`

e2m
mn

n!
PD

(n)

512e2mS A2 sinh
m

A2
12 cosh

m

A2
21D . ~25!

This result is compared to the result for coherent state
Fig. 2. As expected, the probability for unambiguous st
identification is lower for the mixture of Fock states than f
the coherent states. An expansion in terms of the pho
numberm givesPD5 1

12 m31O(m4) for both situations. For
lower than third order the signal states are not linearly in
pendent, so that no unambiguous state discrimination is p
sible. Note that an actual implementation does not neces
ily need to follow the decomposition into a QND and anoth
measurement. We just need to implement one general
measurement. Actually, Bennettet al. @14# and Yuen @9#
gave a simple beam-splitter setup that obtains a discrim
tion probability ofPD5 1

32 m31O(m4).
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IV. UNAMBIGUOUS STATE DISCRIMINATION AS
EAVESDROPPING STRATEGY

We now consider the realistic situation that Alice uses
phase-averaged coherent states as signal states that a
scribed by a Poissonian photon-number distribution w
mean photon numberm. In this scenario we fix our eaves
dropping strategy, to which we refer to as theunambiguous
state discrimination attack~USD attack! as follows: The un-
ambiguous state discrimination allows Eve to identify a fra
tion of the signals without error. For this fraction, she c
prepare a corresponding state close to Bob’s detectors
that no errors appear for these signals. Whenever the id
fication does not succeed, she sends the vacuum sign
Bob to avoid errors, which therefore will not be relevant
the considered scenario.

We need to study this strategy under realistic constra
An important constraint is that the transmittance of the qu
tum channel connecting both parties is given by the tra
mission efficiencyhL . We consider a detection setup whe
Bob monitors each polarization mode in the chosen basis
one detector. These detectors have a finite detection
ciencyhB , in which we include any additional loss on Bob
side, e.g., from a polarizing beam splitter. The detectors
modeled as ‘‘yes/no’’ detectors, which either fire, or they
not fire; they cannot distinguish the number of impingi
photons.

It is clear that once Eve identifies a signal she is interes
to produce a signal in the corresponding polarization s
that Bob will detect it despite his inefficient detectors. O
strategy is to send a stronger signal than the original on
the correct polarization. This will work as long as Bob me
sures in the polarization basis, which includes the signal
larization ~sifted key!, but it will lead to an increased coin
cidence rate of clicks in both of Bob’s detectors otherwi
Our analysis extends the previous analysis to include
additional constraint put on the eavesdropping strategy
the fact that Bob observes not only the rate of clicks of o
or the other detector, but also the rate of events when b
detectors fire, each monitoring one of the orthogonal po
ization modes. The latter event will be observed ideally o

FIG. 2. Comparison of the optimum probability of unambiguo
states discrimination for coherent states and for the correspon
mixture of Fock states. Both have the same Poissonian pho
number distribution with mean photon numberm.
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when Alice and Bob use different bases, independently
the presence or absence of an eavesdropper. Eve’s aim
reproduce these two observables with the minimum num
of nonvacuum signals to make efficient use of the succe
fully identified signals.

In the absence of Eve, whenever Alice and Bob use
same polarization basis, Bob’s expects to find at most
detector clicks; the probability of a click is

P̄1512exp~2hLhBm!, ~26!

as follows from the Poissonian photon-number statistics
coherent states.

Whenever Alice and Bob use different bases, a dou
click may occur; its probability is

P̄25F12expS 2
hLhBm

2 D G2

. ~27!

What happens in the presence of Eve depends on the
nals Eve sends for the successfully detected Alice’s sign
It is clear that Eve can avoid the occurrence of double cli
when Alice and Bob measure in the same basis, since
unambiguously determined the signal. Therefore it is
useful to monitor the double-click rate when Alice and B
use the same basis.

Note that we do not need to include detector dark co
rates or take errors due to misalignment into account. T
reason for that is that we will investigate the limit when t
USD attack gives complete information to Eve while it r
produces the expected probabilitiesP̄1 andP̄2. The values of
these probabilities in the absence of an eavesdropper an
reproduced values resulting from a successful USD att
will be affected in the same way by the error mechanisms
dark counts and misalignment, etc., so that the resulting
observed rates will still be indistinguishable.

A. Eve sends n-photon states

Let us suppose now, that whenever Eve succeeds in
unambiguous state discrimination she sends a number
~with correct polarization! containingN photons to Bob. If
she fails she simply sends no photon.

If Alice and Bob use the same basis, at most one of t
Bob’s detectors will click. The probability of this event i
given by

P1
(N)5PDF12S m

0 DhB
0~12hB!NG5PD@12~12hB!N#.

~28!

This is the probability that one detector clicks if a stateuN&
comes, multiplied by the probability that Eve succeeds
USD ~and sendsuN&).

If Alice and Bob use different bases, we can think of t
photons as being equally and independently distributed
both Bob’s detectors. The probability to findk photons at the
first detector andl photons at the second one~with included
detection efficiencies! is given by the formula

ng
n-
6-4
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Pkl5PDS 1

2D N

(
m5k

N2 l S N

mD F S m

k DhB
k ~12hB!m2kG

3F S N2m

l DhB
l ~12hB!N2m2 l G ,

where the summation limits stem from obvious constrai
m>k, N2m> l . Thus the probability of double click in
Bob’s ‘‘yes-no’’ detectors when Eve is active and while A
ice and Bob use different polarization bases reads

P2
(N)5PDF12(

l 50

N

P0l2 (
k50

N

Pk01P00G
~note thatP00 would be subtracted two times!. Because of
the symmetry of the configuration, obviously,

(
l 50

N

P0l5 (
k50

N

Pk0 .

With the expressions

P005PD~12hB!N,

(
k50

N

Pk05PD (
m50

N S N

mD 22N(
k50

m S m

k DhB
k ~12hB!N2k

5PDS 12
hB

2 D N

we obtain finally for the double-click probability

P2
(N)5PDF122S 12

hB

2 D N

1~12hB!NG . ~29!

B. Eve sends a mixture of number states

Of course, there is no reason to restrict Eve only to
use of number states. After successful state discrimina
she can send to Bob any pure state or mixture. Howe
from Bob’s point of view these signals are effectively mi
tures of photon-number states because of the nature o
detectors~they may be described by the pair of projecto
Pno5u0&^0u and

Pyes5 (
n51

`

un&^nu!.

Therefore, it is sufficient to analyze only a mixture
photon-number states in the polarization of the identified s
nal, so that only the photon-number statistics remains to
chosen by Eve.

As already mentioned, Bob is interested only in the nu
ber of single clicks~in case his and Alice’s bases coincid!
and double clicks~if the bases differ!. One can plot a very
illustrative diagram displaying relations between correspo
ing single-click and double-click probabilities~see Fig. 3!.
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The situation where Eve sends number states to Bo
represented by a dot for each value of the photon numbeN.
The positions of these dots have been calculated for fi
values ofhL andm. Coordinates of a point corresponding
any mixture of number states can always be expressed
linear convex combination of coordinates corresponding
individual number states. Because of the convexity of
above-mentioned curve all such points must lie inside~or on
the boundary! of the polygon with vertices at the points co
responding to number states~i.e., in the area highlighted in
Fig. 3!.

We can explicitly prove the convexity of the bounda
formed by the points for fixed photon number. The poin
with x coordinateP1

(N) @Eq. ~28!# andy coordinateP2
(N) @Eq.

~29!# lie on a continuous curve that can be expressed with
help of Eq.~28! by a real continuation of the parameterN as

N5
ln~12x/PD!

ln~12hB!
.

Substituting into Eq.~29! we obtain the explicit equation o
the curve

y5F222S 12
x

PD
D k

2
x

PD
GPD , ~30!

FIG. 3. Diagram displaying relations between ‘‘single-click
and ‘‘double-click’’ probabilities. The highlighted area contains a
possible combinations of Bob’s detection probabilities stemm
from Eve’s activity ~described in the text! for a given detection
efficiency ~here, particularly,hB50.5) and a given mean photo
number in states sent by Alice (m54). It is a region ofinsecure
key generation. The shape of the area depends onhB , the scaling
on m @through discrimination probabilityPD(m)]. The separate
dotted curve represents a set of all possible ‘‘working points’’ wi

out an eavesdropper, i.e., a set of all possible pairs of expecteP̄1

and P̄2. Any particular position of a working point depends on th
values of the line transmittance (hL), the detection efficiency (hB),
and the mean photon number (m). The value ofm54 is chosen to
make the diagram well readable. The structure is the same
lower, realistic values.
6-5
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where

k5
ln~12hB/2!

ln~12hB!
.

Calculating the second derivative of Eq.~30! with respect to
x and using the fact thathL , hB , andx/PD take values in
the interval between 0 and 1, it follows that the curve giv
by Eq. ~30! is convex. This proves that the highlighted ar
in Fig. 3 is indeed convex.

C. Insecure parameter regime

The convex area defined in the previous section can
called a region of insecurity. We define the working point
a setup as the point whose coordinates are given by expe
values in the absence of an eavesdropper. If this work
point falls into the region of insecurity, Eve can get comple
information on the key without a risk of being disclosed.

The set of all possible working points is represented
the dotted curve in the diagram. Expected single-click pr
ability P̄1 @Eq. ~26!# represent thex coordinate, expected
double-click probabilityP̄2 @Eq. ~27!# represents they coor-
dinate. From Eq.~26! the exponential can be expressed a
substituted into Eq.~27!. Thus the explicit equation of the
working point curve reads

y5@12~12x!1/2#2. ~31!

We have to answer the question: For which values
parametershL , hB , andm does the working point lie in the
region of insecurity?

1. Necessary condition for insecurity

If the expected probability of single clicks satisfiesP̄1

.P1
(N) for all N, then the working point will certainly not fal

to the region of insecurity, which is clearly illustrated in Fi
3. This leads to the necessary condition for insecurity giv
by P̄1,PD . To evaluate the implication for the experime
tal parameters, we substitute Eq.~26!,

hLhB,
2 ln@12PD~m!#

m
. ~32!

An analysis of this expression shows that for a fixed
pected photon numberm a system cannot be cracked by
USD attack if the total transmission efficiencyhLhB is
higher than a certain threshold that depends on the the
pected photon numberm. This dependence is evaluated n
merically in Fig. 4. The surprising aspect is, that the thre
old does not go to 1 asm goes to infinity. Instead we find

~hLhB!(`)5 lim
m→`

2 ln@12PD~m!#

m
5~12221/2!'0.293.

~33!

This shows, that that the implementation of quantum cr
tography with weak coherent states cannot be cracked c
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pletely by the USD attack forall values of the expected
photon numberm as long as the total transmission satisfi
hLhB>12221/2.

2. Sufficient condition of insecurity

In this section we will derive precise conditions determ
ing when a working point falls into the region of insecurit
In a first step we will show that for parameters of practic
applications it is sufficient to consider the scenario that
working point falls below the straight line going through th
origin and the vertexN52. This condition corresponds to

xw>yw

x2

y2
. ~34!

The coordinates of points used in this condition are defin
in Table I. In the second step we can then determine whe
in this scenario the working point lies inside or outside t
region of insecurity by checking on which side of the lin
going through the verticesN51 andN52 it lies ~see Fig.
3!. If it lies on the left, QKD is insecure. This corresponds
the inequality

xw<yw

x22x1

y2
1x1 . ~35!

First, let us turn to the inequality~34!. Substituting ex-
pressions for all coordinates according to Table I one obta
an inequality that is quadratic in the variableR

FIG. 4. If the value of expected single-click probability

greater then the discrimination probability (P̄1.PD) the described
USD attack can be, in principle, detected. The plot shows an
ample of a curve separating the set of values of total efficien
(hLhB) and mean photon numbers~in states sent by Alice! satisfy-
ing the above constraint@see inequality~32!#.

TABLE I. Coordinates of selected points in the parameter sp
of ‘‘observables,’’ which are the probabilities of single clicks~x!
and double clicks~y! in Bob’s detectors.

Working point xw5 yw5

12exp(2hLhBm) F12expS2 hLhBm

2 DG2
Vertex N51 x15PDhB y150
Vertex N52 x25PD(2hB2hB

2) y25PDhB
2/2
6-6
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5exp(2hLhBm/2) with the parameterhB . We find that the
working point lies below the line connecting verticesN50
and N52 if RP„(423hB)/(42hB) ,1…. Thus the mean
photon number in coherent states sent by Alice must
lower than a thresholdm2 given by

m,m25
22

hLhB
lnS 423hB

42hB
D . ~36!

We find that m2P@1/hL ,2 ln 3/hL# for any hB and, espe-
cially, alwaysm2>1. As we can see, this condition is sati
fied in all current experiments and does not pose a ser
restriction to the validity of our analysis especially for no
negligible loss.

Now let us turn our attention to the condition~35! which,
whenever condition~36! is fulfilled, determines whether th
working point is in the region of insecurity. It can be e
pressed in the following form:

F~m,hL ,hB!ªxwhB22yw~12hB!2PDhB
2<0. ~37!

Due to the complicated dependence ofPD on m we failed to
find its analytical solution. The analytical statement we c
do without any extra approximation is based on the obse
tion that

]F

]m U
m50

5hLhB
2.0 and F~0,hL ,hB!50.

This implies that there exists always a range of values fom
starting fromm50 for which we haveF.0, i.e., the secu-
rity of the key distribution cannot be cracked completely
the USD attack.

It is easy to evaluate condition~37! numerically. In Fig. 5
we give an example for the values of line transmittancehL
50.1 and detection efficiencyhB50.5 ~so that m2
'13.46). In this particular case, the transmission becom
insecure in about 2.07 photons. It is not completely satis
ing to have to fall back to numerical methods to investig

FIG. 5. The sign of the functionF(m,hL ,hB) is a criterion for
the security~positive! or insecurity~negative! of the quantum key
distribution with respect to the USD attack. The line transmittan
and Bob’s detection efficiency are fixed:hL50.1, hB50.5. Mean
photon number,m goes from zero tom2 limit. If F is negative the
transmission is totally insecure. The zero point lies atm'2.07 pho-
tons.
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the security against the USD attack. Fortunately, it is p
sible to get some analytic results in a situation that is relev
to applications.

3. Partly accessible loss in a system with large loss

The results of the preceding sections illuminate to w
extent Eve can achieve perfect eavesdropping by making
unambiguous state discrimination measurement followed
sending the identified signals directly to Bob’s detecto
thereby bypassing the lossy quantum channel.

However, Eve does not necessarily need to access
whole lossy quantum channel to be successful. By acces
we mean that Eve can avoid these losses either by repla
a quantum channel by a perfect, loss-free one, or by rep
ing it by classical communication and state preparation. T
formulas of the previous sections still apply if we collect
the quantityhB all those losses on the way to Bob’s detec
that are not accessible to Eve, whilehL denotes now only
that loss that is accessible to her. It is instructive to look
the limit of high nonaccessible losses (hB!1). In that case
we can approximate the functionF of Eq. ~37! by

F'hB
2~hLm2 1

2 hL
2m22PD!. ~38!

The insecurity criterionF<0 in the regionm,m2 @from Eq.
~36!# then leads to the condition

hL<
1

m
~12A122PD!, ~39!

which is independent ofhB . It can be approximated by

hL<hL
crit'

PD

m
'

1

12
m2. ~40!

Condition~39! is shown in Fig. 6 as a solid line. To mak
statements about security against the USD attack, we nee
consider additionally condition~36!, which can be approxi-
mated bym,1/hL in leading order ofhB and is shown as a
dashed line. We now can conclude that the system is se

e FIG. 6. The secure parameter regime for the losses accessib
Eve for large Bob’s losses (hB!1) is the region above the solid
line (F.0). In the region withF<0 and m,m2 the system is
insecure. In the remaining region we haveF<0, but sincem
.m2, we cannot make any definitive statements about security
6-7
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against USD attacks in the regime of small detection e
ciencieshB if we are in the parameter region withF.0 and
m,m2. Furthermore, the system is insecure in the reg
F<0 andm,m2. For the region withm.m2, we can only
make indirect statements. One is, that if the system is se
for a pair of values (m,hL), then it must be secure for a
values (m,hL8) with hL8.hL , otherwise Eve could gain a
advantage by not accessing all the loss available to
Therefore the only region about which we cannot mak
statement with the present calculation is the region withm
.4.1 andhL.1/m. Here more detailed calculation would b
necessary.

Note that these considerations are valid forhB!1 and
only in this limit doeshB no longer play any role. For highe
values ofhB this changes.

D. Comment on the statistical nature of the problem

One should keep in mind that all of Bob’s measureme
have a statistical character. Bob does not measure proba
ties but finite numbers of clicks, which naturally fluctuate
In practice Bob must set certain limits of a ‘‘confidenti
interval’’ of acceptable numbers of detector clicks. The
fect of this is that in some cases Bob will reject the tra
mission even if no eavesdropper is present. A more ser
implication is that there is always some nonzero probabi
that Eve will not be detected even if the working point li
outside the insecurity region.

Note that Eve does not need to eavesdrop all the tim
she may let pass a fraction of the signal sequence with
any intervention. Her~deterministic! information on the key
decreases with this strategy. But both Bob’s single a
double-click probabilities also change. The point correspo
ing to such an eavesdropping strategy~in the diagram as in
Fig. 3! shifts along the straight line connecting ‘‘full time’
Eve’s strategy point with Alice’s and Bob’s working poin
The relative shift equals the fraction of transmission dur
which Eve is active.

For practical purposes it would be necessary to determ
the probability that Eve’s information on the key~due to the
USD attack! will be smaller than a certain chosen limit, as
function of the limits of the confidential interval and of th
length of the key. This represents a challenge for the furt
research in this field.

V. USD ATTACK VERSUS BEAM-SPLITTING ATTACK

Traditionally, security against the beam-splitting atta
@14# has been used as a practical level of security. In
beam-splitting attack the lossy line is replaced by an id
loss-free line complemented by a beam splitter such that
total loss of the original line is reproduced. The eavesdrop
stores any photons coming out of the free arm of the be
splitter. Whenever the eavesdropperand the receiver obtain a
photon, which is possible for multiphoton signals, Eve c
measure her signal after she learns the polarization bas
the public announcement and she will learn thereby the
value of these signals completely.

It is interesting to note that security against a bea
splitting attack suggests that one can obtain a secure
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even for large average photon numbers. In the absenc
errors, the gain rate of secure key bits per signal bit can
approximated in a way similar to that used in Ref.@12# for
the optimal individual attack. This approximation is given b

GBS5 1
2 ~pexp2psplit!, ~41!

where the factor 1/2 stems from discarding signals with
equal polarization basis. Thenpexp is the probability that Bob
receives a signal, whilepsplit is the joint probability that Eve
learned the bit value of a signal and that the signal is
ceived by Bob. To point out the basic problem of the bea
splitting attack it is sufficient to consider the case ofhB51
and of coherent states. Then we find for Poissonian pho
statistics and a transmission rateh of the system

pexp512exp~2hm!, ~42!

psplit5pexp$12exp@2~12h!m#%, ~43!

GBS5 1
2 exp@2~12h!m#@12exp~2hm!#, ~44!

which is always positive. Actually, the optimum is obtaine
for m'1. It is clear from our analysis, however, that fo
large values ofm and typical loss rates, the USD attack w
render the quantum key distribution protocol completely
secure.

The awareness of this problem is low, and it is thoug
that it can be avoided by complementing the beam-splitt
attack with the additional requirement of keeping the aver
photon number low, much lower than 1, to keep the setup
the quantum domain. This seems rather odd, since there
obvious justification for this requirement. More importantl
even for photon numbersm!1, we find that for sufficiently
large loss the transmission becomes insecure accordin
the USD attack while the analysis according to the bea
splitting attack makes us believe that we are dealing wit
secure key. It seems that the USD attack is underestim
since the probability of success in the unambiguous s
discrimination goes withm3 since only for three or more
photons the four signal states are actually linear independ
The beam-splitting attack, however, succeeds with a pr
ability of orderm2, since already two photons can be split b
the beam splitter.

This seems to imply that beam splitting is the more po
erful attack. However, this is not the case since the two
tacks vary in their power differently as the loss of the syst
increases. In the USD attack the probability to identify
signal depends only on the average photon numberm, and
once this probability is high enough to generate the expec
number of signals for the receiver~which depends on the
amount of loss! then the transmission becomes insecure.
the beam-splitting attack, on the other hand, the total pr
ability of identified signalspsplit depend onm and on the
transmission coefficienth, and this probability goesdown
with increasing loss for fixedm. And indeed, we find that
pexp.psplit . In other words, the beam-splitting attack b
comes less efficient with increasing loss. This is easy to
in a simple example of a two-photon signal. The probab
6-8
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ties p(n,22n) that n50,1,2 photons arrive at Bob’s dete
tors andn22 photons go to Eve in the beam-splitting attac
are given by

p~0,2!5~12h!2, ~45!

p~1,1!52h~12h!, ~46!

p~2,0!5h2. ~47!

This means, that for high losses (h!1) most likely both
photons are sent to Eve. The probability of this event
p(0,2)'122h, while the splitting probability goes down a
p(1,1)'2h. The respective probabilities forn-photon sig-
nals are of the same order of magnitude inh. Therefore,
clearly, there is a crossover as a function ofh where for
fixed average photon numberh the USD attack is more ef
ficient than the beam-splitting attack.

We would like to stress again that from a technologi
point of view the USD attack seems to be easier to imp
ment than the beam-splitting attack. This is based on
points. First, experience indicates that complete meas
ments which destroy the quantum state completely, as is
sible by the USD attack, are easier to realize~at least in some
approximation! than the realization of a quantum chann
with reduced loss, as required by the beam-splitting atta
Second, the beam-splitting attack implies the use of quan
memory, which could store the split-off signal photons un
the polarization bases for each signal are announced.

Finally, we would like to point out again that a securi
proof for realistic signals with Poissonian photon-numb
distribution exists for individual attacks@12# and coherent
attacks@13#. Naturally, these security proofs include the s
curity against the beam-splitting attack and against the U
attack.
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VI. CONCLUSIONS

We have quantitatively analyzed an attack against rea
tic quantum crypto systems that enables an eavesdropp
gain information on the key without causing any errors
case of a lossy channel or poor detection efficiencies. It u
unambiguous discrimination of linearly independent sig
states. This attack does not require the ability to store qu
tum states or to perform complicated quantum dynam
Moreover, the attack does not require to substitute the lo
quantum channel by a perfect one.

We have derived a set of conditions that allow one
judge whether a given system can be totally insecure un
the USD attack. We have shown a secure parameter reg
in terms of the total transmission efficiency and the me
photon number. In the important limit of small detection e
ficiencieshB , we have obtained an analytic result so that
can give explicitly a set of parameters~line transmittances,
detector efficiencies, and mean photon numbers in cohe
states sent by Alice! for which the transmission is secure
insecure under the USD attack. In theory, the signal can
ways be chosen to be weak enough to allow secure com
nication. In practice, however, the detector noise pla
restrictions on that end@11#. Finally, we showed that securit
against beam-splitting attacks does not necessarily imply
curity against the USD attack. This implies that we need
search for a better conditional security criterion against
tacks deemed practical with currently available technolog
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