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Bell-inequality violation with ‘‘thermal’’ radiation
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We demonstrate that radiation field in mixed thermal or phase-randomized coherent state can be entangled
in such a way that Bell inequalities are violated. A counterintuitive result is obtained: a specific test reveals that
maximal violation can be achieved with mixed states exhibiting large entropy.
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I. INTRODUCTION

In last decades, the phenomenon of entanglement betw
two spatially separated photons was investigated both exp
mentally and theoretically mainly in order to show that qua
tum mechanics is not a local realistic theory@1,2#. This con-
ceptual distinction between local realistic theories a
quantum mechanics is not the same as difference betw
entangled and separable states, and not all the entan
states must violate local realism. Entangled quantum st
not admitting any local-realistic explanation are importa
resources in quantum communication and information p
cessing. Beyond commonly employed entanglement in po
ization degrees of freedom between two photons@3#, con-
tinuous variable entangled states have been gener
utilizing parametric processes@4#. Also an entanglement o
the coherent states, that can be considered as the qua
analog of deterministic light waves, was studied@5#. In two-
photon system, nonlocality of the polarization entanglem
can be simply proved with the help of Horodecki’s necess
and sufficient condition of nonlocality@6# and for multipar-
tite case, Mermin’s inequality was suggested@7#. For con-
tinuous quantum variables, nonlocality tests were propo
based on Wigner function measurements@8#, construction of
direct analog to the Pauli spin operators@9#, or Schwinger
spin operators@10# in infinite-dimensional Hilbert space.

In all the cases, the entangled states, that were used to
Bell inequalities, were usually considered to be pure sta
Recently, the entanglement of mixed states has been
lyzed to understand how the disorder influences on
amount of entanglement@11#. It was shown that entangle
ment can always arise in the interaction of an arbitrarily la
system in any mixed state with a single qubit in a pure st
In addition, it was also found that a chaotic field exhibitin
large entropy can nevertheless entangle the qubits tha
prepared initially in a separable state.

In this paper, we consider a different scenario: A trans
of the qubit entanglement to the entanglement between t
mal and vacuum states. We examine a situation, when
entangling device prepares entangled states of radiation
mixed states~thermal or phase-randomized coherent light! at
the input. Similarly to the idea presented in Ref.@12#, the
entangling device can produce a four-mode entangled s
from two mixed states and two vacuum states. It is sho
that even for very disordered states Bell inequalities
strongly be violated. If there is a narrow frequency portion
1050-2947/2002/65~4!/043802~7!/$20.00 65 0438
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thermal radiation in the input of the entangling device th
Bell inequalities are violated when the frequency of radiat
is ‘‘low’’ and the temperature of thermal source is ‘‘high.
For a phase-randomized coherent radiation the violation
Bell inequalities is even more significant. In addition, t
violation can be enhanced for both the cases of radiation
a lot of different modes are entangled with vacuum sta
Thus almost the maximal Bell-inequality violation can b
achieved with such thermal states exhibiting a large entro

The paper is organized in the following way: In Sec.
we present the mixed entangled state and prove the enta
ment by transposition criterion@13#. In Sec. III, we derive a
lower bound on Clauser-Horne-Shimony-Holt-Bell~CHSH-
Bell! inequality violation for the studied state. In Sec. IV, w
demonstrate that the nonlocality of the generated entan
state can be enhanced as the entropy of initial therma
phase-randomized coherent state of radiation increase
Sec. V, the preparation of this entangled state is sugge
and possible implementation in the cavity QED experime
is discussed.

II. MIXED ENTANGLED STATE

We consider two separate systemsA and B that consist
locally of two modesA1,A2 andB1,B2. All modes are ini-
tially unentangled. We further assume that the density ma
ces of these four modes are diagonal in orthonormal F
~number-state! bases$un&% and that the modesA2 andB2
are in vacuum states,

rA5(
n

pnun&A1^nu ^ u0&A2^0u,

rB5(
m

r mum&B1^mu ^ u0&B2^0u. ~2.1!

The density matrix of the total system has a factorized fo
r in5rA^ rB . Now, one can consider a conditional operati
which transfers~for every nÞ0 or mÞ0) the factorized
state: un&A1u0&A2um&B1u0&B2, to the following entangled
state:

ucnm&5
1

A2
~ un&A1u0&A2u0&B1um&B2

2u0&A1un&A2um&B1u0&B2). ~2.2!
©2002 The American Physical Society02-1
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A physical implementation of this conditional transformati
is discussed in detail in Sec. V. The entangling device p
pares, for eachm,n, the analog of a singlet state, that w
often employed to test Bell-type inequalities. Thus the init
density matrixr in is transformed into the form

rout5N(
mn

pnr m~12dn0dm0!ucnm&^cnmu, ~2.3!

where N5@(nmpnr m(12dn0dm0)#215(12p0r 0)21. The
absence of the contribution withm50 andn50 is the con-
sequence of a specific postselection entangling proce
that will be explained later.

If there is at least onen.0 and onem.0 such thatpn
Þ0 andr mÞ0 then the state~2.3! is entangled. This can b
proved in a very straightforward way using the so-cal
transposition criterion@13#. This criterion says that if opera
tor rTB, obtained fromr by partial transposition in sub
systemB, is not positive then the stater is entangled. Partia
transposition of

rout5 (
i jklmnst

r i jklmnstu i A1 j A2kB1l B2&^mA1nA2sB1tB2u

in basisu i A1 j A2kB1l B2&[u i &A1u j &A2uk&B1u l &B2 gives

rout
TB5 (

i jklmnst
r i jklmnstu i A1 j A2sB1tB2&^mA1nA2kB1l B2u.

Now, consider the vector

ufmn&5
1

A2
~ u0&A1um&A2u0&B1un&B2

1um&A1u0&A2un&B1u0&B2), ~2.4!

wherem,n.0 and calculate the following mean value:

^fmnurout
TBufmn&52N

pmr n

2
. ~2.5!

If pmÞ0 andr nÞ0 then this quantity isnegativehence the
state~2.3! is entangled. We note that the entanglement of
state~2.3! can often be ‘‘masked’’ by the noise of origina
mixed states. For example, conditional von Neumann
tropy, S(rA8 )2S(r), is positive for many particular case
here. Nevertheless, we shall show that the entangleme
‘‘strong’’ enough to violate CHSH-Bell inequality.

III. BELL-INEQUALITY VIOLATION

A natural question arises whether the entangled state~2.3!
violates local realism. However, a formulation of the app
priate Bell inequalities in infinite-dimensional systems is,
general, a very complicated problem. The efficiency of n
locality testing strongly depends on the choice of particu
Bell inequalities and measured observables. In order to d
onstrate the violation of Bell inequalities one needs lo
operations analogous to spin rotations. Since the state~2.2!
lies only in a subspace of the total Hilbert space, spanned
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the direct products of the basis vectorsu0&1u0&2 ,un&1u0&2,
and u0&1un&2 for everynÞ0 in each subsystem, we can u
the following unitary operation to do the job:

un&1u0&2→cosuun&1u0&21sinuu0&1un&2 for nÞ0,

u0&1un&2→2sinuun&1u0&21cosuu0&1un&2 for nÞ0,

u0&1u0&2→u0&1u0&2 , ~3.1!

where the parameteru does not depend onn.
Bell-type experiment consists of two ‘‘rotations’’ accord

ing to recipe ~3.1!, performed by two possibly spacelik
separated observers, followed by realistic yes-no detec
on each mode. Each such detection has only two poss
outcomes~detector either fires or it does not!, that can be
described by projectorsu0&^0u ~for ‘‘no’’ ! and 12u0&^0u
5(n51

` un&^nu ~for ‘‘yes’’ !. Let us assign the following val-
ues to these outcomes:zi50 if the detector~in mode i ) is
quiet andzi51 if it clicks. Then the resultsX andY of local
two-mode measurements~including ‘‘rotations’’! performed
by the first and the second observer, respectively, can
expressed as

X~u!5zA1~u!2zA2~u!,

Y~u!5zB1~u!2zB2~u!. ~3.2!

After the experiment is repeated many times and our t
observers compare their results, the mean value of Bell
erator~for CHSH inequalities! can be estimated,

B5uC~uA ,uB!1C~uA ,uB8 !1C~uA8 ,uB!2C~uA8 ,uB8 !u,

~3.3!

where correlation function

C~u1 ,u2![(
j ,k

XjYk p~Xj ,YkuuA ,uB! ~3.4!

~summations go over all possible results!.
Every local-realistic theory@1# must fulfill the following

inequality B<2 @2#. However, it follows from straightfor-
ward quantum-mechanical calculations that for state~2.3! the
correlation function~3.4! reads

C~uA ,uB!52cos@2~uA2uB!#
~12p0!~12r 0!

12p0r 0
. ~3.5!

Therefore the results of the above-mentioned local meas
ments performed on state~2.3! canviolate inequalityB<2,
in principle. Maximal value,

Bmax52A2
~12p0!~12r 0!

12p0r 0
, ~3.6!

occurs for the angles

uA50, uA85
p

4
uB5

p

8
, uB852

p

8
. ~3.7!
2-2
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If both the mixed states have the same overlap with vacu
statep05r 0, the condition for the violation of Bell inequality
for the considered angles is given by a simple formula

p0,
A221

A211
'0.1716. ~3.8!

As can be seen from Eq.~3.6!, the maximum value ofB
depends on the probability of the presence of the vacu
state in the input density matrices. Thus, if the input den
matrices of systemsA1 andB1 do not contain the vacuum
state then the maximal violation of CHSH-Bell inequality
the same as for the pure Einstein-Podolsky-Rosen maxim

entangled state of two spin-1
2 particles. The mean value o

Bell operator decreases as the contribution of the vacu
state increases in the mixtures. It should be emphasized
for properly chosen local measurements the violation
CHSH-Bell inequality does not depend on the randomn
contained in the mixture but only on the overlaps of t
vacuum state and the input density matrices.

IV. THERMAL AND PHASE-RANDOMIZED
COHERENT RADIATION

There are two mixed states of special interest, nam
thermal radiation, exhibiting Bose-Einstein statistics, a
phase-randomized coherent radiation, exhibiting Poisso
statistics. Let us now study the entangled states propose
Sec. II when thermal and phase-randomized coherent s
are at the input.

A single mode of thermal radiation has the density ma

r5(
n

^n&n

~11^n&!11n
un&^nu, ~4.1!

where

^n&5
1

expS \v

kBTD21

. ~4.2!

For example, if the temperature of a radiation source~e.g.,
incandescent lamp! T'3000 K and the optical frequenc
v'2.531015 Hz, the mean value of photon number is^n&
'1.7731023. The probability of the vacuum state in th
mixture is

p0512expS 2
\v

kBTD5
1

11^n&
, ~4.3!

what leads to the valuep0'0.9982 for the above given data
Thus in the optical region, the overlap of vacuum and th
mal light is too large and the Bell-inequality violation do
not occur.

The dependence of the maximal Bell-inequality violati
on the parameterb i5\v i /kBTi , i 5A,B, of particular
modesA1,B1 can be simply evaluated,
04380
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Bmax52A2
1

exp~bA!1exp~bB!21
52A2

1

11^n&A
211^n&B

21

~4.4!

and it is displayed in Fig. 1. Only for very smallbA andbB ,
i.e., for high temperatures and small frequencies, CHSH-B
inequality is violated. Thus for the given temperatureT of
both the thermal sources the infrared component of radia
gives better results than the ultraviolet one. On the ot
hand, for the fixed frequencyv of both the sources the
higher temperature leads to the stronger violation of B
inequality. If the sourcesA andB are identical, the maximum
of Bell factor

Bmax52A2
1

2 expS \v

kBTD21

~4.5!

is similar to Planck rule for mean photon number~4.2!. In
this case, Bell-inequality violation occurs only if the dime
sionless parameterb satisfies relationb, ln@(A211)/2#
'0.1882 or the mean number^n& is sufficiently large^n&
.2(A211)'4.828. Consequently, for the visible comp
nent of radiation the thermal sources must have an ‘‘as
nomical’’ temperatureT.101 000 K, whereas for the infra
red component with v'531013 Hz, temperature T
.2021 K is sufficient to obtain Bell-inequality violation.

Another interesting kind of mixed state is that correspon
ing to phase-randomized coherent light. Its density ma
can be written as

r5(
n

^n&n

n!
e2^n&un&^nu. ~4.6!

Phase-randomized coherent radiation can be obtained
an intensity-stabilized single-mode laser with the phase u
formly distributed in the interval̂0,2p). In contrast to ther-
mal radiation, the maximally probable state in the mixtu
~4.6! is not vacuum state but a Fock stateun&, wheren cor-

FIG. 1. The maximal violation of the CHSH-Bell inequality fo
thermal light as the function of parametersbA5\vA /kBTA and
bB5\vB /kBTB.
2-3
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responds approximately to the mean number of photons^n&.
Thus the overlap of phase-randomized coherent light w
the vacuum state is much less than for thermal light. T
probability of the vacuum state in the density matrix~4.6! is
p05exp(2^n&). This leads to maximal Bell-inequality viola
tion

Bmax52A2
@12exp~2^n&A!#@12exp~2^n&B!#

12exp@2~^n&A1^n&B!#
.

~4.7!

From Fig. 2 one can see that in the case of phase-random
coherent light the Bell-inequality violation is achieved f
less^n&A and ^n&B than in the case of thermal light. If on
considers the two identical sources of phase-randomized
herent radiation, then the Bell inequality is violated if^n&
. ln@(A211)/(A221)#. At optical frequencies, lasers ca
generate the phase-randomized light with such a mean
ton number, hence the violation can be obtained more sim
than for the thermal light.

Real thermal-light sources emit to a large amount of d
ferent independent modes. The density matrix of this mu
mode state is given in the following form:

r5)
m

(
nm50

`
^nm&nm

~11^nm&!11nm
unm&^nmu, ~4.8!

wherenm is photon number for particular modem and unm&
is the Fock state of the corresponding mode. Let us supp
that this multimode thermal state is fed to the inputsA1 and
B1 and the multimode vacuum states are present in the
putsA2 andB2. The analysis presented in Sec. III may
generalized to multimode light in a straightforward way. W
define the ‘‘rotations’’ of the multimode vacuumu$0%& and
any excited multimode stateu$n%& as follows:

u$n%&1u$0%&2→cosuu$n%&1u$0%&21sinuu$0%&1u$n%&2 ,

u$0%&1u$n%&2→2sinuu$n%&1u$0%&21cosuu$0%&1u$n%&2 ,

~4.9!

FIG. 2. The border of violation of CHSH-Bell inequality fo
thermal and phase-randmized coherent light in dependence on
photon numberŝn&A and ^n&B .
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for $n%Þ$0%, andu$0%&1u$0%&2→u$0%&1u$0%&2 for multimode
vacuum in both the modes. Detection that discriminates
tween the field vacuum and other states has two poss
outcomes described by projectorsu$0%&^$0%u and 1
2u$0%&^$0%u. It can be shown that the maximal violation o
Bell inequality exhibits the same form~3.6! as in the case of
single-mode radiation, but with the following notation:

p05)
m

p0,m , r 05)
m

r 0,m . ~4.10!

With increasing number of the modes of thermal radiat
the effective overlap of vacuum state and such a multim
field decreases and, consequently, the maximal violation
Bell inequality is enhanced. In this way, the Bell-inequal
violation can be achieved for every thermal radiation, if
sufficient number of modes is taken into account.

V. EXPERIMENTAL IMPLEMENTATION

In this section we will discuss the principle of preparati
of the state~2.2! and possible experimental implementatio
in cavity-QED experiments. The scheme for implementat
of the desired conditional transformation consists of th
Mach-Zehnder~MZ! interferometers with equal-length arm
@12# as is shown in Fig. 3. A single photon is fed to one inp
port of the central interferometer which is coupled to the l
and right interferometers via nonlinear Kerr medium effe
tively described by the following interaction Hamiltonian:

HI ,i5\ka†aai1
† ai1 . ~5.1!

Herea† anda are the creation and annihilation operators
the mode corresponding to the left~or right! arm in the cen-
tral MZ interferometer,ai1

† and ai1, with i 5A,B, are the
creation and annihilation operators of modesA1 ~or B1),
andk is a real interaction constant.

If there is a photon in the left arm of the central M
interferometer and the productkt int ~wheret int is an effec-
tive interaction time! is set to be equal exactly top then the
described device realizes the phase shiftp in the left MZ
interferometerA and effectively flips the modesA1 andA2

an

FIG. 3. Preparation device; SA and SB denote the source
thermal ~pseudothermal! radiation, SPS is a single photon sourc
QND is quantum nondemolition measurement performed by
Kerr interaction andD1 andD2 are detectors.
2-4
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on the output. On the other hand, if there is no photon in
left arm then the states of modesA1 and A2 remain un-
changed. The described transformation is defined as follo

UAun&A1u0&A2u1&5u0&A1un&A2u1&,

UAun&A1u0&A2u0&5un&A1u0&A2u0&, ~5.2!

where the last kets in the formulas denote the state of ph
in the central MZ interferometer. The same is true about
right arm of the central MZ interferometer and modesB1
and B2. These unitary transformationsUi , i 5A,B, can be
expressed as

Ui5UBS,i
† UI ,iUBS,i , ~5.3!

where UBS,i is the 50:50 beam-splitter transformation a
UI ,i accounts for the nonlinear interaction in Kerr medium

UBS,i5expFp4 ~ai2
† ai12ai1

† ai2!G ,
UI ,i5exp~ ipa†aai1

† ai1!. ~5.4!

So, if the photon goes through the left arm the modesA1 and
A2 are flipped while the state of systemB is unchanged.
Completely symmetrical situation occurs, if the photon go
through the right arm.

Due to the path uncertainty of the photon in the interf
ometer the state of the whole system after the interactio
given by the formula

uC&5
1

A2
~ u0&u1&un&A1u0&A2u0&B1um&B2

1 i u1&u0&u0&A1un&A2um&B1u0&B2), ~5.5!

where the kets without any subscript denote possible st
of the photon inside the MZ interferometer situated in t
center. Which-way information is finally erased by a bea
splitter with amplitude reflectancei /A2 ~the last one in the
MZ interferometer! followed by two photodetectorsD1 and
D2 ~see Fig. 3!. Depending on which one of these two d
tectors fires we obtain one of two possible output states
modesA1, A2, B1, andB2. DetectorD1 fires with prob-
ability w15(11dn0dm0)/2 and if it clicks the following
state is obtained:

uC1&5
1

A2
~ un&A1u0&A2u0&B1um&B21u0&A1un&A2um&B1u0&B2).

~5.6!

Similarly, detector D2 clicks with probability w25(1
2dn0dm0)/2 and when it fires one obtains the state

uC2&5
1

A2
~ u0&A1un&A2um&B1u0&B22un&A1u0&A2u0&B1um&B2),

~5.7!

which is exactly the considered state~2.2!.
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The crucial point of the preparation is to achieve an
fective nonlinear quantum nondemolition~QND! interaction
~5.1! without pronounced decoherence. QND measureme
of photon number were carried out in appropriately dop
optical fibers@14#, however, with relatively small efficiency
Recently, it was shown that the nonlinear Kerr coupling c
be enhanced using electromagnetically induced transpar
in atomic vapor. A change of light pulse phase aboutp by
the single-photon pulse is expected@15#. To realize a large
cross phase modulation on a single-photon level, both ca
and free-medium regimes have been considered@16#.

More efficient scheme can be implemented in doub
cavity QED experiment which is depicted in Fig. 4. Th
experimental setup is an extension of the one previously u
by Raymondet al. @17#. Briefly, a stream of two-level atom
serves as a set of the auxiliary systems and the electrom
netic fields in the cavitiesC0 ,C1 ~Alice’s side! and C08 ,C18
~Bob’s side! are the systems of interest. All the cavities e
fectively exhibit only one field mode, particularl
C0 :A1, C1 :A2, C08 :B1, andC18 :B2. To entangle the cavi-
ties, Alice needs to send only one atom that is detected
Bob in appropriate state.

The pair of cavities is coupled through controlled sup
conducting optical waveguide to perform the linear coupli
~or double-side cavities can be considered!. Another possi-
bility would be to employ two-mode cavities~e.g., two po-
larization modes! with linear coupling between them. Thu
Alice’s and Bob’s main interferometers are realized by t
coupling between cavities, whereas Ramsey atomic inter
ometer is used for the auxiliary system. The duration of
experiment is typically so short that we can neglect rel
ation processes in the cavities, as well as for the atoms.
approximation is realistic for experimentally achievable ca
ity quality factors of the order of 109 corresponding to pho-
ton lifetimes of the order a few milliseconds@17#. The phase
manipulation of the cavity field involves three-level atom
interacting with light in the cavity. In the large detunin
limit, the interaction can be effectively described by t
Hamiltonian

HI25\ka1
†a1u↑&^↑u,

FIG. 4. Preparation device~cavity QED implementation!: O,
oven; V, velocity selection; B, excitation box;R,R1 ,R2, Ramsey
zones;C0 ,C1 ,C08 ,C18 , high-Q cavities,De ,Dg , ionization detec-
tors.
2-5
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with k5V/d, whereV is Rabi vacuum coupling andd is
detuning between atomic and cavity frequency. As in
experiment@17#, the coupling betweenC0 andC1 plays no
role during the interaction~5.1!, provided that the interaction
time is much shorter than coupling period and it is mu
lower than photon lifetime in cavity.

The procedure can be performed as follows. In the fi
step, Alice prepares thermal statesrA1 andrB1 in the cavities
C1 andC18 , whereas vacuum state is present in the cavi
C0 andC08 . First, the coupling between the cavitiesC0 and
C1 (C08 and C18) is switched on. After 50:50 energy ex
change betweenC0 andC1, the atom effusing from an ove
O ~with the velocity selector in zoneV) is excited into upper
circular Rydberg stateu↑& in zone B. The atom is prepared
before enteringC0, in superposition 1/A2 (u↑&1u↓&) by a
classical microwave field applied in zoneR1. Then atom-
field interaction in the cavity realizes the controlled pha
shift operation. After the interaction an additional Rams
field R is introduced in order to establish the following o
eration: u↑&→u↓& and u↓&→u↑&. It ensures that the flip op
eration~5.2! is performed either between the cavitiesC0 ,C1

at Alice’s side or between the cavitiesC08 ,C18 at Bob’s side.
Then the atom is sent to Bob.

In the second step, another 50:50 cavity coupling follo
on the both sides and the atomic states are rotated in a
ond classical microwave zoneR2 ~performing again the sam
transformation as in the first Ramsey zoneR1). The atom is
finally detected by field-ionization countersDe andDg , ei-
ther in stateu↑& or in stateu↓&. The measurement accurac
depends on the detector’s selectivity, that is, the ability
distinguish between the two atomic states and on the velo
spread of the atomic beam. After detection, an entang
state among the four cavities is prepared.

However, the experimental verification of Bell-inequali
violation in multiparticle system is a rather complicat
problem. To demonstrate experimentally the effect of
overlap of the input states on the nonlocality of the out
state, we can present the simplest example employing
mixed staterA1,B15p0u0&^0u1p1u1&^1u in both the inputs.
Then the proposed local operations~3.1! can be simply real-
v.
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ized by the beam-splitting between modesA1,A2 andB1,B2
with different splitting ratio. It could be simply understoo
that Bell-inequality violation becomes stronger as the ov
lap of the input states becomes smaller, i.e., as modes 1
2 are almost in orthogonal states. The discussed therm
radiation case in the infinite dimensional Hilbert space is
extension of this simple idea.

VI. CONCLUSION

It has been shown that two mixed states can be entan
in such a way that the entanglement of the resulting stat
strong enough to violate Bell inequalities~when proper local
measurements are chosen!. The disorder due to the statistica
nature of the density matrices of input states is irrelevant—
does not influence the violation of Bell inequality. The on
parameters affecting the maximum of the mean value of B
operator are overlapsp05^0urA1u0& and r 05^0urB1u0&.
This is also the reason of a counterintuitive behavior wh
the entanglement increases as the input thermal state
comes more ‘‘classical’’ (b→0), whereas in the ‘‘quantum’’
limit ( b→`) the entanglement vanishes. Another counter
tuitive aspect of this phenomenon appears if the multimo
thermal radiation is considered. Since the overlap with m
timode vacuum becomes smaller as the number of mo
increases, the multimode thermal radiation can violate B
inequality more notably, irrespective of its larger entrop
Thus this ‘‘classical-like’’ radiation can be strongly entangl
in the ideal case and even exhibit the pronounced quan
nonlocality. Unfortunately, like other kinds of mesoscop
states, the described quantum superpositions are very s
tive to the destructive influence of decoherence and loss
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