PHYSICAL REVIEW A 69, 032302(2004)

Probabilistic quantum multimeters

Jaromir Fiuraseié and Miloslav Dusek
1QUIC, Ecole Polytechnique, CP 165, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
2Department of Optics, Palacky University, 17 Listopadu 50, 772 00 Olomouc, Czech Republic
(Received 27 August 2003; published 8 March 2004

We propose quantum devices that can realize probabilistically different projective measurements on a qubit.
The desired measurement basis is selected by the quantum state of a program register. First we analyze the
phase-covariant multimeters for a large class of program states and then the universal multimeters for a special
choice of program. In both cases we start with deterministic but error-prone devices and then proceed to
devices that never make a mistake but from time to time give an inconclusive result. These multimeters are
optimized(for a given type of prograinwith respect to the minimum probability of an inconclusive result. This
concept is further generalized to multimeters that minimize the error rate for a given probability of an incon-
clusive result(or vice versa Finally, we propose a generalization for qudits.
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[. INTRODUCTION these devices. Since nonorthogonal program states are used,

Programmable quantum multimeters are devices that calob cannot 'e"?‘m Wi.th certainty what the measurement was.
realize any desired generalized quantum measurement fronfal €€ considerations strongly suggest that the program-
chosen setleither exactly or approximately[1,2]. Their mabl_e quantum devices pould play an important role in quan-
main feature is that the particular positive operator valuedum information processing.
measurgPOVM) is selected by the quantum state of a “pro-  In this paper, we will describe programmable quantum
gram register’(quantum software In this sense they are devices that can accomplish von Neumann measurements on
ana]ogous to universal guantum procesg8rs]. The mul- a single C]leit. However, it is impossible to perfectly encode
timeter itself is represented by faxed joint POVM on the ~ arbitrary projective measurement on a qubit into a state in
data and program systems togetligee Fig. 1L Each out- finite-dimensional Hilbert spacil]. The proof of this theo-
come of this POVM is associated with one outcome of tha€m is similar to the proof that it is impossible to encode an
“orogrammed” POVM on the data alone. From the math-arbitrary unitary operatiorfacting on a finite-dimensional
ematical point of view the realization of a particular quantumHilbert spacg into a state of a finite-dimensional quantum
multimeter is equivalent to the optimal discrimination of cer- System[3]. Briefly, one can show that any two program
tain mixed states. A different kind of quantum multimeter states that perfectly encode two different measurement bases
that can be programmed to evaluate the expectation value #fiust be mutuaIIy orthogonal. Nevertheless, it is still possible
any operator has been introduced in R&. In addition to  to encode POVMs that represent, in a certain sense, the best
quantum multimeters, other devices whose operation igpproximation of the required projective measurements.
based on the joint measurement on two different registers A specific way of approximation of projective measure-
have been proposed recenﬂy_ A universal quantum matchin@ents is a “probabilistic” measurement that allows for some
machine that allows a decision as to which template state igconclusive results. In this case, instead of a two-component
closest to the input feature state was analyzedi8in The  projective measurement, one has a three-component POVM
problem of comparison of quantum states was studig8]in ~ and the third outcome corresponds to the inconclusive result.
So-called universal quantum detectors were considered ihhe natural request is to minimize the error rate at the first
[10]. two outcomes. As a limit case it is possible to get an error-

Programmab|e guantum multimetgds2] and gate arrays free operation(however, with a nonzero probability of an
[3-6] are in some sense similar to classical computers. Ifinconclusive resujt such a multimeter performs exact pro-
both cases a single fixed machiff@rdwarg can be used to jective measurements but with a probability of success lower
perform many different operations on the state of the datdhan 1. Such a device is conceptually analogous to probabi-
register, and the operation is controlled by the state of théistic programmable quantum gat3-5]. The other bound-
program register_ In particu|ar, programmab|e quantum mulary case is an ambiguous multimeter without inconclusive
timeters can be considered as a model of measurement-bas@sults[2].
quantum computation. Possible cryptographic applications of One possible way to implement quantum multimeters is to
programmable quantum machines have also been considergyploit programmable gate arrays. A projective measurement
in the literature[4]. For instance, one can imagine a situationin any basis{|¢;)}_; can be performed as a sequence of a
where one partyAlice) provides a program while another (programmedlunitary operation that maps the measurement
party (Bob) actually uses the program to perform a measurebasis onto the fixed computational baﬂis)}?zl, followed by
ment with the programmable multimeter. As we shall seea measurement in the computational basis. However, the ap-
below, the programs of the multimeters are nonorthogonalproach based on programmable gate arrays need not be op-
yet they allow for a perfedtalbeit probabilisti¢ operation of  timal. Also, most programmable gate arrays considered in
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the literature are probabilistic and they involve complicated Data o alized

entangled multiqubit programs. In contrast, we consider both ~ ? ngoinzreﬁe 1
deterministic and probabilistic multimeters with simple pro- measufemem Mea;uremem
grams in product states. Interestingly, Vidal, Masanes, and >p—)ProgTam | ) outcome

Cirac (VMC) proposed a probabilistic gate array that can

perform any rotation of a qubit about the axis of the FIG. 1. Schematic drawing of a quantum multimeter. The effec-

Poincaré sphere and employs a product-state progédm tive measurement performed on the data stei selected by the

We will discuss the links of the VMC gate with phase- quantum state of the program registdf),. The multimeter itself

covariant multimeters below. carries out dixedjoint generalized measurement on data and pro-
Our present article is organized as follows. In Sec. Il wegram states which is described by a POYNI;}.

start with the analysis of phase-covariant multimeters that

can perform von Neumann measurement on a single qubit igf N copies of the basis staté), [W),=[i)*N. Since we

any basis located on the equator of the Bloch sphere. Firgfave restricted ourselves to the bagbs the statei.) can
we discuss deterministic devicgso inconclusive results but pe obtained from,) via unitary transformation,
errors may appearthen error-free probabilistic devicé¢so

errors but inconclusive results may appeand finally gen- [y = o), (2)
eral multimeters with a given fraction of inconclusive results
optimized with respect to a minimal error rate. Moreover, wewhereo, denotes the Pauli matrix. This implies that all pro-
give a brief discussion of a possible optical implementatiorgrams of the formjy,)®|y_)*" are equivalent to the pro-
of the simplest phase-covariant multimeter with a single-gram|¢,)*" because these programs are related vixexd
qubit program. At the end of the section we construct theunitaryU=1%I@ o). First, we shall derive the optimal de-
optimal phase-covariant multimeter for the VMC programterministic multimeter, which always yields an outcome, but
and we prove that the VMC gate followed by measuremengIfors may occur. Then we shall consider a probabilistic
in the fixed basig|0)%|1))/\2 in fact represents the optimal multimeter that condi_tionally realizes exactly the von Neu-
multimeter for the VMC program. In Sec. Il we also intro- Mann measurement in the basly, but at the expense of
duce and explain in detail all necessary mathematical toolsSOMe f_ractlon of mgoncluswe results. The deterministic and
Further, in Sec. Ill we study universal multimeters thatUnambiguous multimeters are two extremal cases from a

qubit. We confine our investigation to a program consistingthat the probability of a correct outcome for measurements
of the two basis states. Again, we start with deterministicon basis states is maximized for a fixed fraction of inconclu-
proceed to apparatuses with a given fraction of inconclusivéed in this section.

results. Section 1V is devoted to probabilistic error-free uni-

versal multimeters that can accomplighy projective mea- A. Deterministic multimeter

surement on audit Section V concludes the paper with a

short summary. The multimeter is a device that performs a joint general-

ized measurement described by the POYI¥|} on the data
and program registersee Fig. 1. This fixedjoint measure-
Il. PHASE-COVARIANT MULTIMETERS ment on the data and program can also be interpreted as an
effective measurement on the data register, which is de-
In this section we will consider multimeters that should scribed by the POVMr; and depends on the program via
perform von Neumann measurement on a single qubit in any
basis{|i,),|#.)} located on the equator of the Bloch sphere, = Tro[(Ig @ [W)(WDIL;], (3)

1 i where the subscripts “d” and “p” denote the data and pro-
[u(@)) = E(|0> +e1), (1) gram states, respectively, amds the identity operator. The
deterministic single-qubit multimeter is fully characterized

where ¢ €[0,27] is arbitrary. The multimeter should be by a two-component POVMIIL,,II_}. Upon obtaining the
phase covariant, i.e., it should operate equally well for alloutcomell,(I1_) one guesses the state of the data register to
phasesp. To simplify notation, we shall not usually display pe |y, )(|4_)). Ideally,
the dependence of the basis statesdoexplicitly in what
follows. Generally, the design of the optimal multimeter e = | )i (4)
should involve the optimization of both the dependence of
the program on the measurement basis and the fixed joirghould hold, but this cannot be achieved for @llwith a
measurement on the program and data registers. Howevdmite-dimensional program.
this is a very hard problem that we will not attempt to solve The performance of the multimeter is quantified by the
in its generality. Instead, we will design an optimal multim- probability Pg that the measurement yields the correct out-
eter for a particular simple and natural choice of programcome when the data register is prepared in the basis|gtate
namely, as if2], we assume that the program of the multi- or |4_) with probability 1/2 each. For each particular phase
meter|\lf)p which determines the measurement basis consisté we thus have
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X= |0>d<0| ® |N!0>p<N10| + |1>d<1| ® |N1N>p<N1N|y
(10

and|N,k) denotes a normalized totally symmetric stateNof
qubits withk qubits in statd1) andN—-k qubits in statg0).

, o It follows from Eq.(8) that the optimal deterministic mul-
where Y =[ihe )| Assuming a homogeneoaspriori dis-  imeter is the one that optimally discriminates between two
tribution of the angles, we define the average success ratenyixed stateRR, andR_. This problem has been analyzed by
as Helstrom[11], who showed that the maximal achievable suc-
cess rate is

P() = ST 4(6) © 4]

+THILY(8) @ 4], (5)

2w d¢
Ps=| Psé) . (6) 11

0 T Psmax= 5 + ZTr|R+ -R, (11
We define the optimal deterministic multimeter for the pro- gnd the optimal POVM is given by projectors onto the sub-
gram [¢,)°" as the multimeter that maximizeBs. The  gpaces spanned by the eigenstateARER, -R_ with posi-
choice ofPs as the figure of merit is strongly supported by tiye and negative eigenvalues, respectively. If some of the
the observation thaPs can be interpreted as the averagegigenvalues ofAR are zero, then the projectors can be freely
fidelity of the multimeter. Consider the effective POVM on g4ded to eithefl, or IT_.
the data qubi{.(¢), 7_(¢)} for some particular phasg. It In the basig0)¢[N,K)p, |1)4N,K),, the matrixAR is block
IS natur-al tO def|ne the f|del|ty- Of thIS POVM with reSpeCt to diagona' and |ts eigenva'ues and eigenstates can eas”y be
the projective measurement in the bagis(¢4)) as follows:  getermined. Since T&R| is equal to the sum of absolute

values of the eigenvalues AR, we find after simple algebra

F(9) = 5Dl Do) + 5@l "

N
1 1 /(N)( N )
P =Sr=—> . 12
It is easy to see that the average fidelityF Smax™ 5 N1 k/\k-1 (12

:(1/27T)f§”F(¢)d¢ coincides with the average success rate . . . o
(6). Clearly,F=1 andF=1 if and only if Eq.(4) holds for Intgrest]ngly ENOUGIPs maxis eq“‘f’" to the optimal fidelity
all ¢ (maybe except for a set of measure 2ero of estimation ofjy:.(¢)) from N copies of|y..(¢)) [12]. So

To simplify the notation we introduce the symi@|, for ~ ©N€ possible implementation of the optimal deterministic

the binomial coefficient phase-covariant multimeter with program,(¢))*N would
’ be to first carry out the optimal estimation pf.(¢)) and

N then measure the data qubit in the basis spanned by the es-

CN,k:(k>- (7 timated state and its orthogonal counterpart. Instead, one

could also perform a joint generalized measurement on data
] ) ) ) and program registers. The two elements of the optimal
On inserting the formula foPg(¢) into Eqg.(6) and carrying  poyM that maximizess are given by

out the integration oves we find that .

+ + 1
1 I = 25 TR+ X, (13
Ps=S(TILR]+ TrILR]), ®) =
where
where the two positive semidefinite operat®sread 1
M = S 10NKp £ [Nk = 1)) (14)
N A
+ + 1
RFW? Crve 1 PN PR ok The effective POVM on the data registé8) can be ex-
k=1 pressed as
1 N 1 Ty = PSma)J )i + (1= PSmax)|¢:><¢:|- (15
R = WE Crrrleng{enid + X In the limit of infinitely large program registeN — o, the
k=1 POVM (15 approaches the ideal projective measurement
(4).

Here,
B. Error-free probabilistic multimeter

e = V1 =Byl 0N K)p = VB DN k= 1), (9) The multimeter designed in the preceding section is only
approximate, because the effective POVYMb) on the data

with Byy=k/(N+1). The operatoiX that is common tdR,  register differs from the projective measurement in the basis

andR_ is given by l,), |-). Here, we construct a multimeter that realizes an
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exactvon Neumann measurement in the ba&iswith some N N

probability Ps. This is achieved at the expense of the incon- > |Cnk— Crpedl = 2( ) -2. (19
clusive results which occur with the probabili§j=1-Pg k=1 N/2

and are a@ssociaﬁed with the POVM elemdiy. 'Su.ch. a on inserting the sum back into EQL8) we obtain
probabilistic multimeter must unambiguously discriminate

between two mixed statd®, andR_. The unambiguous dis- 1 /2n

crimination of mixed quantum stat¢$3,14 (and, more gen- Pi(2n) = ﬁ( N ) (20)

erally, discrimination of mixed states with inconclusive re-
sults[15,16) has attracted considerable attention recently. The calculation for oddN=2n—-1 proceeds along similar

As formally stated in Ref[13], we have to find a three-
component POVMIIL,,I1_,II, that maximizes the success
rate (8) under the constraints

TILL,R]=TrII_.R,] =0,
I, + 1 +11,=1, (16)

M,=0, I.=0, [,=0,

which is an instance of the so-called semidefinite program.
The first constraint guarantees that the multimeter will neve

respond with a wrong outcome, i.dl_(Il,) cannot be de-
tected when the data register is in the basis diate|4.)).

The second and third constraints express the completeness
the POVM and the positive semidefiniteness of the POVM

elements.

Here we shall give a simple intuitive construction of the

optimal POVM and we shall analyze the dependenc®,of
on N. The optimality of the POVM will be formally proved
in the next subsection using the techniques introduced
Ref. [15].

Due to the particular structure of the operatB;sand R
the problem of unambiguous discrimination Bf and R_

splits intoN independent problems of unambiguous discrimi-

nation of twopure states gy ,» and|¢y ). The unambiguous
discrimination of two pure nonorthogonal states with equal
priori probabilities has been studied by Ivanoji], Dieks
[18], and Pere§l19]. The minimal probability of inconclusive
results is equal to the absolute value of the scalar product
the two states. Taking this into account, we can immediate

write down P, for the optimal unambiguous phase-covariant

multimeter with programi, )N,

1 N

P = 2N_+12 CN+1,k|<‘PK|,k| ‘PKU(>| *
k=1

1
?. (17)
The contribution 2V to P, stems from the ternX that is

common to both operato®,. On inserting the expression
(9) into Eqg.(17) we obtain

1 N

1
P = 2N_+12 |Cnk— Cnktl + N (18
k=1

We must distinguish the cases of odd and ederLet us
assume thalN is even(N=2n). We divide the sum in Eq.
(18) into two partsk<N/2 andk>N/2 and we find

lines, and one obtains

P(2n-1) = (21)

1 (2n-1
22“—1< n-1 ) '
It holds thatP,(2n-1)=P,(2n); hence the error-free proba-
bilistic phase-covariant multimeter with(an-1)-qubit pro-
gram is exactly as efficient as the multimeter withraqubit
program. It is worth noting here that similar behavior has
been observed in the context of optimabIN phase covari-
ant cloning of qubit$20], where it was found that the global
fidelities of clones produced by the-12n and 1—2n+1
Ploning machines are equal. The asymptotic behavior of the
probability of inconclusive result20) and (21) can be ex-
tracted with the help of Stirling’s formula N!
~27NNVe™. On inserting this approximation into Eq.
(%fO) we getP(N)=2/y2=N.

The POVM elements that describe the optimal error-free
multimeter can be easily written down as the properly
weighted convex sum of the POVM elements that describe
the optimal unambiguous discrimination of the stdtg&k>

iﬁnd | Pr

N
_ -1 - -
I, = 2 DN,k|(PL,N,k><QDL,N,k

k=1

’

N

_ -1
I_= E DN,k| ¢1,N,k><§0lN,k
k=1

’

0 |¢f,, respectively,

(fnd I1,=1-IL,~II_. Here|¢" \ ) denote states orthogonal
I

+ o — T a
|07 Nk = VB 0)alN, K)p F VI =By | 1)gIN,k = 1)y,
(23

and

2
Dk = mma)(k, N+1-Kk). (24)

The effective three-component POVM on the data register
associated with the POVNR2) reads

me=(1- Pl)|¢i><¢t

Note that when performing a generalized measurement de-
scribed by the POVM25) the statistics of the subensemble
of conclusive results would exactly agree with the statistics
obtained by a von Neumann projective measurement in basis
|,), so the multimeter indeed exactly probabilistically per-

. =Pl (25)
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forms the required measurement on the qubit stored in the 1 N+1
data register. R, = P D Ry (30)
k=0
C. Multimeter with a fixed fraction of inconclusive results where
The deterministic multimeters and the error-free probabi- N N
listic multimeters discussed in the preceding subsections can Reic= Craideni(onis  k=1,... N,
be considered as special limiting cases of a more general
class of optimal multimeters that yield an inconclusive result R:0=0)4(0 ® [N,0)(N, 0],
with probability P,=Ti[II,(R,+R.)/2] and give the correct
measurement outcome with probabilRg=<1-P, when the Rene1 = [1a(1] @ [N,N)(N,N].

data register is prepared in the basis s@té)) or |y-(¢)) Accordingly, the total Hilbert space of the data and the pro-

with equala priori probability. It is convenient to introduce . .
the relative success rate gram statesH=Hy® H, canNPle decomposed into a direct

sum of orthogonal,, H=, yHy. The Hilbert spacesi,

Ps are either two dimensionaispanned by|0)¢N,k), and

Prs= , (26)  |1)gIN,k—1),) or one dimensionalspanned by0)4N, 0y, or
1-Pk |1)¢IN,N)p). The optimalll,, II_, II,, and \ also have a

which gives the fraction of correct outcomes in the suben—bIOCk_d'agonalI structure:

semble of conclusive results. Note tHats can also be in- N+1 N+1 N+1
terpreted as the average fidelity of the probabilistic multim- I,= I, II,=DI, r=Dr. (31
eter. The optimal multimeter should achieve the maximal T k=0 k=0 k=0

possiblePg (hence alsdPrg for a given fixed probability of ) o

inconclusive resultsP,. This class of multimeters is de- The extremal equation&®7) and (28) split into N+2 equa-
scribed by a three-component POVM similarly to the unam-ions

biguous (error-fre@ multimeter. Such multimeters in fact 1

perform the optimal discrimination of mixed quantum states ()\k— _R-_I-,k>Hi,k: 0, (\—aRIl,,=0, (32
R, andR_ with a fixed fraction of inconclusive results. This 2

general quantum-state discrimination scenario has been re-
cently analyzed in detail in Refd15,16, where it was
shown that the optimal POVM must satisfy the following set
of extremal equations:

1
)\k_ER‘LKZ 0, )\k_aR?’kZ 0. (33)

We thus have to determine the optimal POVM on each sub-
1 spaceH, and then merge the solutions according to 4.
<)\ - ER‘_P)Hi =0, (A\-aR)ll,=0 (27)  Due to the structure of the operatdgs, the task reduces to
the discrimination of two pure nonorthogonal stateﬁyk>
with inconclusive results, which was discussed in detail by
Chefles and Barnef1] and also by Zhanegt al. [22].
Let us first consider the nondegenerate desé, ... N.
R,=0, A-aR,=0. (28)  We have to distinguish the caseSy=Cyy-1 (i.e., k
<[N/2]) and Cyx<Cyx-1(k>[N/2]). We will explicitly
present the results fadr<[N/2]. The formulas fok>[N/2]
are similar and can be obtained by simple exchanges
Cnk—Cn-1 and |0)gIN, k), —[1)¢IN,k—1),. The optimal

and

N

)\_

Here R,=(R,+R_.)/2 and\ anda are Lagrange multipliers
that account for the constraint§, +11_+11,=1 and

THILR,] = P,. (29) POVM on each subspadé, can be written as follows:
It follows from the structure of the extremal EqR7) and I, = m@ﬁ,kx@ﬁﬂ'
(28) that the problem of optimal discrimination of two mixed M
statesR, with a fraction of inconclusive result, is formally
equivalent to the maximization of the success rate of the .= 1 |y, NP (34)
deterministic discrimination of three mixed staRsR_, and KT 2 st MKTNKD

R, with a priori probabilitiesp,=1/[2(a+1)] and p,=a/(a
+1). Of course, this equivalence straightforwardly extends to I, = (1 - tarr?®,)[0)(0] ® [N,K) (N, K|,
discrimination ofn mixed states.
In the present case, the key simplification stems from thavhere
observation that the operatoR. have a common block- o\ _ ;
diagonal form, which WF;S already explored in construction @0 = COSPONIN, K)p £ SN 1)elN.K = 1. (35)
of the optimal error-free phase-covariant multimeter. For-The angled, is a function of the Lagrange multipliex This
mally, we can write dependence can be determined by substituting the explicit
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form of the optimal POVM(34) into the extremal equations 1.00 —=
(32) and solving the resulting system of linear equations for !
A\ and a. After some tedious but otherwise straightforward 095} :
algebra we obtain |
|
1, a< ag 0.90f !
tan®, =1 | Cyy (36) 4 !
Kk—l(za_ 1), a=ank A 0.85F :

’ |
whe_reath,k:%(1+V’CN,k_1/CN,k). The probability of incon- 0.80} !
clusive resultsP, , and the probability of a correct guess [

Pskx when discriminating the statesy, ) with the POVM 0.75 . . ) . :
(34) are given by o 0.1 0.2 p 0.3 0.4 0.5
I
_ Cik 1
Pi= Critk 1- tar?(I)k ' FIG. 2. Dependence of the relative success Rygof the op-
’ (37)  timal phase-covariant multimeter with progrdi.)®N on the frac-
tion of inconclusive result®,.
_ coZ(d, - 0y) !
ST 2 sirtd,

exchange&— N—-k+1 and|0)y— |1)g, it is easy to show that
where O, =arctariyCy 1/ Cn - the effective POVM on the data qubit corresponding to the

The casek=0 andk=N+1 require special treatment be- OPtimal POVM(34) is given by
cause the two states to be discriminated are actually identi-
cal. Let us consider the cake 0. If a# 1/2 then the optimal = (1= P)[Prd e )| + (1 — Pra)| =11,
POVM can be formally determined from Eq84) and(36)
where the limitCy -, — 0 must be considered. One finds that
I1,0,=0 for a<1/2 while I, o=I1_,=0 and I, =1, for m= Pyl
a>1/2. A sharp transition occurs at=1/2 where the opti-
mal POVM changes from a projective measurement t0 ahe POVM has this structure for all possible program states
single-component POVM with all measurement outcomegj e, all measurement basé] and hence the multimeter is
being interpreted as inconclusive results. The transition ahdeed phase covariant. Since the POVM elemenis pro-
a=1/2 can bedescribed by a single parametee [0,1] and  portional to the identity operator, the detection of an incon-
we can write clusive result does not provide any information on the data

state.

’

1
Meo=501- 7)|0)4(0] @ [N, 0)(N, 0

D. Optical implementation of the simplest

hase-covariant multimeter
M5 0= 7/0)¢(0] © N, 0)(N, 0. P

So far our discussion has been very general and abstract,
without referring to any particular physical system. In this
section, we propose a feasible optical implementation of the
éimplest probabilistic phase-covariant multimeter with a
. . ) ingle-qubit program. In the suggested scheme, both data and
multimeters is thus parametrlzed by two numbgr@[o,l] program qubits are encoded as polarization states of single
and 7 [0, 1]. If we combine all the above derived results phatons, and we thus need to discriminate two nonorthogo-
we can express the dependencd>gbna andy as follows: 5] wo-photon states. In this context it is worth noting that

1 N 1 the unambiguous discrimination of two nonorthogonal polar-
- + + ization states of a single photon has been experimentally
Ps 2N+1k§1 Cre1kPsi 2N+1(PSO Pane), (38) demonstratef23,24, and more involved all-optical schemes
for discrimination of coherent statg25] or qudits repre-
sented by single photons in several spatial md@é$ have
been suggested.

Consider now the phase-covariant multimeter with single-
qubit program(N=1). In this case, the optimal POVNB4)
(acting on data and program qubits togejhreads

Consequently, we havBgo=1/2, P, ;=0 for a<1/2, Pgq
=0, P,o=1 for a>1/2, and a smooth transitioRgy=(1
-n)/2,Py=nata=1/2.

The class of the optimal probabilistic phase-covarian

and a similar formula holds also fét,. Rather than plotting
the dependence &fsandP, ona and », we directly show in
Fig. 2 the dependence of the relative success e
=P4/(1-P)) (i.e., the fidelity of the probabilistic multimeter
on the fraction of inconclusive resuly. We can see that
Prs monotonically grows withP,, and the point of unam-
biguous probabilistic operation is indicated By<s=1, when 1
P, has the value given by Eq§20) and (21). Taking into — NVt -7

account the symmetry of the POVI34) with respect to the I = W5 + 2 (1040] |O>p<0| Do @ |1>”<1|)’
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IT,= 7(|0)¢(0] ® [0)(0] + [1)o(1| ® [1),(1)),  (39)  tion for the integerk. To give a few examples, we have
. —~ |5pin.4» =010, |3, 9 =|000012, etc. With the help of this
where [W*)=(1/12)(|0)4|1)p%[1)4l0);) and #&[0,1]. The  notation, we can rewrite the program st&) as follows:
relative success rafghe probability of a correct answer in

the case of a conclusive resuttepends on the probability 21 _
of an inconclusive result in the following way: |¥)p= Nz kZO €% Kpin )p- (43
3 - 2P|

RS= — o ——- We now determine the optimal phase-covariant multim-
41-P) eter for theN-qubit program42). All the calculations closely
For =0 one has an ambiguousrror-prong operation with ~ follow those performed in Secs. Il A-Il C. We therefore omit
no inconclusive resulteP,=0,Prs=3/4) while for =1 one  details and present only the final results. We first need to
gets an unambiguou®@rror-fre@ but probabilistic measure- determine the two operatof®, and R, which can be ex-

ment deviceP,=1/2 ,Prs=1). pressed as

Clearly, whenn=1 then the POVM39) is just a projec- 1 (27
tive measurement on the Bell statds’),|¥~) and on the rest R, =— (@) ® Vy(d)deb. (44)
of the four-dimensional Hilbert space. <1 we just “re- T 27l

interpret” some inconclusive results as “conclusive” ones.o . ting th (t43) into this f | btai
That is, we will treat randomly selectgdith probability 1 n inserting the progra Into this Tormula, we obtain

—7) inconclusive results as results “+” or “~at randon. oN_g
Therefore, it is quite enough to consider only the unambigu- R, = 1 D 9% (0% ]+ 1 X (45)
ous version(n=1) of this phase-covariant quantum multim- =N & TINKATNK T oL

eter as all the other varian{®< < 1) can be obtained by

manipulating the measured data only. whereX is defined in Eq(10) and

If the states of the data and program qubits are encoded 1
into polarization states of two photons it is possible to dis- |90 = =10V dlKoinndp = [Vl (K= Dpinpdpl.  (46)
tinguish Bell state$¥*) and|¥~) only by means of passive N2

linear optical elements, namely, by a balanced beam Sp”ttq{lote, in particular, that the plus and minus states are or-

a_nd two polarization peam spl_ltte[‘27—31]. In this way the thogonal, (9 | 9y,»=0. This implies that we can rewrite
simplest phase-covariant multimeter could be relatively eaSEq (45) as ' :

ily realized experimentally. Such an experiment was just fin-

ished in our laboratory in Olomouc and the results will be 1, 1
published elsewherg32]. R.= @H«:,N + ZN—+1X, (47
E. Optimal multimeter for VMC program where HYN and H\_’N are orthogonal projectors,

V V ' _ ! P . V . .
As mentioned in the Introduction, the phase—covarianTr[HﬂNH—,N]_O' The explicit expression fdi, \ is given

multimeter can be constructed with the use of the programP the sum on the right-hand side of Eg5). In view of

; it ; Eq. (47), the problem of optimal discrimination between
mable VMC gatd4], which can probabilistically implement —" o .
any rotation of a qubit about the axis of the Poincaré mixed statefR, andR_ becomes rather trivial. The optimal

sphere, i.e., the transformation dlspnmmatlon strategy is to carry out a measurement de-
scribed by a three-component POVM

U(#)[0y=0), U(4)[1)=¢€"1). (40) v, Y, X 49
The multimeter measuring in the basgiy will then consist ’ '
of a VMC gate programmed to perform the rotatidf-¢), If we detect the outcomHY’N then we are sure that the state
followed by a measurement in a fixed basis |,) was present in the data register. Similarly, the detection
of H\—/,N unambiguously indicates the presence|f). Fi-
|+)= i_(|0> +|D), |-)= i_(|0> ~11) (41) nally, if X is registered, then each basis state could have been
V2 ' V2 ' present with probability 1/2 and we have no information. So

_ . o ) .. if we want to construct an unambiguous probabilistic multi-
The VMC gate is probabilistic and it fails with probability meter, then we interpret all detections Xfas inconclusive
P1=2"" whereN is the size of the program register in qubits. regits. On the other hand, a determinisbit error-prong
The VMC gate requires the following product-state program:myjtimeter is obtained if we interpret the resMrandomly

N with probability 1/2 as outcomig/,) or |¢_). The probability
- — i1 of detection ofX can easily be determined from E¢5) and
|\P>P .® VE[|O>+eXm2 2 (42) readsP,=2"N, which is the same aPB, for the VMC pro-

)=t grammable gate that can probabilistically implement any ro-
It is convenient to introduce the notati¢iy;, ) Which indi-  tation (40) [4]. This implies that the optimal phase-covariant
cates arN-qubit product state where each qubit is in statemultimeter with the progrant42) can be realized with the
|0) or |1) and kg, Stands for theN-bit binary representa- use of the VMC gate described in Ré4].
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The progran(42) is very efficient, because the probability |W.) =)y ® |l/,+>|l/,_>p,
of inconclusive results decreases exponentially with the
number of qubitsP,=2"N. This should be compared with the W) = [y ® )]
-/ = - + -/p*

program |i4,)®N considered in Secs. Il A-Il C. There we

showed that for this latter program,<1/VN or (1-Pg) After some algebra we obtain

«1/N in the case of a deterministic multimeter. However, to 1 1 1

make a fair comparison, we should take into account the _ T + <

dimensions of the effective Hilbert spaces that are the sup- R.= 12H3ym+ 3|Ai><A‘*| * 3|Bi><Bi|’ (50

ports of the program states. The Hilbert space spanned by the _ _ )

VMC program (43) is the whole Hilbert space df qubits wherel‘[sym is the prOJect_or on the symmetric subspace of

whose dimension is™ On the other hand, the support of the thrée qubits and the eigenvectof,) and [B.) can be

program|y,)®N is the symmetric subspadé, y of the Hil- expressed in the computational basis as follows:

bert space oN qubits and dim?, y=N+1. Hence, taking 1

into account these Hilbert space dimensions, the scaling of |A,) = ?(|O>d|11>p+ |1)g|0D), = 2/1)410)),

the probabilities of error or inconclusive results obtained for V6

programs(42) and |¢,)®N are comparable. Also, for the ex-

erimentally interesting case witk=1 these two programs 1

gre equival)ént. ’ o B:)= s‘_E(_ 2|0)¢|0D), + [0)¢|10), + |1)¢|00)),
Finally, we would like to briefly comment on the covari- ! (51

ance of the programs. By covariance we mean that the pro-

gram for thg phase+Ag¢ can be obtained from the program 1A= %(_ |0>d|11>p +2| 1>d|01>p _ |1>d|10>p),

corresponding tap by rotating each program qubit by the \6

amountA ¢ according to Eq(40). This covariance property

is satisfied by the prografg,)®N but it clearly does not hold 1

for the program(42). In applications where this kind of co- IB-) = —=(=[0)|01), + 2/0)4|10), — |1)4|00);,) .

variance of the program is required, one should therefore use V6

. . N
the multimeter with the prograry;)“". Notice the important orthogonality properties

IIl. UNIVERSAL MULTIMETERS FOR QUBITS (AB,) =(A[B_)=(A,|B)=(A|B,)=0,
In this section we will relax the confinement to bases
. 1
consisting of vectors from the equator of the Bloch sphere (AJA)=(B,B)=~.
and will study universal multimeters designed for measure- 2

ment in any basis represented by two orthogonal state
|.)=cog9/2)|0)+€%sin(9/2)|1) and |¢-)=sin(9/2)|0) 5\l\/loreover, the stategs1l) are also orthogonal to any state

: . . from the symmetric subspace of three QUbitS.
—dé h -
e COS(ﬁ/Z)|1>. We want this measurement basis to be con A wn in Ref[2], th ptimal POVM for the deter-

trolled by the qgantum state of aprogram registel))p. ministic discrimination of the mixed stat¢S0) has the fol-
The program will be assumed in the simplest product—statqaowing form:

form where both basis statég,) and |_) are represented '
equally, [W(y))p=[¢.)¢-). 1

I, = énsym+ |¢1><¢1| + |¢’2><¢2|!

A. Deterministic multimeter (52)

First, let us assume the multimeter that always “works” n_=1-11,,
but that allows for some erroneous results. Such a determin- . ) i .
istic multimeter was analyzed in Ré®]. The optimakin the whgrel is an identity operator on the Hilbert space of three
sense of the minimum error ratevo-component POVM can  9ubits, and
be obtained in a similar way as in Sec. Il A. In fact, the task

is equivalent to the discrimination of two mixed states |py) = i_[(\ﬁ +1)[0)4|01), - (V3- 1)|0)4|10),
2\3
= | dip [P (P, - ,
R.= [ anpwce 211400 3
(49
1 — —
= —=[(V3+1)|1)¢/10), - (V3 - 1)|1)¢01
R = f d [, 2= 5 513+ )[14l10,~ (3 - D)o,
v
= 20)4[12),].

where the averaging goes over all bases in the qubit space,
i.e., over the whole surface of the Bloch sphefgdy  The corresponding maximal success rgteobability of a
=(1/4m) [T[3sin ¥ d 9 d¢, and correct resultis
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1 1 The proof of optimality follows the same lines as in Sec.
PSmaxZE 1 +_§ . I B. Due to the particular structure of operatd®s and R_
v the problem of their unambiguous discrimination splits into

For any progran,)|y.), the effective POVM on the data independent problems of the unambiguous discrimination of
qubit is given by Eq(15); hence the multimeter is universal two pure states. This can be most easily seen from the spec-
and works equally well for all bases. tral decomposition oR, andR_ [cf. Eq.(50)]. Each operator

R, possesses a two-dimensional kernel and the matrix repre-

sentations ofR, and R_ exhibit a common block-diagonal
structure. The first blockassociated with eigenvalue 1/)12
Let us now deal with the situation when we want to avoidcorresponds to the four-dimensional symmetric subspace of
any errors. So we are looking for such a three-componerthree qubits. The second and third blodessociated with
POVM (I1,,I1_,II,) acting on data and program together eigenvalue 1/8 correspond to two-dimensional spaces
that gives one of the three results, -, ?) according to the spanned by|A,),|A_)} and{|B,),|B_)}, respectively. Clearly,

B. Probabilistic error-free multimeter

following prescription: our discrimination problem reduces to the unambiguous dis-
crimination of statesA,),|A_), and|B,)|B_), respectively.
[Y)a® |l gy — +or?, Thus the minimal overall probability of the inconclusive
result is

g ® [y, — —or 2,

1
where ? indicates an inconclusive result. As in Sec. Il, the P = §(|<A+|AL>| +|(B.[B) + 1_2: 3
mean probability of an inconclusive result is defined By
=%Tr[H?(R++R_)] andIl, is the POVM component corre- The term 4/12stems from the totally symmetric states,
sponding to an inconclusive result. which are the same for both operatd?s

Our aim is to find the POVM that never wrongly identifies
stateg¥,) and|W¥_) for any choice of basif.) and that, at C. Multimeter with a fixed fraction of inconclusive results
the same time, minimizes the probability of an inconclusive
result. This problem is formally equivalent to the determina-
tion of the optimal POVM for unambiguous discrimination
of two mixed state®R, andR_. It means that, as in Sec. Il B,
we are looking for operatod ., ,I1_,II, minimizing P, under
the constraint$16), where the relevarR, are defined by Eq.
(49).

The optimal POVM for the unambiguous discrimination
of these two mixed states consists of multiples of projector%
onto the kernels oR, and R_ (and of the supplement to
unity). The outcomell, can be invoked only byR,, the
outcomell_ only by R_. We get

Now we relax the requirement of unambiguo(eror-
free) operation. Thus our task is as follows: For a given
probability of an inconclusive result minimize the error rate
(i.e., maximize the success rar vice versa. We have al-
ready seen the two limit cases: the deterministic and the
probabilistic error-free multimeters as described above.
The optimal discrimination of two mixed stat® with a
raction of inconclusive result®, is formally equivalent to
he maximization of the success rate of the deterministic dis-
crimination of three mixed stateR®,, R, and R,=(R,
+R_)/2 with a priori probabilitiesp,=1/[2(a+1)] and p,
2 =al/(a+1), whereae[0,1] is a certain Lagrange multiplier
I, = =[xl + [x2{x2l], [15,164. Again, we can profitably use the specific structure of
3 operatorsR, described in the preceding subsection. The
2 method of calculation is the same as in Sec. Il C.
= §[|K1><K1\ + ko)l (54 Let us start with the discrimination of vectors from the
symmetric subspacget {|&)}; be an orthonormal basis in
[,=1-11, -1, Heym). Because the vectot) are the same for botR, we
simply try to discriminate identical states. It was shown in
where Sec. Il C that fora< 1/2 the POVM component correspond-
o) = #(|O>d|01>p_ |1>d|00>p)’ ing to the inconclusive_z resulil,;=0 and fora>1/2, con-
V2 trariwise, the conclusive-result components are zéfo;
=0. For the boundary value=1/2 there is a smooth transi-

X2) = \715(|0>d|11>p— 11)¢10),), tion:

1
1 Il 25(1_77)|§i><§i|a
|Kp) = E(|O>d|10>p —[1)4|00)y),

I, = nl&Xé&l, 7 e[0,1].

1
|K2) = E(|O>d|ll>9_ |1>d|01>P)' The success rates and inconclusive-result rates are given in
Table 1.
This POVM leads to the lowest probability of an inconclu- Now we can proceed to the discriminatiorith a given
sive result, which equals 2/3. inconclusive-result fractionof states|A,) and |A_) defined
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TABLE I. Success rate and probability of inconclusive results as 100 --S-——-- LI ______-C
functions ofa when discriminating two identical states.

a<1/2 a=1/2 a>1/2 0.95¢

Py 1/2 (1-7)/2 0
P 0 ” 1 9.20'90-
0.85}

by Egs.(51). For state$B,) and|B_) the calculation is com-

pletely analogous and the results for success and
inconclusive-result rates are the same. Stigsinclude the 0.80¢
angle 60° and they can be expressed in the following way:

0 0.1 0.2 0.3 P 04 05 06 0.7
I

1 -
AL = §(V3|'8> *e)), FIG. 3. Dependence of the relative success Paggon the prob-

ability of inconclusive result$,, for optimal universal multimeter
where with program|y,)[y-).

1
@)= (210410, = 10Dy = [14l10), L for a<§(1+%>,

v
tan® =

’E(Za 1) for a= 1(1+ L )
\ - = - .
2 V3

At this stage we are ready to write down the total success
The POVM for the optimal discrimination can be written asrate and inconclusive-result rate for the discrimination of

1
1B)= E(|l>d|01>p = |1l 10)p).

follows: statesR,. Clearly,
IT ! |E (] P -1P”+2P’ P-lP”+2P’
+ A . =AY =T ST 5FsT™LFs =5 T 50
: 3 3 3 3
2 sirfd (55
We can also introduce the relative success (iate, the suc-
1 cess rate calculated only for “conclusive” result®
Mop={1-—— : RS
on= (1 e =Py/(1-P).

One must examine four di_fferent sets of parametea
where el0.3), a=3, ac (3,2(1+1//3)], andae (3(1+1/V3),1].
. . Finally, it can be seen thgsee also Fig. 3

|Z.) = cos®|B) £ sin ®|a). (56)
. . . . . 1 1\ b . 1
We can imagine this POVM in the following geometrical > 1+—= DY if 0<P/< 3
way. We start with®=45° so that the statel&€,) are or- Pe= V3 (59)
thogonal. This situation corresponds to the Helstrom de- 1 P 1 /5 3P 1 2
terministic (but error-prong discrimination. Then, in- 27 2"3\Na 2o if §< Pi=< 3’

creasing®, the vectors/=,) move toward each other on
the Bloch sphere. Finally, we get to the situation whenFor P;=2/3 theerror-free operatiofiPrs=1) is approached
|Z,) is orthogonal to/A_) and|Z.) is orthogonal toA,);  and there is no reason to increa®efurther.
®=60°. This case corresponds to the unambiguous dis- Apparently, the optimal POVM for universal multimeters
crimination of statesA.). with a fixed fraction of inconclusive results has two different
Now one can easily calculate the probability of success:forms according to the value of the probability of the incon-
clusive result. First let us write down the POVM fé,

1 \“"5 )2 clo,z]:
PL= = +1), 57 '3
S 8<tan<1> (57)

ML=110- 2P0
+ + I+tsyms

and the probability of an inconclusive result: 2

3 1 -
Pr==(1-——]. 58 11, =3P Ilgym, (60)
=31-rs) o
wherell? denote the elements of the POVM for determinis-
It follows from the extremal equations that tic discrimination that are defined by E(52).
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WhenP, e (3,2] the POVM can be expressed as

Hi = Hi,A + Hi,B! (61)

H? = 1_[sym+ H?A + 1_[’?,Ba

PHYSICAL REVIEW A 69, 032302(2004

d
M,=1- I1;,
=1

Where|2;)j_is the totally antisymmetric state dfqudits: the
data qudit and all program qudits except for e qudit,

wherell, g andIl,g are POVM elements for discrimination and]; stands for the identity operator on the Hilbert space of
of vectors|B,) that can be obtained in a completely analo-the jth program qudit. We can write

gous way as that for vectotd\.,) [see Eq.(55)]. For P|:§
the two POVMs(60) and (61) coincide [notice that ford
=45°, |E,)=-|¢,) as follows from Eqs(53) and(56)].

The operation of the multimeter for different valuesiyf
can be figured as follows: WheR, grows from zero it is

_ 1 . . .
2= 52 €liDdata® lizs - i aps (65
S

where we sum over all permutations{df,2, ... d} ande; is

most advantageous to gradually move the contributions thahe sign of the permutation. Clearly, vectofSy);®[x);,
are the same for botR, and that substantially contribute to where|x)j is an arbitrary state of thggh program qudit, are
errors from conclusive to inconclusive results. This meanorthogonal to any vectofW,)=|vi)gaid 1)) - <[ty With
that the multiple of the projector to the symmetric subspaceé# j. It is easy to verify that TiI;R]x &. This means

increases inll,. WhenP,=1/3 thenII,=1l, and further
increase of the fraction oflg, is impossible(becausdl.
and IT, must form a POVM. If one wants to increase,
further above 1/3 he/she must start to turn the vedtgrs
as described above. The poiRf=2/3 corresponds to the
unambiguous discrimination.

IV. UNIVERSAL PROBABILISTIC ERROR-FREE
MULTIMETER FOR QUDITS

Let us consider a mul_timc_ater that could realize an ?rbi'spanned byS
trary von Neumann projective measurement on a sing|

d-level system (qudit). Let |wj>, j=1,...d denote

orthonormal-basis states. We consider the conceptually si

plest program that consists of tkequdits in basis states,

W) =) gh) - [y -+ [y = [Ud(g)]®d|q,0>pu (62

where|Wo),=|1)[2)---|j)---|d), Uy(g) is a unitary operation
acting on the basis states accordindJXgg)|j)=|¢;), andg

e SU(d). We are interested in the probabilistic error-free
multimeter which can respond with an inconclusive out-

come but never makes an error, i.€;|4;)(¢;|. The mul-
timeter is described by &+1)-component POVM ord
+1 qudits (the data qudit andd program qudits The
POVM {I,, ..
discriminate amongl mixed states

R = f Ug(9)]))aad il U@ @ [Ug(@) 1YW o) (Wl
Sud)

x[Ul(@)1*du(g), (63)

where the integration is carried over the whole groug§U
with the invariant Haar measuidu(g).

We conjecture that the optimal POVM elemeibts have
the following structure:

m-

.,I14,11,5} should optimally unambiguously

that the only contribution to the outconig can originate
from the jth basis state of the data qudit.

Clearly, the POVM(64) is a POVM describing a proba-
bilistic unambiguous multimeter. We believe it is even the
optimal one for the progran2). This hypothesis is based
on the conjecture that the kernels of operatgfshave the
form Kj=H;"® I where 3" is the antisymmetric space of
two qudits—the data one and tlth program one. The sym-
bol Ij denotes the identity operator @1 program qudits
exclusive of thgth qudit. (At worst, KC; are the subspaces of
the appropriate kerne)s. The d-dimensional subspace
7@ [X);, where|x); is an arbitrary state of the

§th qudit, represents an intersectionf 1 spacesC, (ex-

cluding thejth one: ﬂﬂﬂl Ky

k+
The sum of thel POVJM elementdI; must be lower than
the identity operatorZ}’:ll'Ij =<1, which imposes a constraint
on the normalization facto€. Since we want to maximize
the probability of success we must choose the maximum
possibleC, which can be expressed in terms of the maximum
eigenvalue of the operator

d
v=3 [SpRsa @ 1.
j=1

The maximal admissibl€ reads

C={maxeig(V)]} ™.

Instead of looking for the maximum eigenvalueYofve can
equivalently calculate the maximum eigenvalue of the opera-
tor

(66)

d
Z:E|fj><fj|1 (67)
j=1

where [f;)=|23){1);. The d linearly independent statds$;)
span ad-dimensional Hilbert spacé{;. We can write|fj>
=M |¢;) wherelg) form an orthonormal basis if(s. On in-
serting this expression into E¢7) we find that
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d ments the projective measurement in the bﬂ&iﬁ}?zl, and
z=2 Mlg)XglMT=MMT, (68)  the effective POVM on the data qudit reads
=1

m =Pyl j=1,... d, (76)

where the completeness of the batﬂ'ﬁ on H; has been
used. It holds for any square matribt that MMT has the
same eigenvalues @&=MT'M. In the basis|ej> the matrix
elements ofF readFj=(f;|f,). We thus have to determine
the scalar products of the nonorthogonal stafgs Let us
introduce unnormalized states df-1 qudits, | ,)jx, that
are obtained by projecting tHeéh program qudit of the state

|23 onto statd1),. It follows thatFj, can be calculated as a

T = (l _PS)]

V. CONCLUSIONS

In this paper we have investigated a broad class of quan-

scalar product ofoy_y)j and oy,

Fi=id0g-1104-14- (69)

tum multimeters that can perform a projective measurement
on a single data qubitor qudi). The main feature of the
guantum multimeters is that the measurement basis is con-
trolled by the quantum state of the program register, which

It is easy to deduce from the Slater determinant represent&erves as a kind of quantum “software,” while the multimeter

tion of the totally antisymmetric staté5) that |o;_1>17 is

itself (quantum “hardware’performs a fixed joint measure-

also a totally antisymmetric state of the data qudit and all thenent on the data and program registers.

program qudits except thgh andkth ones,

=Dt . .
log-1jk= "= > € liDdata® iz -

Jar < Sdevpje (70

where one sums over all permutations{@f3,---,d}, € is

the sign of the permutation, and
(= k for j>Kk,
" |lk=1 for j<k.

Assumingj #k and inserting the expressiof(g0) into Eq.

(69), we immediately find that

d-1)! .
Fik= %(- DIt j £k (72)
Since|fj> are normalized we finally have
(_ 1)j+k—l
Fix= 5jk+(1_5jk)T- (72

The operatolF can be easily diagonalized,

F:<1+§>1—|¢d><<pdl, (73

where|<pd>:(1/vﬁ)2?:1 (-1)|g). It follows from Eq. (73)
that the largest eigenvalue &fis u,=1+1/d; henceC
=d/(d+1) and the normalized POVN64) reads

d
II.

i= dTl|Ea>j_(Ea| ® 1. (74)

In our investigations we have assumed a finite-
dimensional program register, consisting of several qybits
qudity. In this case it is impossible to design the perfect
multimeter that would perform exactly and deterministically
a projective measurement in any basis from a continuous set,
with the basis being determined by the state of the program
register. The multimeters designed here are therefore only
approximate. Two conceptually different approximations
have been considered. In the first case, the multimeter oper-
ates deterministically and always produces an outcome, but
the effective measurement on the data deviates from the ideal
projective measurement. Such errors are avoided in the sec-
ond approach, when the multimeter is a probabilistic device
whose operation sometimes fails but, when it succeeds, car-
ries out exactly the desired projective measurement.

We have demonstrated that these two kinds of multim-
eters are in fact just limit cases from a whole class of proba-
bilistic multimeters that are characterized by a certain frac-
tion P, of inconclusive results. For a fixed dependence of the
program on the measurement basis, the problem of designing
the optimal multimeter is formally equivalent to finding the
optimal POVM for discrimination of mixed states. With the
help of the recently developed theory of optimal probabilistic
discrimination of mixed quantum states, we have been able
to determine analytically the optimal phase-covariant multi-
meter for anN-qubit program|y,)®N as well as a universal
multimeter with a two-qubit programy,)|¢_). Remarkably,
in both cases the success rate of the optimal deterministic
multimeter exactly coincides with the optimal fidelity of es-
timation of the basis statpy,) from a single copy of the
program state.

We have also proposed a generalization of the probabilis-

By construction, the probabilistic multimeter is universal andtic error-free multimeter to qudits, assuming that thgudit

the probability of success

. d
ST (d+1)!

(75)

program consists of a product of tdebasis states. The con-
struction of this multimeter is inspired by the structure of the
optimal probabilistic multimeter for qubits and relies on pro-

jections on a totally antisymmetric state efjudits.

Our findings clearly illustrate that the measurement on the

does not depend on the particular basis chosen by the proata qubit can be quite efficiently controlled by the quantum
gram state or on the basis stafg) sent to the data register. state of the program register. In particular, we emphasize that
Consequently, the multimeter indeed probabilistically imple-a classical description of the measurement basis would re-
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quire infinitely many bits of classical information, while only tion. The natural question arises whether by using entangled
a few quantum bits suffice in the present case to obtain astates as programs one could achieve a higher success rate
error-free (although probabilisticoperation. Our results also (for a fixed size of the program registethan with the
reveal many intriguing connections between the concept oproduct-state programs considered in the present paper. More
guantum multimeters, discrimination of quantum states, andenerally, one would ultimately like to know what is the
optimal quantum-state estimation. This suggests that thereptimal programleading to the maximal achievable success
might also be links to the related problems of transmittingrate. This is a highly nontrivial open problem that certainly
information about the direction in spafg3-33 or about the deserves further investigation.

reference framg36,37 using quantum states. The main con-
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multimeters is that in both cases we want to encode into a
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