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We propose quantum devices that can realize probabilistically different projective measurements on a qubit.
The desired measurement basis is selected by the quantum state of a program register. First we analyze the
phase-covariant multimeters for a large class of program states and then the universal multimeters for a special
choice of program. In both cases we start with deterministic but error-prone devices and then proceed to
devices that never make a mistake but from time to time give an inconclusive result. These multimeters are
optimized(for a given type of program) with respect to the minimum probability of an inconclusive result. This
concept is further generalized to multimeters that minimize the error rate for a given probability of an incon-
clusive result(or vice versa). Finally, we propose a generalization for qudits.
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I. INTRODUCTION

Programmable quantum multimeters are devices that can
realize any desired generalized quantum measurement from a
chosen set(either exactly or approximately) [1,2]. Their
main feature is that the particular positive operator valued
measure(POVM) is selected by the quantum state of a “pro-
gram register”(quantum software). In this sense they are
analogous to universal quantum processors[3–6]. The mul-
timeter itself is represented by afixed joint POVM on the
data and program systems together(see Fig. 1). Each out-
come of this POVM is associated with one outcome of the
“programmed” POVM on the data alone. From the math-
ematical point of view the realization of a particular quantum
multimeter is equivalent to the optimal discrimination of cer-
tain mixed states. A different kind of quantum multimeter
that can be programmed to evaluate the expectation value of
any operator has been introduced in Ref.[7]. In addition to
quantum multimeters, other devices whose operation is
based on the joint measurement on two different registers
have been proposed recently. A universal quantum matching
machine that allows a decision as to which template state is
closest to the input feature state was analyzed in[8]. The
problem of comparison of quantum states was studied in[9].
So-called universal quantum detectors were considered in
[10].

Programmable quantum multimeters[1,2] and gate arrays
[3–6] are in some sense similar to classical computers. In
both cases a single fixed machine(hardware) can be used to
perform many different operations on the state of the data
register, and the operation is controlled by the state of the
program register. In particular, programmable quantum mul-
timeters can be considered as a model of measurement-based
quantum computation. Possible cryptographic applications of
programmable quantum machines have also been considered
in the literature[4]. For instance, one can imagine a situation
where one party(Alice) provides a program while another
party (Bob) actually uses the program to perform a measure-
ment with the programmable multimeter. As we shall see
below, the programs of the multimeters are nonorthogonal,
yet they allow for a perfect(albeit probabilistic) operation of

these devices. Since nonorthogonal program states are used,
Bob cannot learn with certainty what the measurement was.
All these considerations strongly suggest that the program-
mable quantum devices could play an important role in quan-
tum information processing.

In this paper, we will describe programmable quantum
devices that can accomplish von Neumann measurements on
a single qubit. However, it is impossible to perfectly encode
arbitrary projective measurement on a qubit into a state in
finite-dimensional Hilbert space[1]. The proof of this theo-
rem is similar to the proof that it is impossible to encode an
arbitrary unitary operation(acting on a finite-dimensional
Hilbert space) into a state of a finite-dimensional quantum
system [3]. Briefly, one can show that any two program
states that perfectly encode two different measurement bases
must be mutually orthogonal. Nevertheless, it is still possible
to encode POVMs that represent, in a certain sense, the best
approximation of the required projective measurements.

A specific way of approximation of projective measure-
ments is a “probabilistic” measurement that allows for some
inconclusive results. In this case, instead of a two-component
projective measurement, one has a three-component POVM
and the third outcome corresponds to the inconclusive result.
The natural request is to minimize the error rate at the first
two outcomes. As a limit case it is possible to get an error-
free operation(however, with a nonzero probability of an
inconclusive result); such a multimeter performs exact pro-
jective measurements but with a probability of success lower
than 1. Such a device is conceptually analogous to probabi-
listic programmable quantum gates[3–5]. The other bound-
ary case is an ambiguous multimeter without inconclusive
results[2].

One possible way to implement quantum multimeters is to
exploit programmable gate arrays. A projective measurement
in any basishuc jlj j=1

d can be performed as a sequence of a
(programmed) unitary operation that maps the measurement
basis onto the fixed computational basishu jlj j=1

d , followed by
a measurement in the computational basis. However, the ap-
proach based on programmable gate arrays need not be op-
timal. Also, most programmable gate arrays considered in
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the literature are probabilistic and they involve complicated
entangled multiqubit programs. In contrast, we consider both
deterministic and probabilistic multimeters with simple pro-
grams in product states. Interestingly, Vidal, Masanes, and
Cirac (VMC) proposed a probabilistic gate array that can
perform any rotation of a qubit about thez axis of the
Poincaré sphere and employs a product-state program[4].
We will discuss the links of the VMC gate with phase-
covariant multimeters below.

Our present article is organized as follows. In Sec. II we
start with the analysis of phase-covariant multimeters that
can perform von Neumann measurement on a single qubit in
any basis located on the equator of the Bloch sphere. First
we discuss deterministic devices(no inconclusive results but
errors may appear), then error-free probabilistic devices(no
errors but inconclusive results may appear), and finally gen-
eral multimeters with a given fraction of inconclusive results
optimized with respect to a minimal error rate. Moreover, we
give a brief discussion of a possible optical implementation
of the simplest phase-covariant multimeter with a single-
qubit program. At the end of the section we construct the
optimal phase-covariant multimeter for the VMC program
and we prove that the VMC gate followed by measurement
in the fixed basissu0l± u1ld /Î2 in fact represents the optimal
multimeter for the VMC program. In Sec. II we also intro-
duce and explain in detail all necessary mathematical tools.

Further, in Sec. III we study universal multimeters that
can accomplishany von Neumann measurement on a single
qubit. We confine our investigation to a program consisting
of the two basis states. Again, we start with deterministic
devices, continue with error-free multimeters, and finally
proceed to apparatuses with a given fraction of inconclusive
results. Section IV is devoted to probabilistic error-free uni-
versal multimeters that can accomplishany projective mea-
surement on aqudit. Section V concludes the paper with a
short summary.

II. PHASE-COVARIANT MULTIMETERS

In this section we will consider multimeters that should
perform von Neumann measurement on a single qubit in any
basishuc+l , uc−lj located on the equator of the Bloch sphere,

uc±sfdl =
1
Î2

su0l ± eifu1ld, s1d

where fP f0,2pg is arbitrary. The multimeter should be
phase covariant, i.e., it should operate equally well for all
phasesf. To simplify notation, we shall not usually display
the dependence of the basis states onf explicitly in what
follows. Generally, the design of the optimal multimeter
should involve the optimization of both the dependence of
the program on the measurement basis and the fixed joint
measurement on the program and data registers. However,
this is a very hard problem that we will not attempt to solve
in its generality. Instead, we will design an optimal multim-
eter for a particular simple and natural choice of program;
namely, as inf2g, we assume that the program of the multi-
meteruClp which determines the measurement basis consists

of N copies of the basis stateuc+l, uClp= uc+l^N. Since we
have restricted ourselves to the basess1d, the stateuc−l can
be obtained fromuc+l via unitary transformation,

uc−l = szuc+l, s2d

wheresz denotes the Pauli matrix. This implies that all pro-
grams of the formuc+l^ juc−l^N−j are equivalent to the pro-
gram uc+l^N because these programs are related via afixed
unitaryU=1^ j ^ sz

^N−j. First, we shall derive the optimal de-
terministic multimeter, which always yields an outcome, but
errors may occur. Then we shall consider a probabilistic
multimeter that conditionally realizes exactly the von Neu-
mann measurement in the basiss1d, but at the expense of
some fraction of inconclusive results. The deterministic and
unambiguous multimeters are two extremal cases from a
whole class of optimal multimeters that are designed such
that the probability of a correct outcome for measurements
on basis states is maximized for a fixed fraction of inconclu-
sive results. Such generalized multimeters will also be stud-
ied in this section.

A. Deterministic multimeter

The multimeter is a device that performs a joint general-
ized measurement described by the POVMhP jj on the data
and program registers(see Fig. 1). This fixed joint measure-
ment on the data and program can also be interpreted as an
effective measurement on the data register, which is de-
scribed by the POVMp j and depends on the program via

p j = Trpfs1d ^ uClpkCudP jg, s3d

where the subscripts “d” and “p” denote the data and pro-
gram states, respectively, and1 is the identity operator. The
deterministic single-qubit multimeter is fully characterized
by a two-component POVMhP+,P−j. Upon obtaining the
outcomeP+sP−d one guesses the state of the data register to
be uc+lsuc−ld. Ideally,

p± = uc±lkc±u s4d

should hold, but this cannot be achieved for allf with a
finite-dimensional program.

The performance of the multimeter is quantified by the
probability PS that the measurement yields the correct out-
come when the data register is prepared in the basis stateuc+l
or uc−l with probability 1/2 each. For each particular phase
f we thus have

FIG. 1. Schematic drawing of a quantum multimeter. The effec-
tive measurement performed on the data stater is selected by the
quantum state of the program registeruClp. The multimeter itself
carries out afixed joint generalized measurement on data and pro-
gram states which is described by a POVMhP jj.

J. FIURÁŠEK AND M. DUŠEK PHYSICAL REVIEW A69, 032302(2004)

032302-2



PSsfd =
1

2
TrfP+c+sfd ^ c+

^Nsfdg

+
1

2
TrfP−c−sfd ^ c+

^Nsfdg, s5d

wherec±= uc±lkc±u. Assuming a homogeneousa priori dis-
tribution of the anglef, we define the average success rate
as

PS=E
0

2p

PSsfd
df

2p
. s6d

We define the optimal deterministic multimeter for the pro-
gram uc+l^N as the multimeter that maximizesPS. The
choice ofPS as the figure of merit is strongly supported by
the observation thatPS can be interpreted as the average
fidelity of the multimeter. Consider the effective POVM on
the data qubithp+sfd ,p−sfdj for some particular phasef. It
is natural to define the fidelity of this POVM with respect to
the projective measurement in the basisuc±sfdl as follows:

Fsfd =
1

2
kc+sfdup+sfduc+sfdl +

1

2
kc−sfdup−sfduc−sfdl.

It is easy to see that the average fidelityF
=s1/2pde0

2pFsfddf coincides with the average success rate
s6d. Clearly,Fø1 andF=1 if and only if Eq.s4d holds for
all f smaybe except for a set of measure zerod.

To simplify the notation we introduce the symbolCN,k for
the binomial coefficient,

CN,k = SN

k
D . s7d

On inserting the formula forPSsfd into Eq. s6d and carrying
out the integration overf we find that

PS=
1

2
sTrfP+R+g + TrfP−R−gd, s8d

where the two positive semidefinite operatorsR± read

R+ =
1

2N+1o
k=1

N

CN+1,kuwN,k
+ lkwN,k

+ u +
1

2N+1X,

R− =
1

2N+1o
k=1

N

CN+1,kuwN,k
− lkwN,k

− u +
1

2N+1X.

Here,

uwN,k
± l = Î1 − BN,ku0lduN,klp ± ÎBN,ku1lduN,k − 1lp, s9d

with BN,k=k/ sN+1d. The operatorX that is common toR+

andR− is given by

X = u0ldk0u ^ uN,0lpkN,0u + u1ldk1u ^ uN,NlpkN,Nu,
s10d

and uN,kl denotes a normalized totally symmetric state ofN
qubits withk qubits in stateu1l andN−k qubits in stateu0l.

It follows from Eq.(8) that the optimal deterministic mul-
timeter is the one that optimally discriminates between two
mixed statesR+ andR−. This problem has been analyzed by
Helstrom[11], who showed that the maximal achievable suc-
cess rate is

PS,max=
1

2
+

1

4
TruR+ − R−u, s11d

and the optimal POVM is given by projectors onto the sub-
spaces spanned by the eigenstates ofDR=R+−R− with posi-
tive and negative eigenvalues, respectively. If some of the
eigenvalues ofDR are zero, then the projectors can be freely
added to eitherP+ or P−.

In the basisu0lduN,klp, u1lduN,klp, the matrixDR is block
diagonal and its eigenvalues and eigenstates can easily be
determined. Since TruDRu is equal to the sum of absolute
values of the eigenvalues ofDR, we find after simple algebra
that

PS,max=
1

2
+

1

2N+1o
k=1

N ÎSN

k
DS N

k − 1
D . s12d

Interestingly enough,PS,max is equal to the optimal fidelity
of estimation ofuc+sfdl from N copies ofuc+sfdl [12]. So
one possible implementation of the optimal deterministic
phase-covariant multimeter with programuc+sfdl^N would
be to first carry out the optimal estimation ofuc+sfdl and
then measure the data qubit in the basis spanned by the es-
timated state and its orthogonal counterpart. Instead, one
could also perform a joint generalized measurement on data
and program registers. The two elements of the optimal
POVM that maximizesPS are given by

P± = o
k=1

N

uPN,k
± lkPN,k

± u +
1

2
X, s13d

where

uPN,k
± l =

1
Î2

su0lduN,klp ± u1lduN,k − 1lpd. s14d

The effective POVM on the data registers3d can be ex-
pressed as

p± = PS,maxuc±lkc±u + s1 − PS,maxduc7lkc7u. s15d

In the limit of infinitely large program register,N→`, the
POVM s15d approaches the ideal projective measurement
s4d.

B. Error-free probabilistic multimeter

The multimeter designed in the preceding section is only
approximate, because the effective POVM(15) on the data
register differs from the projective measurement in the basis
uc+l, uc−l. Here, we construct a multimeter that realizes an
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exactvon Neumann measurement in the basis(1) with some
probability PS. This is achieved at the expense of the incon-
clusive results which occur with the probabilityPI =1−PS
and are associated with the POVM elementP?. Such a
probabilistic multimeter must unambiguously discriminate
between two mixed statesR+ andR−. The unambiguous dis-
crimination of mixed quantum states[13,14] (and, more gen-
erally, discrimination of mixed states with inconclusive re-
sults [15,16]) has attracted considerable attention recently.

As formally stated in Ref.[13], we have to find a three-
component POVMP+,P−,P? that maximizes the success
rate (8) under the constraints

TrfP+R−g = TrfP−R+g = 0,

P+ + P− + P? = 1, s16d

P+ ù 0, P− ù 0, P? ù 0,

which is an instance of the so-called semidefinite program.
The first constraint guarantees that the multimeter will never
respond with a wrong outcome, i.e.,P−sP+d cannot be de-
tected when the data register is in the basis stateuc+lsuc−ld.
The second and third constraints express the completeness of
the POVM and the positive semidefiniteness of the POVM
elements.

Here we shall give a simple intuitive construction of the
optimal POVM and we shall analyze the dependence ofPI
on N. The optimality of the POVM will be formally proved
in the next subsection using the techniques introduced in
Ref. [15].

Due to the particular structure of the operatorsR+ andR−
the problem of unambiguous discrimination ofR+ and R−
splits intoN independent problems of unambiguous discrimi-
nation of twopurestatesuwN,k

+ l and uwN,k
− l. The unambiguous

discrimination of two pure nonorthogonal states with equala
priori probabilities has been studied by Ivanovic[17], Dieks
[18], and Peres[19]. The minimal probability of inconclusive
results is equal to the absolute value of the scalar product of
the two states. Taking this into account, we can immediately
write downPI for the optimal unambiguous phase-covariant
multimeter with programuc+l^N,

PI =
1

2N+1o
k=1

N

CN+1,kukwN,k
+ uwN,k

− lu +
1

2N . s17d

The contribution 2−N to PI stems from the termX that is
common to both operatorsR±. On inserting the expression
s9d into Eq. s17d we obtain

PI =
1

2N+1o
k=1

N

uCN,k − CN,k−1u +
1

2N . s18d

We must distinguish the cases of odd and evenN. Let us
assume thatN is evensN=2nd. We divide the sum in Eq.
s18d into two partskøN/2 andk.N/2 and we find

o
k=1

N

uCN,k − CN,k−1u = 2S N

N/2
D − 2. s19d

On inserting the sum back into Eq.s18d we obtain

PIs2nd =
1

22nS2n

n
D . s20d

The calculation for oddN=2n−1 proceeds along similar
lines, and one obtains

PIs2n − 1d =
1

22n−1S2n − 1

n − 1
D . s21d

It holds thatPIs2n−1d=PIs2nd; hence the error-free proba-
bilistic phase-covariant multimeter with as2n−1d-qubit pro-
gram is exactly as efficient as the multimeter with a 2n-qubit
program. It is worth noting here that similar behavior has
been observed in the context of optimal 1→N phase covari-
ant cloning of qubitsf20g, where it was found that the global
fidelities of clones produced by the 1→2n and 1→2n+1
cloning machines are equal. The asymptotic behavior of the
probability of inconclusive resultss20d and s21d can be ex-
tracted with the help of Stirling’s formula N!
<Î2pNNNe−N. On inserting this approximation into Eq.
s20d we getPIsNd<2/Î2pN.

The POVM elements that describe the optimal error-free
multimeter can be easily written down as the properly
weighted convex sum of the POVM elements that describe
the optimal unambiguous discrimination of the statesuwN,k

+ l
and uwN,k

− l,

P+ = o
k=1

N

DN,k
−1 uw',N,k

− lkw',N,k
− u,

s22d

P− = o
k=1

N

DN,k
−1 uw',N,k

+ lkw',N,k
+ u,

and P?=1−P+−P−. Here uw',N,k
± l denote states orthogonal

to uwN,k
± l, respectively,

uw',N,k
± l = ÎBN,ku0lduN,klp 7 Î1 − BN,ku1lduN,k − 1lp,

s23d

and

DN,k =
2

N + 1
maxsk,N + 1 −kd. s24d

The effective three-component POVM on the data register
associated with the POVMs22d reads

p± = s1 − PIduc±lkc±u, p? = PI1. s25d

Note that when performing a generalized measurement de-
scribed by the POVMs25d the statistics of the subensemble
of conclusive results would exactly agree with the statistics
obtained by a von Neumann projective measurement in basis
uc±l, so the multimeter indeed exactly probabilistically per-
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forms the required measurement on the qubit stored in the
data register.

C. Multimeter with a fixed fraction of inconclusive results

The deterministic multimeters and the error-free probabi-
listic multimeters discussed in the preceding subsections can
be considered as special limiting cases of a more general
class of optimal multimeters that yield an inconclusive result
with probability PI =TrfP?sR++R−d /2g and give the correct
measurement outcome with probabilityPSø1−PI when the
data register is prepared in the basis stateuc+sfdl or uc−sfdl
with equala priori probability. It is convenient to introduce
the relative success rate

PRS=
PS

1 − PI
, s26d

which gives the fraction of correct outcomes in the suben-
semble of conclusive results. Note thatPRS can also be in-
terpreted as the average fidelity of the probabilistic multim-
eter. The optimal multimeter should achieve the maximal
possiblePS shence alsoPRSd for a given fixed probability of
inconclusive resultsPI. This class of multimeters is de-
scribed by a three-component POVM similarly to the unam-
biguous serror-freed multimeter. Such multimeters in fact
perform the optimal discrimination of mixed quantum states
R+ andR− with a fixed fraction of inconclusive results. This
general quantum-state discrimination scenario has been re-
cently analyzed in detail in Refs.f15,16g, where it was
shown that the optimal POVM must satisfy the following set
of extremal equations:

Sl −
1

2
R±DP± = 0, sl − aR?dP? = 0 s27d

and

l −
1

2
R± ù 0, l − aR? ù 0. s28d

Here R?=sR++R−d /2 andl and a are Lagrange multipliers
that account for the constraintsP++P−+P?=1 and

TrfP?R?g = PI . s29d

It follows from the structure of the extremal Eqs.s27d and
s28d that the problem of optimal discrimination of two mixed
statesR± with a fraction of inconclusive resultsPI is formally
equivalent to the maximization of the success rate of the
deterministic discrimination of three mixed statesR+,R−, and
R? with a priori probabilitiesp±=1/f2sa+1dg and p?=a/ sa
+1d. Of course, this equivalence straightforwardly extends to
discrimination ofn mixed states.

In the present case, the key simplification stems from the
observation that the operatorsR± have a common block-
diagonal form, which was already explored in construction
of the optimal error-free phase-covariant multimeter. For-
mally, we can write

R± =
1

2N+1 %
k=0

N+1
R±,k, s30d

where

R±,k = CN+1,kuwN,k
± lkwN,k

± u, k = 1, . . . ,N,

R±,0 = u0ldk0u ^ uN,0lpkN,0u,

R±,N+1 = u1ldk1u ^ uN,NlpkN,Nu.

Accordingly, the total Hilbert space of the data and the pro-
gram statesH=Hd ^ Hp can be decomposed into a direct
sum of orthogonalHk, H= %k=0

N+1Hk. The Hilbert spacesHk
are either two dimensionalsspanned byu0lduN,klp and
u1lduN,k−1lpd or one dimensionalsspanned byu0lduN,0lp or
u1lduN,Nlpd. The optimalP+, P−, P?, and l also have a
block-diagonal structure:

P± = %
k=0

N+1
P±,k, P? = %

k=0

N+1
P?,k, l = %

k=0

N+1
lk. s31d

The extremal equationss27d and s28d split into N+2 equa-
tions

Slk −
1

2
R±,kDP±,k = 0, slk − aR?,kdP?,k = 0, s32d

lk −
1

2
R±,k ù 0, lk − aR?,k ù 0. s33d

We thus have to determine the optimal POVM on each sub-
spaceHk and then merge the solutions according to Eq.s31d.
Due to the structure of the operatorsR±, the task reduces to
the discrimination of two pure nonorthogonal statesuwN,k

± l
with inconclusive results, which was discussed in detail by
Chefles and Barnettf21g and also by Zhanget al. [22].

Let us first consider the nondegenerate casek=1, . . . ,N.
We have to distinguish the casesCN,kùCN,k−1 (i.e., k
ø fN/2g) and CN,k,CN,k−1sk. fN/2gd. We will explicitly
present the results forkø fN/2g. The formulas fork. fN/2g
are similar and can be obtained by simple exchanges
CN,k↔CN,k−1 and u0lduN,klp↔ u1lduN,k−1lp. The optimal
POVM on each subspaceHk can be written as follows:

P+,k =
1

2 sin2Fk
uFN,k

+ lkFN,k
+ u,

P−,k =
1

2 sin2Fk
uFN,k

− lkFN,k
− u, s34d

P?,k = s1 − tan−2Fkdu0ldk0u ^ uN,klpkN,ku,

where

uFN,k
± l = cosFku0lduN,klp ± sinFku1lduN,k − 1lp. s35d

The angleFk is a function of the Lagrange multipliera. This
dependence can be determined by substituting the explicit
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form of the optimal POVMs34d into the extremal equations
s32d and solving the resulting system of linear equations for
lk and a. After some tedious but otherwise straightforward
algebra we obtain

tan Fk = 51, a , ath,k,

Î CN,k

CN,k−1
s2a − 1d, a ù ath,k,

s36d

whereath,k=
1
2s1+ÎCN,k−1/CN,kd. The probability of incon-

clusive resultsPI,k and the probability of a correct guess
PS,k when discriminating the statesuwN,k

± l with the POVM
s34d are given by

PI,k =
CN,k

CN+1,k
S1 −

1

tan2Fk
D ,

s37d

PS,k =
cos2sFk − Qkd

2 sin2Fk
,

whereQk=arctansÎCN,k−1/CN,kd.
The casesk=0 andk=N+1 require special treatment be-

cause the two states to be discriminated are actually identi-
cal. Let us consider the casek=0. If aÞ1/2 then the optimal
POVM can be formally determined from Eqs.(34) and (36)
where the limitCN,k−1→0 must be considered. One finds that
P?,0=0 for a,1/2 while P+,0=P−,0=0 and P?,0=10 for
a.1/2. A sharp transition occurs ata=1/2 where the opti-
mal POVM changes from a projective measurement to a
single-component POVM with all measurement outcomes
being interpreted as inconclusive results. The transition at
a=1/2 can bedescribed by a single parameterhP f0,1g and
we can write

P±,0 =
1

2
s1 − hdu0ldk0u ^ uN,0lpkN,0u,

P?,0= hu0ldk0u ^ uN,0lpkN,0u.

Consequently, we havePS,0=1/2, PI,0=0 for a,1/2, PS,0
=0, PI,0=1 for a.1/2, and a smooth transitionPS,0=s1
−hd /2, PI,0=h at a=1/2.

The class of the optimal probabilistic phase-covariant
multimeters is thus parametrized by two numbersaP f0,1g
and hP f0,1g. If we combine all the above derived results
we can express the dependence ofPS on a andh as follows:

PS=
1

2N+1o
k=1

N

CN+1,kPS,k +
1

2N+1sPS,0 + PS,N+1d, s38d

and a similar formula holds also forPI. Rather than plotting
the dependence ofPS andPI on a andh, we directly show in
Fig. 2 the dependence of the relative success ratePRS
=PS/ s1−PId si.e., the fidelity of the probabilistic multimeterd
on the fraction of inconclusive resultsPI. We can see that
PRS monotonically grows withPI, and the point of unam-
biguous probabilistic operation is indicated byPRS=1, when
PI has the value given by Eqs.s20d and s21d. Taking into
account the symmetry of the POVMs34d with respect to the

exchangesk→N−k+1 andu0ld→ u1ld, it is easy to show that
the effective POVM on the data qubit corresponding to the
optimal POVM s34d is given by

p± = s1 − PIdfPRSuc±lkc±u + s1 − PRSduc7lkc7ug,

p? = PI1.

The POVM has this structure for all possible program states
fi.e., all measurement basess1dg and hence the multimeter is
indeed phase covariant. Since the POVM elementp? is pro-
portional to the identity operator, the detection of an incon-
clusive result does not provide any information on the data
state.

D. Optical implementation of the simplest
phase-covariant multimeter

So far our discussion has been very general and abstract,
without referring to any particular physical system. In this
section, we propose a feasible optical implementation of the
simplest probabilistic phase-covariant multimeter with a
single-qubit program. In the suggested scheme, both data and
program qubits are encoded as polarization states of single
photons, and we thus need to discriminate two nonorthogo-
nal two-photon states. In this context it is worth noting that
the unambiguous discrimination of two nonorthogonal polar-
ization states of a single photon has been experimentally
demonstrated[23,24], and more involved all-optical schemes
for discrimination of coherent states[25] or qudits repre-
sented by single photons in several spatial modes[26] have
been suggested.

Consider now the phase-covariant multimeter with single-
qubit programsN=1d. In this case, the optimal POVM(34)
(acting on data and program qubits together) reads

P± = uC±lkC±u +
1 − h

2
su0ldk0u ^ u0lpk0u + u1ldk1u ^ u1lpk1ud,

FIG. 2. Dependence of the relative success ratePRS of the op-
timal phase-covariant multimeter with programuc+l^N on the frac-
tion of inconclusive resultsPI.
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P? = hsu0ldk0u ^ u0lpk0u + u1ldk1u ^ u1lpk1ud, s39d

where uC±l=s1/Î2dsu0ldu1lp± u1ldu0lpd and hP f0,1g. The
relative success ratesthe probability of a correct answer in
the case of a conclusive resultd depends on the probability
of an inconclusive result in the following way:

PRS=
3 − 2PI

4s1 − PId
.

For h=0 one has an ambiguousserror-proned operation with
no inconclusive resultssPI =0,PRS=3/4d while for h=1 one
gets an unambiguousserror-freed but probabilistic measure-
ment devicesPI =1/2,PRS=1d.

Clearly, whenh=1 then the POVM(39) is just a projec-
tive measurement on the Bell statesuC+l,uC−l and on the rest
of the four-dimensional Hilbert space. Ifh,1 we just “re-
interpret” some inconclusive results as “conclusive” ones.
That is, we will treat randomly selected(with probability 1
−h) inconclusive results as results “+” or “−”(at random).
Therefore, it is quite enough to consider only the unambigu-
ous versionsh=1d of this phase-covariant quantum multim-
eter as all the other variantss0øh,1d can be obtained by
manipulating the measured data only.

If the states of the data and program qubits are encoded
into polarization states of two photons it is possible to dis-
tinguish Bell statesuC+l and uC−l only by means of passive
linear optical elements, namely, by a balanced beam splitter
and two polarization beam splitters[27–31]. In this way the
simplest phase-covariant multimeter could be relatively eas-
ily realized experimentally. Such an experiment was just fin-
ished in our laboratory in Olomouc and the results will be
published elsewhere[32].

E. Optimal multimeter for VMC program

As mentioned in the Introduction, the phase-covariant
multimeter can be constructed with the use of the program-
mable VMC gate[4], which can probabilistically implement
any rotation of a qubit about thez axis of the Poincaré
sphere, i.e., the transformation

Usfdu0l = u0l, Usfdu1l = eifu1l. s40d

The multimeter measuring in the basiss1d will then consist
of a VMC gate programmed to perform the rotationUs−fd,
followed by a measurement in a fixed basis

u + l =
1
Î2

su0l + u1ld, u− l =
1
Î2

su0l − u1ld. s41d

The VMC gate is probabilistic and it fails with probability
PI =2−N whereN is the size of the program register in qubits.
The VMC gate requires the following product-state program:

uClp = ^
j=1

N 1

Î2
fu0l + expsi2j−1fdu1lg. s42d

It is convenient to introduce the notationukbin,Nl which indi-
cates anN-qubit product state where each qubit is in state
u0l or u1l andkbin,N stands for theN-bit binary representa-

tion for the integerk. To give a few examples, we have
u5bin,4l= u0101l, u3bin,6l= u000011l, etc. With the help of this
notation, we can rewrite the program states42d as follows:

uClp =
1

2N/2 o
k=0

2N−1

eikfukbin,Nlp. s43d

We now determine the optimal phase-covariant multim-
eter for theN-qubit program(42). All the calculations closely
follow those performed in Secs. II A–II C. We therefore omit
details and present only the final results. We first need to
determine the two operatorsR+ and R−, which can be ex-
pressed as

R± =
1

2p
E

0

2p

c±sfd ^ Cpsfddf. s44d

On inserting the programs43d into this formula, we obtain

R± =
1

2N o
k=1

2N−1

uqN,k
± lkqN,k

± u +
1

2N+1X, s45d

whereX is defined in Eq.s10d and

uqN,k
± l =

1
Î2

fu0ldukbin,Nlp ± u1ldusk − 1dbin,Nlpg. s46d

Note, in particular, that the plus and minus states are or-
thogonal, kqN,k

+ uqN,l
− l=0. This implies that we can rewrite

Eq. s45d as

R± =
1

2NP±,N
V +

1

2N+1X, s47d

where P+,N
V and P−,N

V are orthogonal projectors,
TrfP+,N

V P−,N
V g=0. The explicit expression forP±,N

V is given
by the sum on the right-hand side of Eq.s45d. In view of
Eq. s47d, the problem of optimal discrimination between
mixed statesR+ andR− becomes rather trivial. The optimal
discrimination strategy is to carry out a measurement de-
scribed by a three-component POVM

P+,N
V , P−,N

V , X. s48d

If we detect the outcomeP+,N
V then we are sure that the state

uc+l was present in the data register. Similarly, the detection
of P−,N

V unambiguously indicates the presence ofuc−l. Fi-
nally, if X is registered, then each basis state could have been
present with probability 1/2 and we have no information. So
if we want to construct an unambiguous probabilistic multi-
meter, then we interpret all detections ofX as inconclusive
results. On the other hand, a deterministicsbut error-proned
multimeter is obtained if we interpret the resultX randomly
with probability 1/2 as outcomeuc+l or uc−l. The probability
of detection ofX can easily be determined from Eq.s45d and
readsPI =2−N, which is the same asPI for the VMC pro-
grammable gate that can probabilistically implement any ro-
tation s40d f4g. This implies that the optimal phase-covariant
multimeter with the programs42d can be realized with the
use of the VMC gate described in Ref.f4g.
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The program(42) is very efficient, because the probability
of inconclusive results decreases exponentially with the
number of qubits,PI =2−N. This should be compared with the
program uc+l^N considered in Secs. II A–II C. There we
showed that for this latter programPI ~1/ÎN or s1−PSd
~1/N in the case of a deterministic multimeter. However, to
make a fair comparison, we should take into account the
dimensions of the effective Hilbert spaces that are the sup-
ports of the program states. The Hilbert space spanned by the
VMC program (43) is the whole Hilbert space ofN qubits
whose dimension is 2N. On the other hand, the support of the
programuc+l^N is the symmetric subspaceH+,N of the Hil-
bert space ofN qubits and dimH+,N=N+1. Hence, taking
into account these Hilbert space dimensions, the scaling of
the probabilities of error or inconclusive results obtained for
programs(42) and uc+l^N are comparable. Also, for the ex-
perimentally interesting case withN=1 these two programs
are equivalent.

Finally, we would like to briefly comment on the covari-
ance of the programs. By covariance we mean that the pro-
gram for the phasef+Df can be obtained from the program
corresponding tof by rotating each program qubit by the
amountDf according to Eq.(40). This covariance property
is satisfied by the programuc+l^N but it clearly does not hold
for the program(42). In applications where this kind of co-
variance of the program is required, one should therefore use
the multimeter with the programuc+l^N.

III. UNIVERSAL MULTIMETERS FOR QUBITS

In this section we will relax the confinement to bases
consisting of vectors from the equator of the Bloch sphere
and will study universal multimeters designed for measure-
ment in any basis represented by two orthogonal states
uc+l=cossq /2du0l+eifsinsq /2du1l and uc−l=sinsq /2du0l
−eifcossq /2du1l. We want this measurement basis to be con-
trolled by the quantum state of a program register,uCscdlp.
The program will be assumed in the simplest product-state
form where both basis statesuc+l and uc−l are represented
equally, uCscdlp= uc+luc−l.

A. Deterministic multimeter

First, let us assume the multimeter that always “works”
but that allows for some erroneous results. Such a determin-
istic multimeter was analyzed in Ref.[2]. The optimal(in the
sense of the minimum error rate) two-component POVM can
be obtained in a similar way as in Sec. II A. In fact, the task
is equivalent to the discrimination of two mixed states

R+ =E
c

dc uC+lkC+u,
s49d

R− =E
c

dc uC−lkC−u,

where the averaging goes over all bases in the qubit space,
i.e., over the whole surface of the Bloch sphere,ecdc
=s1/4pde0

pe0
2psin q d q df, and

uC+l = uc+ld ^ uc+luc−lp,

uC−l = uc−ld ^ uc+luc−lp.

After some algebra we obtain

R± =
1

12
Psym+

1

3
uA±lkA±u +

1

3
uB±lkB±u, s50d

wherePsym is the projector on the symmetric subspace of
three qubits and the eigenvectorsuA±l and uB±l can be
expressed in the computational basis as follows:

uA+l =
1
Î6

su0ldu11lp + u1ldu01lp − 2u1ldu10lpd,

uB+l =
1
Î6

s− 2u0ldu01lp + u0ldu10lp + u1ldu00lpd,

s51d

uA−l =
1
Î6

s− u0ldu11lp + 2u1ldu01lp − u1ldu10lpd,

uB−l =
1
Î6

s− u0ldu01lp + 2u0ldu10lp − u1ldu00lpd.

Notice the important orthogonality properties

kA+uB+l = kA−uB−l = kA+uB−l = kA−uB+l = 0,

kA+uA−l = kB+uB−l =
1

2
.

Moreover, the statess51d are also orthogonal to any state
from the symmetric subspace of three qubits.

As shown in Ref.[2], the optimal POVM for the deter-
ministic discrimination of the mixed states(50) has the fol-
lowing form:

P+ =
1

2
Psym+ uf1lkf1u + uf2lkf2u,

s52d

P− = 1 − P+,

where1 is an identity operator on the Hilbert space of three
qubits, and

uf1l =
1

2Î3
fsÎ3 + 1du0ldu01lp − sÎ3 − 1du0ldu10lp

− 2u1ldu00lpg,
s53d

uf2l =
1

2Î3
fsÎ3 + 1du1ldu10lp − sÎ3 − 1du1ldu01lp

− 2u0ldu11lpg.

The corresponding maximal success rate(probability of a
correct result) is
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PS,max=
1

2S1 +
1
Î3

D .

For any programuc+luc−lp the effective POVM on the data
qubit is given by Eq.s15d; hence the multimeter is universal
and works equally well for all bases.

B. Probabilistic error-free multimeter

Let us now deal with the situation when we want to avoid
any errors. So we are looking for such a three-component
POVM sP+,P−,P?d acting on data and program together
that gives one of the three resultss+,−, ?d according to the
following prescription:

uc+ld ^ uc+luc−lp → + or ? ,

uc−ld ^ uc+luc−lp → − or ? ,

where ? indicates an inconclusive result. As in Sec. II, the
mean probability of an inconclusive result is defined byPI

= 1
2TrfP?sR++R−dg and P? is the POVM component corre-

sponding to an inconclusive result.
Our aim is to find the POVM that never wrongly identifies

statesuC+l and uC−l for any choice of basisuc±l and that, at
the same time, minimizes the probability of an inconclusive
result. This problem is formally equivalent to the determina-
tion of the optimal POVM for unambiguous discrimination
of two mixed statesR+ andR−. It means that, as in Sec. II B,
we are looking for operatorsP+,P−,P? minimizing PI under
the constraints(16), where the relevantR± are defined by Eq.
(49).

The optimal POVM for the unambiguous discrimination
of these two mixed states consists of multiples of projectors
onto the kernels ofR+ and R− (and of the supplement to
unity). The outcomeP+ can be invoked only byR+, the
outcomeP− only by R−. We get

P+ =
2

3
fux1lkx1u + ux2lkx2ug,

P− =
2

3
fuk1lkk1u + uk2lkk2ug, s54d

P? = 1 − P+ − P−,

where

ux1l =
1
Î2

su0ldu01lp − u1ldu00lpd,

ux2l =
1
Î2

su0ldu11lp − u1ldu10lpd,

uk1l =
1
Î2

su0ldu10lp − u1ldu00lpd,

uk2l =
1
Î2

su0ldu11lp − u1ldu01lpd.

This POVM leads to the lowest probability of an inconclu-
sive result, which equals 2/3.

The proof of optimality follows the same lines as in Sec.
II B. Due to the particular structure of operatorsR+ and R−
the problem of their unambiguous discrimination splits into
independent problems of the unambiguous discrimination of
two pure states. This can be most easily seen from the spec-
tral decomposition ofR+ andR− [cf. Eq. (50)]. Each operator
R± possesses a two-dimensional kernel and the matrix repre-
sentations ofR+ and R− exhibit a common block-diagonal
structure. The first block(associated with eigenvalue 1/12)
corresponds to the four-dimensional symmetric subspace of
three qubits. The second and third blocks(associated with
eigenvalue 1/3) correspond to two-dimensional spaces
spanned byhuA+l , uA−lj andhuB+l , uB−lj, respectively. Clearly,
our discrimination problem reduces to the unambiguous dis-
crimination of statesuA+l , uA−l, and uB+luB−l, respectively.

Thus the minimal overall probability of the inconclusive
result is

PI =
1

3
szkA+uA−lz + zkB+uB−lzd +

4

12
=

2

3
.

The term 4/12stems from the totally symmetric states,
which are the same for both operatorsR±.

C. Multimeter with a fixed fraction of inconclusive results

Now we relax the requirement of unambiguous(error-
free) operation. Thus our task is as follows: For a given
probability of an inconclusive result minimize the error rate
(i.e., maximize the success rate) or vice versa. We have al-
ready seen the two limit cases: the deterministic and the
probabilistic error-free multimeters as described above.

The optimal discrimination of two mixed statesR± with a
fraction of inconclusive resultsPI is formally equivalent to
the maximization of the success rate of the deterministic dis-
crimination of three mixed statesR+, R−, and R?=sR+

+R−d /2 with a priori probabilitiesp±=1/f2sa+1dg and p?

=a/ sa+1d, whereaP f0,1g is a certain Lagrange multiplier
[15,16]. Again, we can profitably use the specific structure of
operatorsR± described in the preceding subsection. The
method of calculation is the same as in Sec. II C.

Let us start with the discrimination of vectors from the
symmetric subspace(let hujilji be an orthonormal basis in
Hsym). Because the vectorsujil are the same for bothR± we
simply try to discriminate identical states. It was shown in
Sec. II C that fora,1/2 the POVM component correspond-
ing to the inconclusive resultP?,i =0 and fora.1/2, con-
trariwise, the conclusive-result components are zero,P±,i
=0. For the boundary valuea=1/2 there is a smooth transi-
tion:

P±,i =
1

2
s1 − hdujilkjiu,

P?,i = hujilkjiu, h P f0,1g.

The success rates and inconclusive-result rates are given in
Table I.

Now we can proceed to the discrimination(with a given
inconclusive-result fraction) of statesuA+l and uA−l defined
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by Eqs.(51). For statesuB+l and uB−l the calculation is com-
pletely analogous and the results for success and
inconclusive-result rates are the same. StatesuA±l include the
angle 60° and they can be expressed in the following way:

uA±l =
1

2
sÎ3ubl ± uald,

where

ual =
1
Î6

s2u0ldu11lp − u1ldu01lp − u1ldu10lpd,

ubl =
1
Î2

su1ldu01lp − u1ldu10lpd.

The POVM for the optimal discrimination can be written as
follows:

P±,A =
1

2 sin2F
uJ±lkJ±u,

s55d

P?,A = S1 −
1

tan2F
Dublkbu,

where

uJ±l = cosFubl ± sin Fual. s56d

We can imagine this POVM in the following geometrical
way. We start withF=45° so that the statesuJ±l are or-
thogonal. This situation corresponds to the Helstrom de-
terministic sbut error-proned discrimination. Then, in-
creasingF, the vectorsuJ±l move toward each other on
the Bloch sphere. Finally, we get to the situation when
uJ+l is orthogonal touA−l and uJ−l is orthogonal touA+l;
F=60°. This case corresponds to the unambiguous dis-
crimination of statesuA±l.

Now one can easily calculate the probability of success:

PS8 =
1

8
S Î3

tan F
+ 1D2

, s57d

and the probability of an inconclusive result:

PI8 =
3

4
S1 −

1

tan2F
D . s58d

It follows from the extremal equations that

tan F =51 for a ,
1

2S1 +
1
Î3

D ,

Î3s2a − 1d for a ù
1

2S1 +
1
Î3

D .

At this stage we are ready to write down the total success
rate and inconclusive-result rate for the discrimination of
statesR±. Clearly,

PS=
1

3
PS9 +

2

3
PS8, PI =

1

3
PI9 +

2

3
PI8.

We can also introduce the relative success ratesi.e., the suc-
cess rate calculated only for “conclusive” resultsd: PRS
=PS/ s1−PId.

One must examine four different sets of parametera: a
Pf0, 1

2
d, a= 1

2, aP ( 1
2 , 1

2s1+1/Î3dg, andaP ( 1
2s1+1/Î3d ,1g.

Finally, it can be seen that(see also Fig. 3)

PS=5
1

2S1 +
1
Î3

D −
PI

2
if 0 ø PI ø

1

3
,

1

2
−

PI

2
+

1

3
Î5

4
−

3PI

2
if

1

3
, PI ø

2

3
.

s59d

For PI =2/3 theerror-free operationsPRS=1d is approached
and there is no reason to increasePI further.

Apparently, the optimal POVM for universal multimeters
with a fixed fraction of inconclusive results has two different
forms according to the value of the probability of the incon-
clusive result. First let us write down the POVM forPI

Pf0, 1
3
g:

P± = P±
D −

3

2
PIPsym,

P? = 3PIPsym, s60d

whereP±
D denote the elements of the POVM for determinis-

tic discrimination that are defined by Eq.s52d.

TABLE I. Success rate and probability of inconclusive results as
functions ofa when discriminating two identical states.

a,1/2 a=1/2 a.1/2

PS9 1/2 s1−hd /2 0

PI9 0 h 1

FIG. 3. Dependence of the relative success ratePRSon the prob-
ability of inconclusive resultsPI, for optimal universal multimeter
with programuc+luc−l.
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WhenPI P s 1
3 , 2

3
g the POVM can be expressed as

P± = P±,A + P±,B,
s61d

P? = Psym+ P?,A + P?,B,

whereP±,B andP?,B are POVM elements for discrimination
of vectorsuB±l that can be obtained in a completely analo-
gous way as that for vectorsuA±l [see Eq.(55)]. For PI =

1
3

the two POVMs(60) and (61) coincide [notice that forF
=45°, uJ+l=−uf2l as follows from Eqs.(53) and (56)].

The operation of the multimeter for different values ofPI
can be figured as follows: WhenPI grows from zero it is
most advantageous to gradually move the contributions that
are the same for bothR± and that substantially contribute to
errors from conclusive to inconclusive results. This means
that the multiple of the projector to the symmetric subspace
increases inP?. When PI =1/3 then P?=Psym, and further
increase of the fraction ofPsym is impossible(becauseP±
and P? must form a POVM). If one wants to increasePI
further above 1/3 he/she must start to turn the vectorsuJ±l
as described above. The pointPI =2/3 corresponds to the
unambiguous discrimination.

IV. UNIVERSAL PROBABILISTIC ERROR-FREE
MULTIMETER FOR QUDITS

Let us consider a multimeter that could realize an arbi-
trary von Neumann projective measurement on a single
d-level system (qudit). Let uc jl, j =1, . . . ,d denote
orthonormal-basis states. We consider the conceptually sim-
plest program that consists of thed qudits in basis states,

uClp = uc1luc2l ¯ uc jl ¯ ucdl ; fUdsgdg^duC0lp, s62d

where uC0lp= u1lu2l¯ u jl¯ udl, Udsgd is a unitary operation
acting on the basis states according toUdsgdu jl= uc jl, andg
PSUsdd. We are interested in the probabilistic error-free
multimeter which can respond with an inconclusive out-
come but never makes an error, i.e.,p j ~ uc jlkc ju. The mul-
timeter is described by asd+1d-component POVM ond
+1 qudits sthe data qudit andd program quditsd. The
POVM hP1, . . . ,Pd,P?j should optimally unambiguously
discriminate amongd mixed states

Rj =E
SUsdd

Udsgdu jldatak j uUd
†sgd^ fUdsgdg^duC0lpkC0u

3fUd
†sgdg^ddmsgd, s63d

where the integration is carried over the whole group SUsdd
with the invariant Haar measuredmsgd.

We conjecture that the optimal POVM elementsP j have
the following structure:

P j = CuSd
−l j̄kSd

−u ^ 1 j , s64d

P? = 1 − o
j=1

d

P j ,

whereuSd
−l j̄ is the totally antisymmetric state ofd qudits: the

data qudit and all program qudits except for thej th qudit,
and1 j stands for the identity operator on the Hilbert space of
the j th program qudit. We can write

uSd
−l j̄ =

1
Îd!

o
i

eiui1ldata^ ui2, . . . ,idlpj̄ , s65d

where we sum over all permutations ofh1,2, . . . ,dj andei is
the sign of the permutation. Clearly, vectorsuSd

−l j̄ ^ uxl j,
where uxl j is an arbitrary state of thej th program qudit, are
orthogonal to any vectoruCkl= uckldatauc1luc2l¯ ucdl with
kÞ j . It is easy to verify that TrfP jRkg~d jk. This means
that the only contribution to the outcomeP j can originate
from the j th basis state of the data qudit.

Clearly, the POVM(64) is a POVM describing a proba-
bilistic unambiguous multimeter. We believe it is even the
optimal one for the program(62). This hypothesis is based
on the conjecture that the kernels of operatorsRj have the
form K j =H j

ant
^ 1 j̄ whereH j

ant is the antisymmetric space of
two qudits—the data one and thej th program one. The sym-
bol 1 j̄ denotes the identity operator ond−1 program qudits
exclusive of thej th qudit.(At worst,K j are the subspaces of
the appropriate kernels.) The d-dimensional subspace
spanned byuSd

−l j̄ ^ uxl j, whereuxl j is an arbitrary state of the
j th qudit, represents an intersection ofd−1 spacesKk (ex-
cluding thej th one): ùk=1

kÞ j

d Kk.

The sum of thed POVM elementsP j must be lower than
the identity operator,o j=1

d P j ø1, which imposes a constraint
on the normalization factorC. Since we want to maximize
the probability of success we must choose the maximum
possibleC, which can be expressed in terms of the maximum
eigenvalue of the operator

Y = o
j=1

d

uSd
−l j̄kSd

−u ^ 1 j .

The maximal admissibleC reads

C = hmaxfeigsYdgj−1. s66d

Instead of looking for the maximum eigenvalue ofY we can
equivalently calculate the maximum eigenvalue of the opera-
tor

Z = o
j=1

d

uf jlkf ju, s67d

where uf jl= uSd
−l j̄u1l j. The d linearly independent statesuf jl

span ad-dimensional Hilbert spaceH f. We can writeuf jl
=M uejl whereuejl form an orthonormal basis inH f. On in-
serting this expression into Eq.s67d we find that
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Z = o
j=1

d

MuejlkejuM† = MM†, s68d

where the completeness of the basisuejl on H f has been
used. It holds for any square matrixM that MM† has the
same eigenvalues asF=M†M. In the basisuejl the matrix
elements ofF readFjk=kf j u fkl. We thus have to determine
the scalar products of the nonorthogonal statesuf jl. Let us
introduce unnormalized states ofd−1 qudits, usd−1

− l j̄ k̄, that
are obtained by projecting thekth program qudit of the state
uSd

−l j̄ onto stateu1lk. It follows thatFjk can be calculated as a
scalar product ofusd−1

− l j̄ k̄ and usd−1
− lk̄j̄,

Fjk= j̄ k̄ksd−1
− usd−1

− lk̄j̄ . s69d

It is easy to deduce from the Slater determinant representa-
tion of the totally antisymmetric states65d that usd−1

− l j̄ k̄ is
also a totally antisymmetric state of the data qudit and all the
program qudits except thej th andkth ones,

usd−1
− l j̄ k̄ =

s− 1dt

Îd!
o

i

ei8ui1ldata^ ui2, . . . ,id−1lp, j̄ k̄, s70d

where one sums over all permutations ofh2,3,¯ ,dj, ei8 is
the sign of the permutation, and

t = Hk for j . k,

k − 1 for j , k.

Assuming j Þk and inserting the expressionss70d into Eq.
s69d, we immediately find that

Fjk =
sd − 1d!

d!
s− 1d j+k−1, j Þ k. s71d

Sinceuf jl are normalized we finally have

Fjk = d jk + s1 − d jkd
s− 1d j+k−1

d
. s72d

The operatorF can be easily diagonalized,

F = S1 +
1

d
D1 − uwdlkwdu, s73d

where uwdl=s1/Îddo j=1
d s−1d juejl. It follows from Eq. s73d

that the largest eigenvalue ofF is mmax=1+1/d; henceC
=d/ sd+1d and the normalized POVMs64d reads

P j =
d

d + 1
uSd

−l j̄kSd
−u ^ 1 j . s74d

By construction, the probabilistic multimeter is universal and
the probability of success

PS=
d

sd + 1d!
s75d

does not depend on the particular basis chosen by the pro-
gram state or on the basis stateuc jl sent to the data register.
Consequently, the multimeter indeed probabilistically imple-

ments the projective measurement in the basishuc jlj j=1
d , and

the effective POVM on the data qudit reads

p j = PSuc jlkc ju, j = 1, . . . ,d,
s76d

p? = s1 − PSd1.

V. CONCLUSIONS

In this paper we have investigated a broad class of quan-
tum multimeters that can perform a projective measurement
on a single data qubit(or qudit). The main feature of the
quantum multimeters is that the measurement basis is con-
trolled by the quantum state of the program register, which
serves as a kind of quantum “software,” while the multimeter
itself (quantum “hardware”) performs a fixed joint measure-
ment on the data and program registers.

In our investigations we have assumed a finite-
dimensional program register, consisting of several qubits(or
qudits). In this case it is impossible to design the perfect
multimeter that would perform exactly and deterministically
a projective measurement in any basis from a continuous set,
with the basis being determined by the state of the program
register. The multimeters designed here are therefore only
approximate. Two conceptually different approximations
have been considered. In the first case, the multimeter oper-
ates deterministically and always produces an outcome, but
the effective measurement on the data deviates from the ideal
projective measurement. Such errors are avoided in the sec-
ond approach, when the multimeter is a probabilistic device
whose operation sometimes fails but, when it succeeds, car-
ries out exactly the desired projective measurement.

We have demonstrated that these two kinds of multim-
eters are in fact just limit cases from a whole class of proba-
bilistic multimeters that are characterized by a certain frac-
tion PI of inconclusive results. For a fixed dependence of the
program on the measurement basis, the problem of designing
the optimal multimeter is formally equivalent to finding the
optimal POVM for discrimination of mixed states. With the
help of the recently developed theory of optimal probabilistic
discrimination of mixed quantum states, we have been able
to determine analytically the optimal phase-covariant multi-
meter for anN-qubit programuc+l^N as well as a universal
multimeter with a two-qubit programuc+luc−l. Remarkably,
in both cases the success rate of the optimal deterministic
multimeter exactly coincides with the optimal fidelity of es-
timation of the basis stateuc+l from a single copy of the
program state.

We have also proposed a generalization of the probabilis-
tic error-free multimeter to qudits, assuming that thed-qudit
program consists of a product of thed basis states. The con-
struction of this multimeter is inspired by the structure of the
optimal probabilistic multimeter for qubits and relies on pro-
jections on a totally antisymmetric state ofd qudits.

Our findings clearly illustrate that the measurement on the
data qubit can be quite efficiently controlled by the quantum
state of the program register. In particular, we emphasize that
a classical description of the measurement basis would re-
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quire infinitely many bits of classical information, while only
a few quantum bits suffice in the present case to obtain an
error-free (although probabilistic) operation. Our results also
reveal many intriguing connections between the concept of
quantum multimeters, discrimination of quantum states, and
optimal quantum-state estimation. This suggests that there
might also be links to the related problems of transmitting
information about the direction in space[33–35] or about the
reference frame[36,37] using quantum states. The main con-
nection between these protocols and programmable quantum
multimeters is that in both cases we want to encode into a
quantum state some information about a reference frame. In
the case of quantum multimeters it is a reference frame in the
abstract Hilbert space of quantum states—the measurement
basis. It was shown in Refs.[33–37] that the use of entangled
states can improve the fidelity of transmission of informa-

tion. The natural question arises whether by using entangled
states as programs one could achieve a higher success rate
(for a fixed size of the program register) than with the
product-state programs considered in the present paper. More
generally, one would ultimately like to know what is the
optimal programleading to the maximal achievable success
rate. This is a highly nontrivial open problem that certainly
deserves further investigation.
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