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We present an optical implementation of two programmable quantum measurement devices. The first one
serves for unambiguous discrimination of two nonorthogonal states of a qubit. The particular pair of states to
be discriminated is specified by the quantum state of a program qubit. The second device can perform von
Neumann measurements on a single qubit in any basis located on the equator of the Bloch sphere. Again, the
basis is selected by the state of a program qubit. In both cases the data and program qubits are represented by
polarization states of photons. The experimental apparatus exploits the fact that two Bell states can be distin-
guished solely by means of linear optics. The outcome corresponding to the remaining two Bell states repre-
sents an inconclusive result.
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I. INTRODUCTION

Quantum measurements are inevitable parts of all quan-
tum devices[1–4]. In many situations, the choice of a par-
ticular measurement depends on the task to be performed.
For instance, in the case of quantum-state discrimination the
choice of the generalized measurement is given by the spe-
cific pair of states that are supposed to be discriminated.
Recently universal(multipurpose) quantum measurement de-
vices, “quantum multimeters,” were introduced and dis-
cussed in several papers[5–9]. Their key property is the
possibility to control the choice of the measurement by a
quantum state of the program register, which could be in
principle unknown. The quantum states of a program register
corresponding to different measurements are allowed to be
mutually nonorthogonal.

In this paper, we report on the experimental realization of
a programmable quantum-state discriminator(Sec. II) and a
phase-covariant multimeter(Sec. III). Both programmable
detectors involve two qubits: one data qubit and one program
qubit. In our optical implementation, the qubits are encoded
into polarization states of single photons and the required
photon pairs are generated by means of spontaneous para-
metric down-conversion. The experiment exploits the fact
that a partial Bell measurement on polarization states of two
photons can be accomplished with linear optics—namely, a
balanced beam splitter and two polarizing beam splitters, fol-
lowed by photodetectors[10–14].

II. PROGRAMMABLE QUANTUM-STATE
DISCRIMINATOR

A. Theory

A generalunknownquantum state cannot be determined
completely by a measurement performed on a single copy of
the system. But the situation is different ifa priori knowl-
edge is available[1–3]—e.g., if one works only with states

from a certain discrete set. Even quantum states that are mu-
tually nonorthogonal can be distinguished with a certain
probability provided they are linearly independent(for a re-
view see Ref.[15]). There are, in fact, two different optimal
strategies[16]: first, the strategy that determines the state
with the minimum probability for the error[1,2] and, second,
unambiguous or error-free discrimination(the measurement
result never wrongly identifies a state) that allows the possi-
bility of an inconclusive result(with a minimal probability in
the optimal case) [17–21]. We will concentrate our attention
on the unambiguous state discrimination. It was first investi-
gated by Ivanovic[17] for the case of two equally probable
nonorthogonal states. Peres[19] solved the problem of dis-
crimination of two states in a formulation with positive op-
erator valued measure(POVM) measurement. Later Jaeger
and Shimony[20] extended the solution to arbitrarya priori
probabilities. Chefles and Barnett[21] have generalized
Peres’s solution to an arbitrary number of equally probable
states which are related by a symmetry transformation. Un-
ambiguous state discrimination was already realized experi-
mentally. The first experiment, designed for the discrimina-
tion of two linearly polarized states of light, was done by
Huttner et al. [22]. Interest in quantum-state discrimination
is not only “academic”—unambiguous state discrimination
can be used, e.g., as an efficient attack in quantum cryptog-
raphy [23].

Let us now suppose that we want to discriminate unam-
biguously between two nonorthogonal states. However, we
would like to have a possibility to “switch” the apparatus in
order to be able to work with several different pairs of states.
The switching should be realized by preparing a program
register of the programmable discriminator in different pro-
gram states. The program state thus specifies which pair of
quantum states is discriminated by the device. This problem
was investigated theoretically in Ref.[5].

Let us have two(nonorthogonal) input states of a qubit
that should be discriminated:
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ufd
±l = auHdl ± buVdl, s1d

whereuHdl anduVdl represent two “logical” levels of a qubit,
in particular horizontal and vertical linear polarizations of a
photon; the subscript “d” stays for “data.” Note that these
states are supposed to be symmetrically located around the
state uHdl, as depicted in Fig. 1. In addition let us have a
program qubit in a statesthe index “p” denotes “program”d

ufpl = a8uHpl + b8uVpl. s2d

Choosing properly the state of a program qubit and perform-
ing a suitable joint measurement on the data and program
qubits together one can unambiguously discriminate any two
states of the data qubit that are in agreement with the pro-
gram.

Let us suppose that the state of the program qubit is equal
to one of the two states that shall be error-free discriminated.
In particular, let

ufpl = auHpl + buVpl. s3d

Then the total state of the data and program qubit reads

ufd
±l ^ ufpl = Î2Fa2 ± b2

2
uF+l +

a2 7 b2

2
uF−l + abuC±lG ,

s4d

where

uC±l =
1
Î2

suHdluVpl ± uVdluHpld,

uF±l =
1
Î2

suHdluHpl ± uVdluVpld
s5d

are the Bell states. Clearly, if we were able to detect Bell
statesuC+l and uC−l, we could unambiguously discriminate
statesufd

+l and ufd
−l.

The probability of successful discrimination would be

p = 2uabu2 = 2suau2 − uau4d. s6d

This probability of success is not optimal in general. As
shown in Refs.f17–19g the optimal probability of successful
discriminationpopt=1−ukfd

+ ufd
−lu=1−u2uau2−1u. In fact, the

probability s6d corresponds to a “quasiclassical” discrimi-
nation. By a quasiclassical approach we mean a probabi-
listic measurement when one randomly selects1 the pro-
jective measurement in one of two bases that both span
the two-dimensional space containing both nonorthogonal
states of interests1d. One basis consists of the stateufd

+l
and its orthogonal complementuf'd

+ l. If one finds the re-
sult corresponding touf'd

+ l, one can be sure that the state
ufd

+l was not present. Analogously, the other basis consists
of the stateufd

−l and its orthogonal complement.
To get a higher probability of success one would have to

make a more sophisticated measurement than a simple Bell-
state analysis[5]. However, there are two important points
concerning the proposed discrimination procedure: First, a
partial measurement in the Bell basis can be easily realized
by linear optics. Namely, statesuC+l and uC−l can be distin-
guished(the rest of the Bell states correspond to an incon-
clusive result anyway). Second, our aim is not to maximize
the success probability but to demonstrate experimentally the
possibility to control the discrimination process by thequan-
tum stateof a program qubit. Even to set the bases for the
mentioned quasiclassical discrimination correctly, one needs
an infinite number of bits of classical information. Our pro-
cedure requires onlya single qubitfor the same job. This fact
reveals thequantum natureof the programming. Even non-
orthogonal states of the quantum qubit carry “useful infor-
mation” for the discrimination process.

B. Experiment

The scheme of our experimental setup is shown in Fig. 2.
A krypton-ion cw laser(413.1 nm, 95 mW) is used to pump
a 10-mm-long LiIO3 nonlinear crystal cut for degenerate
type-I parametric downconversion. We exploit the fact that
the pairs of photons generated by spontaneous parametric
downconversion(SPDC) manifest tight time correlations
(i.e., very exact coincidences of detection instants). In our
setup the photons produced by SPDC have horizontal linear
polarizations. Different polarization states are prepared by
means of half-wave and quarter-wave plates(HWP, QWP).
The polarization of the signal photon represents the data qu-

1With the same probabilities, provided that the frequencies of the
occurrence of the input states are also the same.

FIG. 2. Experimental setup(BS is a beam splitter; PBS, polar-
ization beam splitters; D, detectors; and HWP and QWP, half- and
quarter-wave plates, respectively).

FIG. 1. Polarization of the “data” photon: left panel, linear po-
larizations; right panel, elliptical polarizations.
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bit while the polarization of the idler photon serves as the
program qubit. The two photons impinge on two input ports
of a 50/50 beam splitter(BS, nonpolarizing cube beam split-
ter). A scanning mirror is used in one interferometer arm in
order to balance the length of both arms, as indicated by an
arrow in Fig. 2. The photons reflected and transmitted by BS
pass polarizing beam splitters(PBS, polarizing cube beam
splitter) to distinguish horizontal and vertical polarizations.
Finally, the beams are filtered by cutoff filters and circular
apertures, and coupled into multimode optical fibers by
lenses. Detectors D1, . . . ,D4 are Perkin-Elmer single-photon
counting modules(employing silicon avalanche photodiodes
with quantum efficiencyh<50% and dark counts about
100 s−1). The signals from detectors are processed by our
homemade four-input coincidence module. With this setup,
visibilities of the Hong-Ou-Mandel dip[24] exceeding 92%
were reached for vertically polarized photons(for other po-
larizations visibilities were slightly lower). Higher visibilities
could not be reached due to the fact that the splitting ratios of
the coupler were not exactly 50/50 and due to the imperfec-
tions of the wave plates and polarization distortions on mir-
rors.

As already mentioned our experiment is based on the pos-
sibility to detect the two particular Bell states in the Hilbert
space of the polarization states of two photons. This task can
be done by means of passive linear optical elements—
namely, by a beam splitter and two polarization beam split-
ters as shown in Fig. 2[10–14].

The simplest theoretical model of the beam splitter leads
to the conclusion that if one fetches Bell states at the inputs,
the only one of them that results in a coincident detection at
two different outputs of the beam splitter is the singlet state
uC−l. However, in the case of the “real” beam-splitting cube,
one must take into account that the two photons strike upon
a beam splitter in opposite directions. So if the mutual phase
of the vertical components of the electric-field vectors at the
interface plane(we mean the vectors corresponding to the
fields coming from the two opposite inputs) is w, the mutual
phase of the horizontal components isw+180° just forgeo-
metrical reasons. It means that if one prepares both photons
in the samelinear polarizations tilted by 45° with respect to
the plane of incidence, the vectors of electric field at the
interface plane will oscillate in mutuallyperpendiculardi-
rections. Consequently, now it is the triplet stateuC+l that
leads to a coincident detection at different outputs.

So if detectors D1 and D3 or D2 and D4 click together in
our setup, the stateuC+l is detected(at the input of the beam
splitter)—this corresponds to the recognition of stateufd

+l. If
detectors D1 and D2 or D3 and D4 click in coincidence, the
stateuC−l was “present” in the input—soufd

−l is detected. If
both photons enter the same detector, eitheruF+l or uF−l was
“present” in the input—this represents the inconclusive result
of the discrimination.

Each data point at presented plots has been derived from
ten 1-s measurement periods. The accuracy of polarization-
angle settings was better than±1°.

C. Results

We tried to discriminate a broad variety of pairs of ellip-
tically polarized states

ufd
±l = sx cosq + iy sin qduHdl ± sx sin q − iy cosqduVdl,

s7d

wherex andy are the half-axes of the polarization ellipse and
q is the angle between horizontal axis and the direction of
the x half-axis ssee Fig. 1d. The ellipticity tans«d=y/x. We
started with linear polarizationss«=0d and then proceeded
with elliptical polarizations with three different elliptici-
ties snamely, for«=12° , 24° , and 36°d. The angleq was,
in all the cases, scanned from 0° to 90° with a step of 4°.
Elliptical polarizationsscorresponding to statesufd

±ld were
produced from horizontal ones by means of a quarter-
wave plate rotated by anglea= ±« with respect to the
horizontal axis. Then the direction of thex half-axis of the
polarization ellipse was tilted by a half-wave plate rotated
by b= ± s«+qd /2.

Let us recall that the theoretical probability of successful
discrimination of states(7) is

p = 2suau2 − uau4d, where uau2 = x2 cos2 q + y2 sin2 q.

s8d

Figure 3 shows the coincidence rates measured for linear
polarization states. The upper part shows the measurement of
Bell statesuC+l and uC−l when the data and program states
coincide (i.e., the input state isufd

+l ^ ufpl); the lower part
shows the same measurement in case when they are different
(i.e., the input state isufd

−l ^ ufpl). Statistical errors are
smaller than the symbols of points. The graphs in Fig. 4
illustrate the same measurement but with pairs of elliptically
polarized states[«=24°—i.e., tans«d=0.45].

Throughout the whole paper,C++ denotes the detection
rate of uC+l when the input was in the state
ufd

+l ^ ufpl, C−+ denotes the detection rate ofuC−l when the

FIG. 3. Detection rates ofuC+l (dots, solid line) and uC−l (dia-
monds, dashed line) for linearly polarized input states. The upper
part corresponds to the situation when the data and program states
coincide,ufd

+l ^ ufpl, the lower part to the situation when they are
different, ufd

−l ^ ufpl.
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input was in the stateufd
+l ^ ufpl, C+− denotes the detection

rate of uC+l when the input was in the stateufd
−l ^ ufpl, and

C−− denotes the detection rates ofuC−l when the input was in
the stateufd

−l ^ ufpl.
The relative(with respect to all conclusive results) error

rates—i.e., fractions of events when we getuC+l instead of
uC−l or vice versa—are about 5%. This value is approxi-
mately the same for all measured polarizations. Ideally the
error rate should be zero, but due to technical imperfections
of the setup, it gets this small nonzero value.

The main parameter—the probability of success—is plot-
ted in Fig. 5 for four different ellipticities. Symbols denote
experimental data; lines represent theoretical predictions(8).
The first curve corresponds to linearly polarized photons

(acting as data and program qubits), the others, in sequence,
to elliptically polarized photons with«=12° , 24° , and 36°.
As can be seen the data are in a good agreement with the
theory.

The probability of success is calculated as an average of
normalized detection rates corresponding to successful
events(i.e., correct conclusive measurement results) for two
possible input states(which are in correspondence with the
program state). The averaging takes into account that both
inputsufd

+l ^ ufpl andufd
−l ^ ufpl appear with the same prob-

ability 1/2. The “normalization” means that the detection
rate is divided by the pair-generation rate—i.e., by the num-
ber of all measurement events per time unit. This quantity is
obtained from the coincidence measurement on the shoulder
150mm out of the dip(see Fig. 6). In this situation the two
one-photon packets generated by downconversion no longer
overlap at the beam splitter and each of them randomly “de-
cides” whether to go through or to be reflected.

As the splitting ratio of the used beam splitter is slightly
different for vertical and horizontal linear polarizations the
normalization measurements were done with 45° linear po-
larization states at the inputs. For the set of main measure-
ments (i.e., Bell measurements withbalancedarms of the
Hong-Ou-Mandel interferometer) with the statesufd

+l ^ ufpl
the input polarizations of the normalization measurement
were 45° , 45°; for the set of main measurements with the
statesufd

−l ^ ufpl they were 45° , 45°.
Because our setup and detection electronics are tailored to

measurement of the Bell statesuC+l and uC−l, we can mea-
sure only the events when detectors D1 and D3 or D2 and D4
click together or when detectors D1 and D2 or D3 and D4
click in coincidence. For the given 45° polarizations both
these two rates outside the dip should be equal to 1/4 of the
pair-generation rate. However, there could be deviations
from this 1/4 due to the nonideal splitting ratio of the beam
splitter. Nevertheless, the sum of these two quantities is im-
mune against this imperfection and proportional to 1/2 of the
pair-generation rate.

Thus the probability of success is calculated as

FIG. 4. Detection rates ofuC+l (dots, solid line) and uC−l (dia-
monds, dashed line) for elliptically polarized input states,«=24°.
The upper part corresponds to the situation when the data and pro-
gram states coincide,ufd

+l ^ ufpl, the lower part to the situation
when they are different,ufd

−l ^ ufpl.

FIG. 5. Probability of successful operation as a function of angle
q. Symbols denote experimental data, lines represent theoretical
predictions(8). The first curve corresponds to linearly polarized
photons, the others, in sequence, to elliptically polarized photons
with «=12° , 24° , and 36°.

FIG. 6. Detection rates as functions of the mirror position. Here
C++ is a coincidence rate at D1 and D3 or D2 and D4 when the input
polarizations were 45° , 45°. The quantityC+− is a coincidence rate
at the same detectors for input polarizations 45° , 45°. Analogously,
C−+ andC−− are coincidence rates at D1 and D2 or D3 and D4.
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Psucc=
1

2
F C++

2sCsh
++ + Csh

−+d
+

C−−

2sCsh
−− + Csh

+−dG , s9d

where Csh are the above-mentioned detection rates mea-
sured outside the dip; in particular,Csh

++ denotes the coin-
cidence rate of D1 and D3 or D2 and D4 with 45° , 45°
polarizations at the inputs, etc. These quantities were al-
ways measured just before or just after the corresponding
set of main measurements in order to minimize the influ-
ence of the long-term fluctuationsslike a laser-power
drift, etc.d. The errors derived from the statistical fluctua-
tions of individual detection rates are smaller than the
symbols of points in Fig. 5. The systematic errorsthe shift
of all the data valuesd is due to nonunit visibility.

III. PHASE-COVARIANT QUANTUM MULTIMETER

A. Theory

Now we will consider a different kind of quantum
multimeter—namely, such a one that can perform von Neu-
mann measurements on a single qubit in any basis
huc+l , uc−lj located on the equator of the Bloch sphere:

uc±sfdl =
1
Î2

su0l ± eifu1ld, s10d

where fP f0,2pd is arbitrary. The particular measurement
basis is selected by a quantum state of a program register.

It is impossible to perfectly encode such projective mea-
surements into states in finite-dimensional Hilbert space
[5,8]. Nevertheless, it is possible to encode POVMs that rep-
resent, in a certain sense, the best approximation of the re-
quired projective measurements. A specific way of approxi-
mation of a projective measurement is a “probabilistic”
measurement that allows for some inconclusive results. In
this case, instead of a two-component projective measure-
ment, one has a three-component POVM and the third out-
come corresponds to an inconclusive result. The optimal
multimeter should minimize the error rate at the first two
outcomes for a fixed fraction of inconclusive results. As a
limit case it is possible to get an error-free operation. Such a
multimeter performs the exact projective measurements but
with the probability of success lower than 1.

The optimal phase-covariant multimeters for the program
states uC lp consisting of N copies of the basis state
uc+l , uC lp= uc+l^N,2 were determined in[8]. For the simplest
caseN=1 which corresponds to a one-qubit program, the
optimal (fixed) POVM acting on data and program qubits
together reads

P± = uC±lkC±u +
1 − h

2
suF+lkF+u + uF−lkF−ud,

P? = hsuF+lkF+u + uF−lkF−ud,

s11d

wherehP f0,1g and

uC±l =
1
Î2

su0dlu1pl ± u1dlu0pld,

uF±l =
1
Î2

su0dlu0pl ± u1dlu1pld.

s12d

The factorh parametrizes a smooth transition from a deter-
ministic error-prone multimetersh=0d to a probabilistic
error-free onesh=1d f8g. In this simple case whenN=1 it is
trivially connected with the probability of an inconclusive
result:PI =h /2.

The fidelity of the multimeter can be defined as the prob-
ability of a correct measurement outcome in the case of a
conclusive result, assuming the data register is prepared in
the basis stateuc+l or uc−l with probability 1/2 each. The
mean fidelity is then obtained by averaging the fidelity over
all measurement bases—i.e. over the phasefP f0,2pd. The
average fidelity of the phase-covariant multimeter depends
on the probability of inconclusive result in the following
way:

F =
3 − 2PI

4s1 − PId
.

The effective POVM on the data qubit only(this POVM
depends on the program state) is given by

p± = s1 − PIdfFuc±sfdlkc±sfdu+ s1 − Fduc7sfdlkc7sfdug,

p? = PI1.

For h=0 we have an ambiguous(error-prone) operation
with no inconclusive resultssPI =0,F=3/4d while for h=1
we get an unambiguous(error-free) but probabilistic mea-
surement device(from time to time we obtain an inconclu-
sive resultPI =1/2, F=1.3

Clearly, whenh=1 then POVM(11) is just a projective
measurement on the Bell statesuC+l, uC−l and on the rest of
the four-dimensional Hilbert space(which corresponds to in-
conclusive results). If h,1 we just “reinterpret” some in-
conclusive results as “conclusive” ones. I.e., we will treat
randomly selected(with probability 1−h) inconclusive re-
sults as results “+” or “−”(at random). Therefore, it is quite
enough to test experimentally only the unambiguous version
sh=1d of our phase-covariant quantum multimeter as all the
other variantss0øh,1d can be obtained manipulating the
measured data only.

2Since the stateuc−l can be obtained formuc+l via unitary trans-
formation uc−l=szuc+l wheresz denotes the Pauli matrix, all the
programs of the formuc+l^ juc−l^N−j are equivalent to the program
uc+lN.

3Notice that an unambiguous phase-covariant multimeter with a
single-qubit program represents, in a certain sense, a limit case of
the above-discussed programmable discriminator corresponding to
the discrimination of two orthogonal states.
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B. Experiment

The simplestsN=1d phase-covariant multimeter can be
experimentally implemented using the same setup as for the
programmable quantum-state discriminator(see Fig. 2). The
“logical values” 0 and 1 of qubits will be represented by
horizontal,uHl, and vertical,uVl, linear-polarization states of
photons, respectively.

The statesuc+sfdl, Eq. (10), are prepared from statesuHl
by two wave plates. The first one is a quarter-wave plate
rotated bya=−f /2 (with respect to the horizontal axis) and
the second one is a half-wave plate rotated byb=s90°

−fd /4. The statesuc−sfdl are prepared with the wave plates
rotated by angles −a and −b. This corresponds to a shift off
by 180°. Detection ofuC+l corresponds to the measurement
result connected with the basis stateuc+sfdl; detection of
uC−l corresponds to the measurement result connected with
the basis stateuc−sfdl. Everything else means an inconclu-
sive result.

C. Results

We have measured coincidence rates corresponding to de-
tections ofuC±l and calculated probabilities of inconclusive
results for phasesf from −90° to +90° with step 8°. The
inconclusive-result rate is a “complement” to the rate of
“conclusive” results—i.e., both the correct and erroneous
ones. Thus

PI = 1 −
1

2
F C++ + C−+

2sCsh
++ + Csh

−+d
+

C−− + C+−

2sCsh
−− + Csh

+−dG . s13d

The notation is the same as above.
The graph in Fig. 7 shows the dependence of the prob-

ability of inconclusive results(for an unambiguous opera-
tion) on phasef for input data statesuc+l and uc−l (which
coincide with or are orthogonal to the program states, respec-
tively). Symbols denote experimental data; the solid line rep-
resents the theoretical prediction. The derived errors are
smaller than the symbols of points. The experimental data fit
well with the calculated value ofPI =1/2. As expected, the
probability of inconclusive results does not depend on the
measurement basis determined by the phasef.

The relative error rate(with respect to all conclusive
results)—i.e., a fraction of events when we getuC+l instead

of uC−l or vice versa—is about 3%. Ideally, in the considered
case of unambiguous operation, the error rate should be zero,
but due to technical imperfections of the setup, it gets non-
zero values.

IV. CONCLUSIONS

Our experimental results clearly illustrate that the mea-
surement on the data qubit can be quite efficiently controlled
by the quantum state of the program qubit(program regis-
ter). In particular, we emphasize that a classical setting of the
angle between the states that shall be unambiguously dis-
criminated and a classical description of the measurement
basis in case of projective phase-covariant measurement
would require infinitely many bits of classical information,
while only one quantum bit suffices in the present case to
obtain anerror-free (although probabilistic) operation.
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