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We present an optical implementation of two programmable quantum measurement devices. The first one
serves for unambiguous discrimination of two nonorthogonal states of a qubit. The particular pair of states to
be discriminated is specified by the quantum state of a program qubit. The second device can perform von
Neumann measurements on a single qubit in any basis located on the equator of the Bloch sphere. Again, the
basis is selected by the state of a program qubit. In both cases the data and program qubits are represented by
polarization states of photons. The experimental apparatus exploits the fact that two Bell states can be distin-
guished solely by means of linear optics. The outcome corresponding to the remaining two Bell states repre-
sents an inconclusive result.
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I. INTRODUCTION from a certain discrete set. Even quantum states that are mu-
tually nonorthogonal can be distinguished with a certain

. N _ rbrobability provided they are linearly independéfdr a re-

tum deviceg1-4]. In many situations, the choice of a par- \ie\y see Ref[15]). There are, in fact, two different optimal
ticular measurement depends on the task to be performed; 5iegieg16]: first, the strategy that determines the state
For instance, in the case of quantum-state discrimination th&;ih, the minimum probability for the errdt.,2] and, second,
choice of the generalized measurement is given by the Speampiguous or error-free discriminatiothe measurement

cific pair of states that are supposed to be discriminateqgg|t never wrongly identifies a statibat allows the possi-
Recently universaimultipurposg quantum measurement de- ;i of an inconclusive resultwith a minimal probability in
vices, “quantum multimeters,” were introduced and diS-he gptimal case[17—21. We will concentrate our attention
cussed in several papefS—9. Their key property is the 4, the ynambiguous state discrimination. It was first investi-
possibility to control the choice of the measurement by agated by Ivanovid17] for the case of two equally probable
quantum state of the program register, which could be irhon4rthogonal states. Per] solved the problem of dis-
principle unknown. The quantum states of a program registeimination of two states in a formulation with positive op-
corresponding to different measurements are allowed to bg4ior valued measur@OVM) measurement. Later Jaeger

mutually nonorthogonal. _ . and Shimony[20] extended the solution to arbitraaypriori
In this paper, we report on the experimental realization of,

SR probabilities. Chefles and BarnefRl] have generalized
a programmgble quantum-state discrimina®ec. I) and @ = pereg's solution to an arbitrary number of equally probable
phase-covariant multimetgiSec.

/ &k lIh. Both programmable  gates which are related by a symmetry transformation. Un-
detectors involve two qubits: one data qubit and one program iy ous state discrimination was already realized experi-

.quit' In our thical implemgntation, the qubits are enco‘_jeqnentalIy. The first experiment, designed for the discrimina-
into polan;a‘uon states of single photons and the requiregyn of two linearly polarized states of light, was done by
photon pairs are generated by means of spontaneous pajgyneret al. [22]. Interest in quantum-state discrimination
metric down-conversion. The experiment exploits the factg o only “academic’—unambiguous state discrimination

that a partial Bell measurement on polarization states of tWe.;, pe used e.g., as an efficient attack in quantum cryptog-
photons can be accomplished with linear optics—namely, Faphy [23]. ' '

balanced beam splitter and two polarizing beam splitters, fol-

Let us now suppose that we want to discriminate unam-
lowed by photodetectord 0-14.

biguously between two nonorthogonal states. However, we
would like to have a possibility to “switch” the apparatus in
Il. PROGRAMMABLE QUANTUM-STATE order to be able to work with several different pairs of states.
DISCRIMINATOR The switching should be realized by preparing a program
register of the programmable discriminator in different pro-
gram states. The program state thus specifies which pair of
A generalunknownquantum state cannot be determinedquantum states is discriminated by the device. This problem
completely by a measurement performed on a single copy ofias investigated theoretically in R¢B].
the system. But the situation is differentafpriori knowl- Let us have twanonorthogonglinput states of a qubit
edge is availabl¢1-3—e.g., if one works only with states that should be discriminated:

A. Theory
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are the Bell states. Clearly, if we were able to detect Bell

FIG. 1. Polarization of the “data” photon: left panel, linear po- States¥") and [¥7), we could unambiguously discriminate

larizations; right panel, elliptical polarizations. states|¢g) a”dl‘_ﬁa)- S
The probability of successful discrimination would be
|¢6) = alHa) £ b|Vy), (1) p=2lab®=2(jaf* - [al*). (6)

This probability of success is not optimal in general. As

yvhere|'Hd) ""”d|\(d> represent two “logical” levels of a qubit, ghown in Refs[17-19 the optimal probability of successful
in particular horizontal and vertical linear polarizations of adiscriminationpoptz1—|<¢g|q§5>|:1—|2|a|2—1|. In fact. the

photon; the subscript “d” stays for “data.” Note that these
states are supposed to be symmetrically located around t
state|Hgy), as depicted in Fig. 1. In addition let us have a|is
program qubit in a statéhe index “p” denotes “program”

robability (6) corresponds to a “quasiclassical” discrimi-
tion. By a quasiclassical approach we mean a probabi-
tic measurement when one randomly selbdte pro-
jective measurement in one of two bases that both span
the two-dimensional space containing both nonorthogonal
|y =a'[Hp) + b’ |Vp). (2)  states of interestl). One basis consists of the st
and its orthogonal complemehp’ . If one finds the re-
Choosing properly the state of a program qubit and performsult corresponding td$’ ), one can be sure that the state
ing a suitable joint measurement on the data and prograr®g) was not present. Analogously, the other basis consists
qubits together one can unambiguously discriminate any twof the state|¢y) and its orthogonal complement.
states of the data qubit that are in agreement with the pro- To get a higher probability of success one would have to
gram. make a more sophisticated measurement than a simple Bell-
Let us suppose that the state of the program qubit is equatate analysi§5]. However, there are two important points
to one of the two states that shall be error-free discriminatedzoncerning the proposed discrimination procedure: First, a
In particular, let partial measurement in the Bell basis can be easily realized
by linear optics. Namely, staté¥*) and|¥~) can be distin-
|¢p> - a|Hp> " b|Vp). 3) guis_hed(the rest of the Bell states c_orrespond to an_in_con-
clusive result anyway Second, our aim is not to maximize
) the success probability but to demonstrate experimentally the
Then the total state of the data and program qubit reads possibility to control the discrimination process by tiean-
tum stateof a program qubit. Even to set the bases for the
mentioned quasiclassical discrimination correctly, one needs
an infinite number of bits of classical information. Our pro-
cedure requires onlg single qubitfor the same job. This fact
(4) reveals thequantum natureof the programming. Even non-
orthogonal states of the quantum qubit carry “useful infor-
where mation” for the discrimination process.
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B. Experiment

The scheme of our experimental setup is shown in Fig. 2.
A krypton-ion cw lasei413.1 nm, 95 mWis used to pump
a 10-mm-long LilQ nonlinear crystal cut for degenerate
type-l parametric downconversion. We exploit the fact that
the pairs of photons generated by spontaneous parametric
downconversion(SPDQ manifest tight time correlations
(i.e., very exact coincidences of detection instanks our
setup the photons produced by SPDC have horizontal linear
polarizations. Different polarization states are prepared by
means of half-wave and quarter-wave plate$VP, QWB.
The polarization of the signal photon represents the data qu-

FIG. 2. Experimental setuBS is a beam splitter; PBS, polar-
ization beam splitters; D, detectors; and HWP and QWP, half- and IWith the same probabilities, provided that the frequencies of the
quarter-wave plates, respectively occurrence of the input states are also the same.
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bit while the polarization of the idler photon serves as the LTt
program qubit. The two photons impinge on two input ports [
of a 50/50 beam splitteiBS, nonpolarizing cube beam split- 0r
ter). A scanning mirror is used in one interferometer arm in
order to balance the length of both arms, as indicated by an
arrow in Fig. 2. The photons reflected and transmitted by BS
pass polarizing beam splitte(®BS, polarizing cube beam
splitter) to distinguish horizontal and vertical polarizations.
Finally, the beams are filtered by cutoff filters and circular
apertures, and coupled into multimode optical fibers by
lenses. Detectors ..., D, are Perkin-Elmer single-photon
counting modulegemploying silicon avalanche photodiodes
with quantum efficiencyn=50% and dark counts about
100 s%). The signals from detectors are processed by our
homemade four-input coincidence module. With this setup,
visibilities of the Hong-Ou-Mandel dip24] exceeding 92%
were reached for vertically polarized photaifier other po-
larizations visibilities were slightly lowerHigher visibilities
could not be reached due to the fact that the splitting ratios of
the coupler were not exactly 50/50 and due to the imperfec- 5 3 petection rates df*) (dots, solid ling and|¥™) (dia-

tions of the wave plates and polarization distortions on mir-monds, dashed lineor linearly polarized input states. The upper

rors. . . ) part corresponds to the situation when the data and program states

As already mentioned our experiment is based on the pogsincide, |45 ®|¢b,), the lower part to the situation when they are
sibility to detect the two particular Bell states in the Hilbert giferent, | b) ®| by
space of the polarization states of two photons. This task can
be done by means of passive linear optical elements— . o . .
namely, byé beam splittepr and two polarize';\tion beam split- | %) = (xcosd +iy sin 9)[Hy) £ (xsin & —iy cosd) |V,
ters as shown in Fig. pL0-14. (7)

The simplest theoretical model of the beam splitter leads
to the conclusion that if one fetches Bell states at the inputgvherex andy are the half-axes of the polarization ellipse and
the only one of them that results in a coincident detection at) is the angle between horizontal axis and the direction of
two different outputs of the beam splitter is the singlet statdhe x half-axis (see Fig. 1 The ellipticity tarte) =y/x. We
|¥-). However, in the case of the “real” beam-splitting cube,started with linear polarizationg=0) and then proceeded
one must take into account that the two photons strike upowith elliptical polarizations with three different elliptici-
a beam splitter in opposite directions. So if the mutual phasties (namely, fore=12°, 24°, and 36° The angled was,
of the vertical components of the electric-field vectors at then all the cases, scanned from 0° to 90° with a step of 4°.
interface plangwe mean the vectors corresponding to theElliptical polarizations(corresponding to statégy)) were
fields coming from the two opposite inpliis ¢, the mutual  produced from horizontal ones by means of a quarter-
phase of the horizontal componentsgs 180° just forgeo-  wave plate rotated by angle==*¢ with respect to the
metrical reasons. It means that if one prepares both photonBorizontal axis. Then the direction of tlxehalf-axis of the
in the samelinear polarizations tilted by 45° with respect to polarization ellipse was tilted by a half-wave plate rotated
the plane of incidence, the vectors of electric field at theby B=*(e+9)/2.
interface plane will oscillate in mutuallperpendiculardi- Let us recall that the theoretical probability of successful
rections. Consequently, now it is the triplet stide’) that  discrimination of state?) is
leads to a coincident detection at different outputs.
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So if detectors R and Dy or D, and D, click together in p=2(a*>-[al*), where |a]?=x?cog 9 +y? sir? 9.
our setup, the stat@*) is detectedat the input of the beam (8)
splitten—this corresponds to the recognition of sthtg). If
detectors @ and D, or D; and D, click in coincidence, the Figure 3 shows the coincidence rates measured for linear

state[¥™) was “present” in the input—sfap;) is detected. If ~ polarization states. The upper part shows the measurement of

both photons enter the same detector, it} or |®~) was ~ Bell states| ") and |¥~) when the data and program states

“present” in the input—this represents the inconclusive resulgoincide (i.e., the input state i$p3) ® [¢y)); the lower part

of the discrimination. shows the same measurement in case when they are different
Each data point at presented plots has been derived frothe., the input state id¢y) ®|¢,)). Statistical errors are

ten 1-s measurement periods. The accuracy of polarizatiorsmaller than the symbols of points. The graphs in Fig. 4

angle settings was better than°. illustrate the same measurement but with pairs of elliptically
polarized statefe=24°—i.e., tafe)=0.45.
C. Results Throughout the whole pape€** denotes the detection
We tried to discriminate a broad variety of pairs of ellip- rate of |¥*) when the input was in the state
tically polarized states | © |, C denotes the detection rate [6f~) when the
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o[ ] FIG. 6. Detection rates as functions of the mirror position. Here
N R C**is a coincidence rate at,and D; or D, and D, when the input
% 15 30 45 60 5 00 polarizations were 45°, 45°. The quantiy~ is a coincidence rate
#(deg) at the same detectors for input polarizations 45°, 45°. Analogously,

C™* andC ™ are coincidence rates at;[@and D, or D3 and Dy.
FIG. 4. Detection rates dff'*) (dots, solid ling and|¥~) (dia-

monds, dashed lingfor elliptically polarized input states;=24°. . . .
The upper part corresponds to the situation when the data and pr&"-:mtmg as data and program qubite others, in sequence,

gram states coincidd¢§>®|¢p>, the lower part to the situation to elliptically polarized photonsiwitb=12°, 24°, and 36,0'
when they are differentgby) @ |y). As can be seen the data are in a good agreement with the

theory.

The probability of success is calculated as an average of
normalized detection rates corresponding to successful
events(i.e., correct conclusive measurement resttis two
possible input state@vhich are in correspondence with the
program state The averaging takes into account that both
inputs|¢y) ® | ¢, and|¢y) ® | ¢,) appear with the same prob-
ability 1/2. The “normalization” means that the detection
ate is divided by the pair-generation rate—i.e., by the num-

er of all measurement events per time unit. This quantity is

input was in the statépy) @ |¢,), C*~ denotes the detection
rate of[¥'*) when the input was in the stateé;) ®|#,), and
C ™ denotes the detection rates|#f") when the input was in
the state{¢y) ® [ dp).

The relative(with respect to all conclusive resultsrror
rates—i.e., fractions of events when we ¢t instead of
|¥~) or vice versa—are about 5%. This value is approxi-
mately the same for all measured polarizations. Ideally th

error rate should be zero, but due to technical ImloerfeCtlonobtained from the coincidence measurement on the shoulder

of the setup, it gets this small nonzero value. ) . T

The rmain parameter_the probabity of success—is plor 104 00 f e dsee g ¢ i he siuaton he o
ted in Fig. 5 for four different ellipticities. Symbols denote v rlp tthp beam 9 litter and y h of them randoml “dg-
experimental data; lines represent theoretical predicti8ns overiap at the beam Spitter and each of them randomly “de

. : : cides” whether to go through or to be reflected.
The first curve corresponds to linearly polarized photons As the splitting ratio of the used beam splitter is slightly

different for vertical and horizontal linear polarizations the

o ' ' ' , li'nw ' normalization measurements were done with 45° linear po-
0.7 e e=12° ] larization states at the inputs. For the set of main measure-
0.6 ments(i.e., Bell measurements withalancedarms of the
Hong-Ou-Mandel interferometewith the stateg¢) ® |y
0.5 the input polarizations of the normalization measurement
§04 were 45°, 45°; for the set of main measurements with the
a states|¢y) ® | ¢y they were 45°, 45°.
0.3 o : - -
Because our setup and detection electronics are tailored to
0.2 measurement of the Bell statgg*) and|¥~), we can mea-
o1 sure only the events when detectorsdnd D; or D, and Dy
’ click together or when detectors;and D, or D3 and Dy
0.0 click in coincidence. For the given 45° polarizations both
0 15 30 60 75 90

these two rates outside the dip should be equal to 1/4 of the
pair-generation rate. However, there could be deviations
FIG. 5. Probability of successful operation as a function of angleffom this 1/4 due to the nonideal splitting ratio of the beam
9. Symbols denote experimental data, lines represent theoreticapPlitter. Nevertheless, the sum of these two quantities is im-
predictions(8). The first curve corresponds to linearly polarized mune against this imperfection and proportional to 1/2 of the

photons, the others, in sequence, to elliptically polarized photongair-generation rate.
with e=12°, 24°, and 36°. Thus the probability of success is calculated as

45
¥(deg)
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1 c** c P S/ BRI e
Psucc= 5 s -t — | 9) I, = |\If—><\[f—| + _(|(I) NP | + |CD NP |),
2| 2(Cy, +Cy)  2(Cy, +Cgp) 2 (11
= (@)@ + [@7) (@),

where Cgq, are the above-mentioned detection rates meag ., 1
sured outside the dip; in particulaEg,; denotes the coin- eren<[0,1] and
cidence rate of Pand Dy or D, and D, with 45°, 45° 1
polarizations at the inputs, etc. These quantities were al- [¥*) = —=(|0g)|1,) £ [14)[0p)),
ways measured just before or just after the corresponding V2 (12)

set of main measurements in order to minimize the influ- L1

ence of the long-term fluctuationdike a laser-power |®*) = TE(|Od>|0p>i |1d>|1p>)-

drift, etc,). The errors derived from the statistical fluctua- v

tions of individual detection rates are smaller than thérpg tactor, parametrizes a smooth transition from a deter-

symbols of points in Fig. 5. The systematic ertdre shift  inisic error-prone multimete7=0) to a probabilistic

of all the data valugsis due to nonunit visibility. error-free ond5=1) [8]. In this simple case wheN=1 it is
trivially connected with the probability of an inconclusive

result: P,=7/2.
Ill. PHASE-COVARIANT QUANTUM MULTIMETER The fidelity of the multimeter can be defined as the prob-
A. Theory ability of a correct measurement outcome in the case of a

conclusive result, assuming the data register is prepared in
Now we will consider a different kind of quantum the basis statéy,) or [_) with probability 1/2 each. The
multimeter—namely, such a one that can perform von Neumean fidelity is then obtained by averaging the fidelity over
mann measurements on a single qubit in any basigll measurement bases—i.e. over the phasd0,27). The

{le), )} located on the equator of the Bloch sphere: average fidelity of the phase-covariant multimeter depends
on the probability of inconclusive result in the following
way:

1 )
|‘/’1(¢)>: ,_E(|O>iel¢|1>), (10) 3-2P,
\" —_ —
41-P) '

where ¢ € [0,27) is arbitrary. The particular measurement  1he effective POVM on the data qubit onfthis POVM
basis is selected by a quantum state of a program registerdePends on the program state given by

It is impossible to perfectly encode such projective mea-
surements into stateps in fixite-dimensiona? I-iilbert space = (1= POIF[4(d))t(d)+ (1= F)|y= ()X ()],
[5,8]. Nevertheless, it is possible to encode POVMs that rep-
resent, in a certain sense, the best approximation of the re- m= Pyl
quired projective measurements. A specific way of approxi- '
mation of a projective measurement is a “probabilistic’ For »=0 we have an ambiguougrror-prong operation
measurement that allows for some inconclusive results. I#vith no inconclusive resultéP,=0,F=3/4) while for =1
this case, instead of a two-component projective measureve get an unambiguougrror-freg but probabilistic mea-
ment, one has a three-component POVM and the third outsurement devicg¢from time to time we obtain an inconclu-
come corresponds to an inconclusive result. The optima$ive resuItP|=1/2,F=1.3
multimeter should minimize the error rate at the first two Clearly, whenn=1 then POVM(1]) is just a projective
outcomes for a fixed fraction of inconclusive results. As ameasurement on the Bell stafds*), |¥~) and on the rest of
limit case it is possible to get an error-free operation. Such &he four-dimensional Hilbert spagehich corresponds to in-
multimeter performs the exact projective measurements butonclusive resulps If »<<1 we just “reinterpret” some in-
with the probability of success lower than 1. conclusive results as “conclusive” ones. l.e., we will treat

The optimal phase-covariant multimeters for the progranfandomly selectedwith probability 1-7) inconclusive re-
states | W), consisting of N copies of the basis state sults as results “+” or “~(at randon. Therefore, it is quite
|¢+>,|qf>p=|¢+)®N,2 were determined if8]. For the simplest enough to test experimentally only the unambiguous version
caseN=1 which corresponds to a one-qubit program, the(»=1) of our phase-covariant quantum multimeter as all the
optimal (fixed) POVM acting on data and program qubits other variantg0=< < 1) can be obtained manipulating the
together reads measured data only.

%Since the staté)_) can be obtained forrhy,) via unitary trans- 3Notice that an unambiguous phase-covariant multimeter with a
formation |_)=a],) where o, denotes the Pauli matrix, all the single-qubit program represents, in a certain sense, a limit case of
programs of the forny,)®1|y_)®NI are equivalent to the program the above-discussed programmable discriminator corresponding to
[ )N, the discrimination of two orthogonal states.
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B. EXpel’iment 0.8 T T T T T T

The simplest(N=1) phase-covariant multimeter can be 0.7 1
experimentally implemented using the same setup as for the ;¢
programmable quantum-state discriminatege Fig. 2 The
“logical values” 0 and 1 of qubits will be represented by 0.5 e
horizontal,|H), and vertical|V), linear-polarization states of 0.4 N i
photons, respectively. -

The statesi,(¢)), Eq. (10), are prepared from statéd) 03r ]
by two wave plates. The first one is a quarter-wave plate 02| i
rotated bya=-¢/2 (with respect to the horizontal ayiand
the second one is a half-wave plate rotated By (90 I
roﬁ{ ;d 'ghe statesy—(¢)) are p_repared with the wave plates 0.0 o 0 20 5 P pos %

y anglesea and 8. This corresponds to a shift of Hdeg)
by 180°. Detection of¥*) corresponds to the measurement
result connected with the basis statl(¢)); detection of FIG. 7. Probability of inconclusive results for unambiguous op-
|¥~) corresponds to the measurement result connected witération as a function of phase Symbols denote experimental data;
the basis stat@/_(¢)). Everything else means an inconclu- the solid line represents the theoretical prediciym 1/2.
sive result.

0.1 .

of |¥~") or vice versa—is about 3%. Ideally, in the considered
C. Results case of unambiguous operation, the error rate should be zero,
but due to technical imperfections of the setup, it gets non-

We have measured coincidence rates corresponding to d?éro values

tections of|¥*) and calculated probabilities of inconclusive
results for phaseg from —90° to +90° with step 8°. The
inconclusive-result rate is a “complement” to the rate of
“conclusive” results—i.e., both the correct and erroneous Our experimental results clearly illustrate that the mea-
ones. Thus surement on the data qubit can be quite efficiently controlled
o e by the quantum state of the program qui@itogram regis-

P =1 _1p c¢+C 4 c+C _ (13) ter). In particular, we emphasize that a classical setting of the

2| 2(CiH+Cq)  2(Ci+Cl) angle between the states that shall be unambiguously dis-

criminated and a classical description of the measurement

The notation is the same as above. A o .
The graph in Fig. 7 shows the dependence of the probl—)aS'S in case of projective phase-covariant measurement

. : - . would require infinitely many bits of classical information,
ability of inconclusive resultgfor an unambiguous opera-

. . ' while only one quantum bit suffices in the present case to
tlo_n) on phaseqS for input data statesy,) and|y-) (which obtain anerror-free (although probabilisticoperation.
coincide with or are orthogonal to the program states, respec-
tively). Symbols denote experimental data; the solid line rep-
resents the theoretical prediction. The derived errors are
smaller than the symbols of points. The experimental data fit The authors would like to thank to Martin Hendrych and
well with the calculated value dP;=1/2. Asexpected, the Miroslav Jezek for their help and advice in the preparatory
probability of inconclusive results does not depend on thestage of the experiment. This research was supported under
measurement basis determined by the phase Project No. LNOOAO15 of the Ministry of Education of the
The relative error ratgwith respect to all conclusive Czech Republic. J.F. also acknowledges support from the EU
results—i.e., a fraction of events when we dat*) instead  under Project CHIGNo. IST-2001-33578

IV. CONCLUSIONS
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