Experimental realization of a programmable quantum gate

Michal Mičuda, Miroslav Ježek, Miloslav Dušek, and Jaromír Fiurášek

Department of Optics, Palacký University, 17. listopadu 50, 77200 Olomouc, Czech Republic

(Received 16 June 2008; published 5 December 2008)

We experimentally demonstrate a programmable single-qubit quantum gate. This device applies a unitary phase shift operation to a data qubit with the value of the phase shift being fully determined by the state of a program qubit. Our linear optical implementation is based on the encoding of qubits into polarization states of single photons, two-photon interference on a polarizing beam splitter, and measurement on the output program qubit. We fully characterize the programmable gate by quantum process tomography. The achieved average quantum process fidelity exceeding 97% illustrates very good performance of the gate for all values of the encoded phase shift. We also show that by using a different set of program states the device can operate as a programmable partial polarization filter.

DOI: 10.1103/PhysRevA.78.062311

Classical computers rely on the combination of a fixed hardware and a flexible software. The operation performed on the data register is fully determined by the information stored in the program register and can be altered at will by the user. It is intriguing to attempt to generalize this concept to quantum computing [1]. Imagine a fixed universal quantum processing unit where the transformation of the data qubits is specified by the quantum state of program qubits. In a seminal paper [2] Nielsen and Chuang proved that an n qubit quantum register can perfectly encode at most 2^n distinct quantum operations. Since already unitary transformations on a single qubit form the SU(2) group with uncountably many elements, this bound seems to severely limit the universality of programmable quantum gates.

Although perfect universal programmability is ruled out, it is nevertheless possible to construct approximate programmable quantum gates and optimize their performance for a given size of the program register [3–8]. Two complementary approaches to this problem were pursued in the literature. One option is to design gates that operate deterministically, i.e., always provide an output, but add some noise to the output state [8]. An alternative strategy avoids the extra noise at a cost of reduced success probability [2–4]. The gate then involves a measurement whose outcome heralds its success or failure. If restricted to successful cases, the gate operates perfectly and noiselessly.

A very important elementary programmable quantum gate was proposed by Vidal, Masanes, and Cirac (VMC) [3]. They considered programmable rotation of a single qubit along the π axis of the Bloch sphere,

$$U(\phi) = |0\rangle\langle 0 | + e^{-i\phi}|1\rangle\langle 1 |. \quad (1)$$

Here $|0\rangle$ and $|1\rangle$ denote the computational basis states of the qubit. In the simplest version of VMC protocol, the phase shift ϕ is encoded into a state of single-qubit program register,

$$|\phi\rangle_p = \frac{1}{\sqrt{2}}(|0\rangle + e^{i\phi}|1\rangle). \quad (2)$$

A controlled-NOT (CNOT) gate is applied to the data qubit $|\psi\rangle_D = \alpha|0\rangle + \beta|1\rangle$ and the program qubit $|\phi\rangle_p$. This is followed by measurement on the program qubit in the computational basis. The measurement outcome $|0\rangle$ indicates successful application of $U(\phi)$ onto the data qubit while the outcome $|1\rangle$ means that the operation $U(-\phi)$ has been applied. This scheme thus exhibits a success probability of 50% which is the maximum possible with a single-qubit program register. By adding further program qubits, the probability of success can be made arbitrary close to unity. Note that an exact specification of the phase shift ϕ would require infinitely many classical bits. A striking feature of the programmable quantum gate is that the information on ϕ is faithfully encoded into a single quantum bit.

While the theory of programmable quantum gates is well established, little attention has been paid to their experimental realizations. The single-qubit programmable quantum measurement devices [9–18], where the state of the program qubit determines the measurement on the data qubit, were implemented for single photons [19] and for nuclear spins in a nuclear magnetic resonance experiment [20]. Also a programmable discriminator of coherent states has been reported [21,22]. However, to our knowledge, there is no demonstration of a programmable unitary quantum gate for photonic qubits. In this paper we close this gap between theory and experiment. Specifically, we implement the elementary single-qubit programmable gate proposed by VMC [3].

Our optical implementation is based on the encoding of qubits into polarization states of single photons. We exploit two-photon interference on a polarizing beam splitter (PBS). Consider the input states of data and program photons,

$$|\psi\rangle_D = \alpha |H\rangle + \beta |V\rangle, \quad |\phi\rangle_p = \frac{1}{\sqrt{2}}(|H\rangle + e^{i\phi}|V\rangle). \quad (3)$$

where $|H\rangle$ and $|V\rangle$ denote the horizontal and vertical linear polarization states, respectively. Suppose that the PBS totally transmits horizontally polarized photons and reflects vertically polarized photons. If we restrict ourselves to the cases when a single photon emerges in each output port of the PBS [23–25], then the conditional two-photon output state reads

\[062311-1\]

©2008 The American Physical Society
pared according to the measurement result in the state

electro-optical modulator that applies a relative phase shift 0
which reduces the theoretical success probability of the pro-
events when the program qubit is projected onto state
mal. In the experiment we implemented a passive version of
larization basis
If the measurement outcome is
served as the program and data qu-
uphase plates (β), quarter-
wave plates (γ), linear film polarizers (P), Glan polarizer (GP), and
polarizing beam splitter (PBSM) are used. See text for details.

\begin{equation}
\frac{1}{\sqrt{2}}(\alpha|H\rangle_p|H\rangle_p + \beta e^{i\phi}|V\rangle_p|V\rangle_p).
\end{equation}

If the program qubit is measured in the diagonal linear polar-
bas {\alpha} |H\rangle \pm |V\rangle \rangle then the data qubit is
pared according to the measurement result in the state

\begin{equation}
|\psi_{\text{out}}\rangle_D = \alpha|H\rangle \pm \beta e^{i\phi}|V\rangle.
\end{equation}

If the measurement outcome is \(+ \) then the unitary transfor-
mation \(U(\phi) \) has been applied to the data photon. If the
outcome is \(- \) then the complex amplitude of state \(|V\rangle \rangle ac-
quires an extra relative \(\pi \) phase shift with respect to the
amplitude of the state \(|H\rangle \rangle. This can be compensated by a fast
electro-optical modulator that applies a relative phase shift 0
or \(\pi \) depending on the measurement outcome [26,27]. With
the active feed forward the scheme achieves the success
probability 50%. This saturates the bound on the achievable
success probability [3] so this linear optical scheme is optim-
imal. In the experiment we implemented a passive version of
the scheme without feed forward. We postselect only the
ents when the program qubit is projected onto state \(+ \)
which reduces the theoretical success probability of the pro-
tocol to 25%.

The experimental setup is shown in Fig. 1. The initial
pump beam from a continuous-wave laser (CUBE 405 C,
Coherent) with the wavelength of 407 nm is focused to
6 mm thick nonlinear crystal LiIO\(_3\) cut for type-I degenerate
spontaneous parametric down conversion (PDC). After filter-
ing out the scattered pump light by cutoff filters the down-
verted photon pairs with a wavelength of 814 nm are
coupled (C) into single-mode optical fibers (SMFs) acting as
spatial filters. The photons are prepared in a horizontal po-
larization state at the fibers’ outputs by fiber polarization
controllers (PCs). To achieve maximal polarization purity
two linear film polarizers (P) are employed. The required
polarization states of both the data and program photons are
set in the preparation stage by properly rotated wave plates
(γ). The data and program photons interfere on the polar-
zizing beam splitter (PBS, Ekspla) and enter the detection
stage. The data photon passes through a sequence of a
quarter-wave plate, a half-wave plate, and another polarizing
beam splitter, PBS\(_M\), which allows one to measure the pho-
ton in an arbitrary polarization basis. The program photon is
projected onto the diagonal linearly polarized state \(\pm \rangle \rangle by
a half-wave plate and a calcite Glan polarizer (GP). At the
outputs the photons are detected by fiber-coupled single-
photon avalanche photodiodes (APD; SPCM-AQ4C, Perkin
Elmer). Detection events registered by the detectors \(D_1, D_2, \)
and \(D_3 \) are processed by coincidence logic (TAC/SCA,
Ortec) and fed into a counting module (Ortec).

To verify the overlap of photons’ spatial mode functions
on the PBS we measure the visibility of the Hong-Ou-
Mandel (HOM) dip [28] in the data output port. The data and
program photons are prepared in horizontal and vertical po-
larization states, respectively, so that they both propagate to
the data output. The wave plates in the data detection stage
are set to transform the \(H \) and \(V \) linear polarizations onto the
diagonal ones. The HOM dip in coincidences between clicks
of detectors \(D_1 \) and \(D_2 \) is measured as a function of the time
delay between the program and data photons introduced by
a motorized translation of one of the fiber coupling systems.
The measured HOM dip visibility is above 89%, limited
mainly by imperfections of PBS\(_M\). Particularly, if we insert
two linear film polarizers in front of APDs \(D_1 \) and \(D_2 \) the
visibility exceeds 99.5%. This indicates nearly perfect spatial
overlap of the data and program photons on the PBS.
The linear film polarizer placed before detector \(D_2 \) is removed
in further measurements and used in the state preparation stage
to ensure preparation of a pure input state.

The success of the gate is heralded by a coincidence de-
tection of a single photon in each output port. In the exper-
iment, we therefore measure the coincidence rates \(C_{13} \)
between detectors \(D_1 \) and \(D_3 \) and \(C_{23} \) between detectors \(D_2 \)
and \(D_3 \). The width of the coincidence window is set to 2 ns.
For a given phase shift \(\phi \) we characterize the performance
of the programmable gate by a tomographically complete mea-
surement. We set the state of the program photon to \(\frac{1}{\sqrt{2}}(|H\rangle + e^{i\phi}|V\rangle) \rangle. We then subsequently prepare the data photon in
six different states \(|H\rangle, |V\rangle, |\pm\rangle, |\mp\rangle, |R\rangle, \) and \(|L\rangle, \) where
\(|R\rangle = \frac{1}{\sqrt{2}}((|H\rangle + i|V\rangle) \rangle and \(|L\rangle = \frac{1}{\sqrt{2}}((|H\rangle - i|V\rangle) \rangle denote the right and left
unity polarized states, respectively. For each input we carry out measurements for six different settings of the
wave plates in the data detection stage chosen such that the
click of \(D_1 \) heralds projection of the data photon onto the state
\(\langle H|, |V|, |\pm|, |\mp|, |R|, \) and \(|L| \) by turns. Every normal measurement takes 5 s and is repeated ten times to gain sta-
tistics. The average twofold coincidence rate is about
1300 s\(^{-1}\). The polarizer placed in front of the detector \(D_1 \)
guarantees nearly ideal projection onto a pure polarization
state. Therefore, the presented results were obtained using
only \(C_{13} \) coincidence data. Note that in this way we do not
need to precisely calibrate the relative detection efficiencies
of \(D_1 \) and \(D_2 \). We have confirmed that the results remain

FIG. 1. (Color online) Scheme of the experimental setup. The
correlated photons generated in the process of spontaneous parametric
down conversion (PDC) serve as the program and data qu-
bits. After being prepared in proper polarization states the photons
interfere on the PBS. The detection stage consists of polarization
analysis, single-photon detectors (D), and coincidence logic and
kounting module (C&C). For polarization setting and analysis the
fiber polarization controllers (PCs), half-wave plates (½), quarter-
wave plates (γ), linear film polarizers (P), Glan polarizer (GP), and
polarizing beam splitter (PBSM) are used. See text for details.
largely unchanged if we use the coincidences C_{23} instead or if we process all data simultaneously. However, the results obtained from C_{23} exhibit slightly higher noise due to imperfect polarization filtering by the polarizing beam splitter, PBS_M [29].

From the experimental data we reconstruct the completely positive (CP) map that fully characterizes the transformation of the data photon for a fixed state of the program photon. We have performed the quantum process tomography for eight different phase shifts $\phi = \frac{k}{2}\pi$, $k=0, 1, \ldots, 7$. According to the Jamiołkowski-Choi isomorphism [30,31], every CP map can be represented by a positive semidefinite operator χ on the tensor product of the input and output Hilbert spaces \mathcal{H}_{in} and \mathcal{H}_{out}. In our case both \mathcal{H}_{in} and \mathcal{H}_{out} are two-dimensional Hilbert spaces of the polarization state of a single photon hence χ is a 4×4 matrix. The input state ρ_{in} transforms according to the formula

$$\rho_{out} = \text{Tr}_{in}[T^{\dagger}\otimes 1_{out}]\chi],$$

where T denotes transposition in a fixed basis. Due to the slight imperfections of the PBS, the implemented operation is not exactly unitary and may involve some polarization filtering. We therefore do not impose the constraint that χ has to be trace preserving but allow for a general trace-decreasing map [32,33]. We use the iterative maximum-likelihood estimation algorithm that is described in detail elsewhere [34,35]. This statistical reconstruction method yields a quantum process χ that is most likely to produce the observed experimental data [36,37].

Figure 2 displays the real and imaginary parts of the reconstructed CP map χ for four different phase shifts $\phi = \frac{k}{2}\pi$, $k=0, 1, 2, 3$. We quantify the gate performance by the process fidelity defined as follows:

$$F_{\chi} = \frac{\text{Tr}[\chi \chi_{id}(\phi)]}{\text{Tr}[\chi] \text{Tr}[\chi_{id}(\phi)]}.$$

Here $\chi_{id}(\phi)$ is a process matrix representing the unitary operation $U(\phi)$ (1),

$$\chi_{id}(\phi) = 1 \otimes U(\phi)|\Phi^+\rangle\langle\Phi^+| \otimes U^{\dagger}(\phi),$$

where $|\Phi^+\rangle = |H\rangle|H\rangle + |V\rangle|V\rangle$ denotes the maximally entangled Bell state. Thus χ_{id} is effectively a density matrix of a pure maximally entangled state on $\mathcal{H}_{in} \otimes \mathcal{H}_{out}$. The process fidelity determined from the reconstructed CP maps is plotted in Fig. 3 as a function of the phase shift ϕ. We can see that the fidelity is almost constant and exceeds 95% for all values of ϕ which demonstrates very good functionality of the programmable gate.

A careful analysis of the reconstructed CP maps reveals that the PBS imposes a certain nonzero relative phase shift $\delta\phi$ between the vertical and horizontal polarizations. The active area of the PBS where splitting of the vertical and horizontal polarization components occurs is made of a stack of thin dielectric films. In principle, each of the polarization and spatial modes passing through the PBS can acquire a different phase shift. However, only a single effective combination of such phase shifts is relevant in our experiment and gives rise to the phase offset $\delta\phi$.

We estimate the phase offset as follows. For each value of the encoded phase shift ϕ we determine the effective applied phase shift ϕ_{eff} by maximizing the overlap $\text{Tr}[\chi \chi_{id}(\phi_{\text{eff}})]$ over ϕ_{eff}. The dependence of ϕ_{eff} on ϕ is plotted in Fig. 4. From the best linear fit to the data we obtain $\delta\phi = -0.265$ rad. This phase offset could be passively compensated, e.g., by means of additional wave plates that would apply the relative phase shift $-\delta\phi$ to the output data photon. We have carried out the software compensation and corrected the reconstructed CP maps for the fixed phase offset. This calibration procedure increases the process fidelity by about 1% as shown in Fig. 3. All the compensated fidelity data are within one percent around the average value of...
MIČUDA et al.

PHYSICAL REVIEW A 78, 062311 (2008)

FIG. 3. (Color online) Quantum process fidelity of the programmable gate is plotted as a function of the encoded phase shift \(\phi \). The fidelities before (●) and after (▲) compensation of the constant phase offset \(\delta \phi \) are shown. The dashed line represents the best constant fit to the compensated fidelity data with the value of 97.1%.

The achievable gate fidelity is mainly limited by the imperfections of the PBS that does not totally reflect (transmit) the \(V \) (\(H \)) polarization. The measured splitting ratios read 97.7:2.3 and 0.5:99.5 for vertical and horizontal polarizations, respectively. A simple theoretical model predicts average process fidelity 97.4% which is in very good agreement with the experimental results.

Besides the quantum processes we have also reconstructed the single-qubit output state for each input state. We have evaluated the state fidelity \(F = \langle \psi_{\text{out}} | \rho | \psi_{\text{out}} \rangle \) between the expected pure output state and the reconstructed (generally mixed) state \(\rho \). For each phase shift \(\phi \) we average the state fidelity over the six different input states to obtain the average state fidelity \(F_{\text{av}} \). We find that \(F_{\text{av}} \) lies in the interval 96.6%–97.8%. The compensation of the phase offset \(\delta \phi \) increases the average state fidelity by almost 1% to the range 97.6%–97.8%. This further confirms that the programmable gate operates with very high fidelity for all values of the phase shift \(\phi \) in the interval \([0, 2\pi]\).

The average state fidelity \(F_{\text{av}} \) and the process fidelity \(F_3 \) exhibit almost perfect linear dependence of the form \(F_{\text{av}} = 0.727F_3 + 0.275 \). This is consistent with the theoretically predicted relation between these two fidelities for deterministic processes \(F_3 = \frac{1}{2}(2F_{\text{av}} + 1) \). The discrepancy is mainly due to the fact that we perform independent maximum likelihood reconstructions of the quantum process and output states while the theoretical formula assumes that the output states are calculated from the input states using the process matrix \(\chi \). Also, the reconstructed CP map is not exactly trace preserving.

We next show that our device can also function as a programmable partial polarization filter \([6]\). For this purpose we prepare the program qubit in various linear polarization states \(\cos \theta (H) + \sin \theta (V) \). Repeating the calculation leading to Eq. (5) we find the (non-normalized) output state of the data qubit to be

\[
|\psi_{\text{out}}\rangle_{D} = \alpha \cos \theta |H\rangle + \beta \sin \theta |V\rangle.
\]

The amplitude of vertical polarization is attenuated (or amplified) by a factor of \(\tan \theta \) with respect to the amplitude of the horizontal polarization. We carry out the complete quantum process tomography of the programmable quantum filter for nine different values of \(\theta = \frac{n}{16}\pi, \; n = 0, 1, \ldots, 8 \). The process fidelity can be calculated according to Eq. (6) where the ideal filtering operation is now described by a partially entangled state,

\[
\chi_{\text{filt}}(\theta) = (\cos \theta |H\rangle |H\rangle + \sin \theta |V\rangle |V\rangle)(\langle H| |H\rangle \cos \theta + \langle V| |V\rangle \sin \theta).
\]

The experimentally determined process fidelity is plotted in Fig. 5. Similarly as for the programmable unitary gate, the compensation of the constant phase offset \(\delta \phi \) increases the fidelity. The improvement is most significant for \(\theta = \pi/4 \) while for complete filtering (\(\theta = 0 \) and \(\theta = \pi/2 \)) the phase shift is irrelevant and its compensation does not change the fidelity.

In conclusion, the programmable single-qubit phase gate working on single-photon polarization-encoded qubits has been proposed and experimentally developed. The gate op-

FIG. 4. (Color online) Dependence of the effectively applied phase shift \(\phi_{\text{eff}} \) on the programmed phase shift \(\phi \). The circles represent results obtained from the reconstructed CP maps; the dashed line is the best linear fit to the data.

FIG. 5. (Color online) Quantum process fidelity of the programmable partial polarization filter is plotted as a function of the filtering angle \(\theta \). The fidelities before (●) and after (▲) compensation of the constant phase offset \(\delta \phi \) are shown. The dashed line represents the best constant fit to the compensated fidelity data with the value of 97.4%.
experimental realization has been thoroughly tested by complete quantum process tomography. The comparison of the reconstructed processes and the corresponding theoretical ones yields high process fidelity of about 97% with negligible dependence on the encoded phase shift. It has been demonstrated that with a different set of program states, the device can also operate as a programmable partial polarization filter. The implemented programmable gates can serve as building blocks of more complex multiqubit linear-optics quantum gates or other optical quantum information processing devices.

We would like to thank Lucie Bartušková for help and fruitful discussions during the experiment. This work has been supported by Research Projects “Center of Modern Optics” (Contract No. LC06007) and “Measurement and Information in Optics” (Contract No. MSM 619895213) of the Czech Ministry of Education.

[29] The process and state fidelities determined using coincidences C_{23} are about 1% lower than the fidelities obtained from coincidences C_{13}.