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Abstract. If there are correlations between two qubits then the results of the measurement on one of them can help to
predict measurement results on the other one. It is an interesting question what can be predicted about the results of two
complementary projective measurements on the first qubit. To quantify these predictions the complementaryknowledge
excesses are used. A non-trivial constraint restricting them is derived. For any mixed state and for arbitrary measurements
the knowledge excesses are bounded by a factor depending only on the maximal violation of Bell’s inequalities. This result is
experimentally verified on two-photon Werner states prepared by means of spontaneous parametric down-conversion.

INTRODUCTION

Immediately after the discovery of quantum mechanics, it was realized that quantum correlations between two
particles exhibit interesting counterintuitive features [1]. Assuming a pair of maximally entangled qubitsS andM,
the results of complementary measurements on qubitS can, in principle, be perfectly predicted from two appropriate
measurements on qubitM. Later, it was shown that quantum mechanics predicts different values of certain correlations
of measurement results than local realistic theories. Inequalities, which have to be satisfied within the local realism,
were derived by Bell [2]. The predictions of quantum mechanics were already satisfactorily experimentally confirmed
using pairs of photons entangled in polarizations [3, 4, 5]. In this Paper, we analyze in detail how the correlations
between the qubits prepared in a general mixed state enhance our ability to predict the results of complementary
projective measurements on one qubit when we know the measurement results on the other one. This enhancement
can be described by the quantity that we will call complementary knowledge excess. We derive a non-trivial bound on
the knowledge excesses which is determined only by the maximal violation of Bell inequalities [6]. An experimental
test of this restriction on complementary knowledge excesses was performed using mixed two-photon Werner states
prepared by means of spontaneous parametric down-conversion.

THEORY

We assume a general mixed stateρSM of a “signal” qubitS and a “meter” qubitM. Performing two (ideal) projective
measurementsΠM,Π′

M on qubitM, the prediction of the results of mutually complementary measurementsΠ S,Π′
S on

qubitS can be improved. Complementarity of measurements on a qubit means that TrΠ SiΠ′
S j = 1/2 for anyi, j = 0,1

(ΠSi,Π′
Si are corresponding projectors). AssumingΠ S0 = |Ψ〉S〈Ψ|,ΠS1 = |Ψ⊥〉S〈Ψ⊥|, we can expand the stateρSM

in the formρSM = w|Ψ〉S〈Ψ| ⊗ ρM + w⊥|Ψ⊥〉S〈Ψ⊥|⊗ ρ⊥
M +

√
ww⊥ (|Ψ〉S〈Ψ⊥|⊗ χM +h.c.

)
, where 0≤ w,w⊥ ≤ 1,

w + w⊥ = 1 and the meter operatorsρM,ρ⊥
M,χM depend on the choice of the measurementΠ S. In order to predict

the result of the measurementΠS one needs to discriminate between the mixed statesρM andρ⊥
M by a projective

two-component measurementΠ M ≡ {ΠM0,ΠM1} (ΠM0 + ΠM1 = 1, ΠM0ΠM1 = 0) on the qubitM. Using maximum
likelihood estimation strategy, we can guess for each detection event the most likely result of the measurementΠ S.
Our knowledge can be quantified as the fractional excess of the right guesses over wrong guesses in many such
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experiments repeated under identical conditions [7]. Using our expansion ofρ SM, the total knowledge isK(ΠM →
ΠS) = ∑i |TrMΠMi(wρM −w⊥ρ⊥

M)|, whereas without the measurementΠM, the knowledge isP(ΠS) = |w−w⊥|. The
largest value of knowledge over allΠ M was introduced as distinguishabilityD(ΠS) = TrM|(wρM −w⊥ρ⊥

M)|. Further,
we define a knowledge excess

∆K(ΠM → ΠS) = K(ΠM → ΠS)−P(ΠS), (1)

where 0≤ ∆K(ΠM → ΠS)≤ 1. It quantifies only that amount of the knowledge which exceeds the a-priori knowledge
P(ΠS). The largest∆K(ΠM → ΠS) over allΠM can be considered as a distinguishability excess∆D(Π S). Thus 0≤
∆K(ΠM → ΠS) ≤ ∆D(ΠS). Analogical quantities∆K(Π ′

M → Π′
S) and∆D(Π ′

S) can be defined for the complementary
measurementΠ ′

S.
With the help of unitary tranformations we can finally prove that

∆K2(ΠM → ΠS)+∆K2(Π′
M → Π′

S) ≤
(

Bmax

2

)2

. (2)

For details of the proof see Ref. [9].
In the inequality (2) the maximal Bell factor represents a non-trivial bound on the sum of the squares of knowledge

excesses which can be extracted from a pair of measurements on the “meter” qubit. AssumingΠ M = Π′
M we can also

derive an inequality analogous to that given in Ref. [7]:∆K 2(ΠM → ΠS)+∆K2(ΠM → Π′
S) ≤ 1. Our analysis shows

that forΠM �= Π′
M the unit value on the right-hand side may be overstepped. Note also that(B max/2)2 > 1 only if the

state violates Bell inequalities.
A natural question is how inequality (2) can be saturated. For the class of states with vanishing a-priori knowledges

for any measurementsΠS,Π′
S it can be saturated just by the appropriate choice of measurementsΠ S,Π′

S,ΠM,Π′
M. In

fact, it corresponds to the transformation of the given state to the state with diagonal correlation tensor. It was recently
shown that there are such unique local (stochastically reversible) filtering operationsFS,FM applicable on a single copy
of a qubit pair (F †

S FS ≤ 1S andF†
MFM ≤ 1M) that transform (with a non-zero probability) any two-qubit mixed state into

a state which is (i) diagonal in Bell basis and (ii) has the Bell factorB ′
max≥ Bmax [10]. Since these Bell-diagonal states

have the both local states maximally disordered the a-priori knowledges vanish. Thus – because the inequality (2) is
satisfied also after the filtering – we can always saturate it with the upper bound given byB ′

max just by an appropriate
choice of the measurementsΠS,Π′

S,ΠM,Π′
M after the appropriate local filtering.

EXPERIMENT

We have verified inequality (2) experimentally for two Werner states of qubits,p|Ψ−〉〈Ψ−|+ 1−p
4 11 (each qubit was

represented by a polarization of a photon) [11]. The parameter of the first Werner state (p 1 ≈ 0.82) has been chosen
so that the state was entangled and violated Bell inequalities, the parameter of the second one (p 2 ≈ 0.45) so that
it was entangled but did not violate Bell inequalities. The scheme of our experimental setup is shown in Fig. 1. A
krypton-ion cw laser (413.1 nm, 90 mW) is used to pump a 10-mm-long LiIO3 nonlinear crystal cut for degenerate
type-I parametric downconversion. We exploit the fact that the pairs of photons generated by spontaneous parametric
downconversion (SPDC) manifest tight time correlations. In our setup the photons produced by SPDC have horizontal
linear polarizations. Different linear-polarization states are prepared by means of half-wave plates (λ /2). The two
photons impinge on two input ports of a beamsplitter (BS) forming a Hong-Ou-Mandel (HOM) interferometer [12].
A scanning mirror is used in one interferometer arm in order to balance the length of both arms, as indicated by
an arrow in Fig. 1. A glass plate (GP), that introduces polarization dependent losses, serves to compensate a non-
ideal splitting ratio of the beam-splitting cube (it is about 51:49 for vertical and 55:45 for horizontal polarization).
The HOM interferometer enables us to prepare conditionally polarization singlet states (i.e.,|Ψ−〉 Bell states). The
simplest theoretical model of the beamsplitter leads to the conclusion that if one fetches Bell states at the input the
only one of them that results in a coincident detection at two different outputs of the beamsplitter is the singlet state
|Ψ−〉. However, in case of a “real” beam-splitting cube one must take into account that the two photons strike upon a
beamsplitter inopposite directions. So, the mutual phase (at the interface plane) of the horizontal components of the
electric-field vectors from the two opposite inputs is shifted by 180◦ just for geometrical reasons. Therefore it is the
triplet state|Ψ+〉 that leads to a coincident detection at different outputs. However, it is easy to change|Ψ+〉 to |Ψ−〉
by means of a half-wave plate placed in one output arm of the BS.

The mesurement block in each output arm consists of a half-wave plate and polarizing beamsplitter (PBS). It enables
measurement in any linear-polarization basis. Behind the PBS the beams are filtered by cut-off filters and fed into
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FIGURE 1. Experimental setup.

multi-mode optical fibers leading to detectors D1,. . . ,D4 (Perkin-Elmer single-photon counting modules; quantum
efficiencyη ≈ 50%, dark counts about 100 s−1).

The Werner states were prepared as a “mixture” of three kinds of inputs. First we measured coincidences with
horizontal and vertical polarizations in the individual inputs of the HOM interferometer (measurement time for each
point in the following graphs was 22 s), then we added the results of measurement with two horizontally polarized
input photons (this measurement period took 10 s), and finally we measured with two vertically polarized input photons
(13 s). The different times of measurement compensated the influence of a glass plate (GP) for the vertical-vertical
and horizontal-horizontal input polarizations. The different values of parameterp were obtained changing the position
of the scanning mirror. Namely, we have measured at 0µm and 30µm from the dip center.

The measurementΠM on the “meter” qubit was represented by a measurement in different linear polarization
bases parametrized by an angleϑ : ΠM =≡ {Π+

M,Π−
M} = {|ψ〉〈ψ|, |ψ⊥〉〈ψ⊥|}, where|ψ〉 = cosϑ |H〉+sinϑ |V 〉 and

|ψ⊥〉= sinϑ |H〉−cosϑ |V 〉. The angleϑ was set by a properly rotated half-wave plate. Similarly, two measurements
on the “signal” qubit,ΠS and Π ′

S, were represented by polarization measurements in two bases rotated by 45◦:
ΠS = {Π+

S ,Π−
S } ≡ {|H〉〈H|, |V 〉〈V |},Π′

S = {Π′+
S ,Π′−

S } ≡ {|X〉〈X |, |Y〉〈Y |}, where|X〉 = (|H〉+ |V 〉)/√2 and|Y 〉 =
(|H〉− |V 〉)/√2. In practice we measured coincidence rates between outputsΠ +

M andΠ+
S , betweenΠ+

M andΠ−
S , etc.

and the results were used for calculating values of the knowledge excesses∆K(ϑ ),∆K ′(ϑ ′). The maximal violation
of Bell inequalities,Bmax, was measured as in [4, 5] by estimating the correlation function from the measured data
(coincidence rates).

The following graphs display our experimental results. Fig. 2 shows the sum∆K 2(ϑ )+∆K′2(ϑ ′) as a function of
two angle variables for the Werner states withp ≈ 0.82 (left graph) andp ≈ 0.45 (right graph). These parameters
were estimated from the best fit accordingly to the theoretical predictions for Werner states. The error bars show
statistical errors. The accuracy of polarization-angle settings was about±1◦. The maximal displayed value of the
vertical axis determines the measured value of(Bmax/2)2. In p ≈ 0.82 (left graph) the maximal measured Bell factor
is Bmax = 2.36± 0.02 what is in a good agreement with the theoretical value forp = 0.820± 0.007 that equals
2.319± 0.020. For Werner state withp ≈ 0.45 (right graph) the corresponding measured maximal Bell factor is
Bmax = 1.32±0.02 (theoretical value forp = 0.450±0.008 is 1.273±0.023). As can be seen, for the both measured
states the experiment has verified inequality (2).

CONCLUSION

The measurement on the one of two correlated particles give us a power of prediction of the measurement results on the
other one. Of course, one can never predict exactly the results of two complementary measurements at once. However,
knowing what kind of measurement we want to predict on “signal” particle, we can choose the optimal measurement
on the “meter” particle. But there is still a fundamental limitation given by the sort and amount of correlations between
the particles. Both these kinds of constraints are quantitatively expressed by our inequality.
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FIGURE 2. The measured values of the sum∆K2(ϑ )+∆K′2(ϑ ′) as a function of two angle variables for the Werner states with
p ≈ 0.82 (left graph) andp ≈ 0.45 (right graph). The maximal displayed values of the vertical axes show the measured values of
(Bmax/2)2.
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