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Abstract. Realistic implementations of quantum key distribution
(QKD) mostly use signal states which are non-orthogonal but linearly
independent. This fact enables an eavesdropper to perform unambigu-
ous state discrimination and to get some information on the key without
disturbing the transmission. In this paper, the limits for secure QKD,
imposed by such an attack, are determined. It is also shown that se-
curity against beam-splitting attack does not necessarily imply security
against the unambiguous-state-discrimination attack.

1. Introduction

The only provably secure way to communicate with guaranteed privacy is the so called
one-time pad or Vernam cipher [1]. It requires both communicating parties share a
secret key of the same length as the message. Quantum key distribution (QKD) is a
technique to provide two parties with such a secure, secret and shared key. The first
complete protocol for QKD was given by Bennett and Brassard [2] (BB84) following
first ideas by Wiesner [3]. The essence of the protocol is that if non-orthogonal quan-
tum states are used for communication and a channel transmit them perfectly then
eavesdropping is detectable.

We consider the BB84 protocol in a typical quantum optical implementation. Ide-
ally, Alice sends a sequence of single photons which are at random polarized in one of
the following four states: right or left circular polarized, or vertically or horizontally po-
larized. Bob chooses at random between two polarization analyzers, one distinguishing
the circular polarized states, and the other distinguishing the linear polarized states.
Following a public discussion about the basis of the sent signals and the measurement
apparatus applied to them, sender and receiver can obtain a shared key made up from
those signals where the measurement device gives deterministic results. This is the
sifted key [4]. Proofs of security of this scheme against the most general attack, even
in the presence of noise, have been obtained [5, 6, 7]. In this article we follow another
goal: we would like to illuminate to which extend even a very simple attack can render
QKD impossible once realistic imperfections like lossy lines and non-ideal signal states
are taken into account. The difficulties implied by the use of weak coherent states in



combination with lossy lines has been pointed out earlier [8, 9, 10] and this subject
has been illuminated in depth in [11], where bounds on coverable distances are given.
Positive security proofs for sufficiently short distances considering realistic signals are
given for individual attacks in [12]. The eavesdropping attacks which crack the secrecy
of the key for setups exceeding this secure distances are still quite complicated (an
eavesdropper needs to perform a QND measurement and store photons).

In this paper we deal with much simpler eavesdropping strategy that uses the op-
portunities arising from lossy lines and non-ideal signals. The attack has been first
proposed by Bennett [13] and Yuen [9]. It is based on the fact that Eve can, with a
finite probability, discriminate the four signal states unambiguously. Whenever such a
discrimination is performed successfully, the eavesdropper knows immediately which of
the four signal states was sent and can transmit this information via a classical channel
to Bob’s detector, in front of which she places a state preparation machine to prepare
the identified state. This way this state does not experience the losses of the actual
quantum channel without that Eve has to invest into a perfect quantum channel.

Our investigation of this scenario refines Bennett’s and Yuen’s analysis. It takes
into account that the photon statistics of the signals arriving at Bob’s detectors can
be monitored to a certain extent. The results illuminate the restrictions placed on
implementations of QKD on lines with strong losses. We show that, contrary to common
belief, the use of unambiguous state discrimination can be a more efficient eavesdropping
strategy than the beam-splitting attack [13], even for dim coherent states.

2. Unambiguous discrimination of signal states

Let us consider N different quantum states. Unambiguous state discrimination is pos-
sible whenever these N states are linearly independent. The problem can be described
by a measurement which can give the results ‘state 0’, ‘state 1’, ... ‘state N —1’, and
the result ‘don’t know’. The constraint is that the measurement results should never
wrongly identify a state, and the goal is to keep the fraction of ‘don’t know’ results as
low as possible. This problem has been investigated by Ivanovic [14] for the case of two
equally probable non-orthogonal states. Peres [15] solved this problem in a formulation
with probability operator measures (POM). Later Jaeger and Shimony [16] extended
the solution to arbitrary a priori probabilities. Peres’s solution has been generalized
to an arbitrary number of equally probable states which are generated from each other
by a symmetry operator by Chefles and Barnett [17]. They used the fact that the
symmetry allows to write the input states in the form

N-1

W= 3 cexp (m%) 95), (1)

J=0

where |¢;) represent a set of orthonormal states. Then they have shown that the
maximum probability of the successful unambiguous state discrimination is given by
the formula:

Pp = ijin|cj|2. (2)

Practical implementations of QKD mostly employ attenuated laser pulses. Thus the
reasonable description of realistic signal states seems to be that of a coherent state with
a small amplitude a.. The four BB84 signal states, carrying two linear and two circular



polarizations, may be expressed in terms of two modes (corresponding to two linear
orthogonal polarizations) as follows

o) = |a/V2) |a/v2), W) = |a/V2) ie/v2),
©) =[a/v2)|=a/V2), B} =|a/v2)|-ia/V3).

It turns out, however, that for realistic sources these states are not the correct
description of the situation. The reason is that Eve does not have a phase reference.
That means that for a given polarization she does not see the coherent state |«) but the
phase averaged density matrix 3= [, [e/?a)(e'?a| d¢. This results in signal states which
are mixtures of Fock states with a Poissonian photon number distribution described by
the density matrix

(3)

p=e > L) nl. (1

Here the state |n) denotes the Fock state with n photons in one of the four BB84 polar-
ization states. The optimal strategy to discriminate between the four possible density
matrices can be logically decomposed into a QND measurement on the total photon
number and a following measurement which unambiguously discriminates between the
four resulting conditional states for each total photon number. The justification for this
is that the measurement of the total photon number “comes free”, since the execution
of this measurement does not change the signal states. Therefore the total probability
of unambiguous state discrimination Pp is given in terms of the respective probabilities
for each photon number subspace P[(,n) as

Pp=3 e_“%PI(,"). (5)
n=0 :

The conditional states resulting from the QND measurement and corresponding to n
photons in total satisfy again the symmetry condition which allows to apply the results
by Chefles and Barnett. The maximum probability of unambiguous state discrimination
for fixed value of n is given by (for more details see [18])

0 n <2
P = 1-21""2  peven (6)
1—20-"/2 p odd.

It is possible to sum up the contributions from different photon numbers from the
Poissonian distribution and we obtain the expression

— —u M1 ) - L 12
Pp = e p™ 1 _em|\/2sinh 2= + 2cosh —= — 1. 7
b= 2 et ( V2 N ) ")

This result is compared to the result for coherent states in Fig. 1. As expected,
the probability for unambiguous state identification is lower for the mixture of Fock-
states than for the coherent states. An expansion in terms of the photon number pu
gives Pp = 5u + O(u*) for both situations. For lower than third order the signal
states are not linearly independent, so that no unambiguous state discrimination is
possible. Note that an actual implementation does not necessarily need to follow the
decomposition into a QND and another measurement. Actually, Bennett et al. [13] and
Yuen [9] gave a simple beam-splitter setup which obtains a discrimination probability
of Pp = 5 + O(p?).
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Figure 1. Comparison of the optimum probability of unambiguous states discrimination for coherent
states and for the corresponding mixture of Fock states. Both have the same Poissonian photon
number distribution with mean photon number .

3. Unambiguous state discrimination as eavesdropping strategy

Let us now consider the realistic situation when Alice uses the phase-averaged coherent
states as signal states. These mixed states undergo Poissonian photon-number statistics
with mean photon number . We fix our eavesdropping scenario, to which we refer as
the unambiguous state discrimination attack (USD attack), as follows: The unambiguous
state discrimination allows Eve to identify a fraction of the signals without error. For
this fraction, she can prepare a corresponding state close to Bob’s detectors such that
no errors appear for these signals. Whenever the identification does not succeed, she
sends the vacuum signal to Bob to avoid errors, which therefore will not be relevant in
the considered scenario.

We will study this strategy under realistic constraint. Of course, any real quantum
channel connecting both parties suffer by losses. Let its transmittance be characterized
by the transmission efficiency 7. Further, we will consider a detection setup where Bob
monitors each polarization mode in the chosen basis by one detector. These detectors
have a finite detection efficiency ng, in which we include any additional loss on Bob’s
side. The detectors are modeled as “yes/no” detectors, which either fire, or they do not
fire; they cannot distinguish the number of impinging photons.

Once Eve identified a signal she is interested to produce a signal in the corresponding
polarization such that Bob will detect it despite his inefficient detectors. One strategy
is to send a stronger signal than the original one in the correct polarization. This
will work as long as Bob measures in the polarization basis which includes the signal
polarization (sifted key), but it will lead to an increased coincidence rate of clicks in
both of Bob’s detectors otherwise. Our analysis includes the additional constraint put
on the eavesdropping strategy by the fact that Bob observes not only the rate of clicks
of one or the other detector, but also the rate of events when both detectors fire, each
monitoring one of the orthogonal polarization modes. The latter event will be observed
ideally only when Alice and Bob use different bases, independently of the presence



or absence of an eavesdropper. Eve’s aim is to reproduce these two observables with
the minimum number of non-vacuum signals to make efficient use of the successfully
identified signals.

In the absence of Eve, whenever Alice and Bob use the same polarization basis, Bob
expects to find at most one detector clicks; the probability of a click is

Py =1 — exp(—nwnap), (8)

as follows from the Poissonian photon-number statistics of coherent states. Whenever
Alice and Bob use different bases a double-click may occur; its probability is

Py = [1 — exp <— nLgBMﬂQ : (9)

How the situation changes in the presence of Eve depends on the signals Eve sends
for the successfully detected Alice’s signals. It is clear that Eve can avoid the occurrence
of double clicks when Alice and Bob measure in the same basis, since she unambiguously
determined the signal. Therefore it is not useful to monitor the double click rate when
Alice and Bob use the same basis.

Let us suppose now, that whenever Eve succeeds in the unambiguous state discrim-
ination she sends a number state (with correct polarization) containing N photons to
Bob. If she fails she simply sends no photon.

If Alice and Bob use the same basis, at most one of two Bob’s detectors will click.
The probability of this event is given by

P = Pp [1—(1-np)™]. (10)

This is the probability that one detector clicks if a state |[N) comes, multiplied by the
probability that Eve succeeds in USD (and sends |N)).

If Alice and Bob use different polarization bases, we can think of the photons as
being equally and independently distributed to both Bob’s detectors. The probability
of double click in Bob’s “yes-no” detectors when Eve is active then reads (see [18])

P — p, l1 _9 < - %)N H(1— nB)N] . (11)

There is no reason to restrict Eve only to the use of number states. When she
succeeds in state discrimination she can send to Bob any pure state or mixture. How-
ever, from Bob’s point of view these signals are effectively mixtures of photon number
states because of the nature of his detection. Therefore it is sufficient to analyze only
a mixture of photon number states in the polarization of the identified signal, so that
only the photon number statistics remains to be chosen by Eve.

As already mentioned, Bob is interested only in the number of single clicks (in case
that his and Alice’s bases coincide) and double clicks (if the bases differ). One can plot
very illustrative diagram displaying relations between corresponding single-click and
double-click probabilities (see Fig. 2). The situation where Eve sends number states to
Bob is represented by a dot for each value of the photon number N. The positions of
these dots have been calculated for fixed values of n; and p. Coordinates of a point
corresponding to any mixture of number states can always be expressed as a linear
convex combination of coordinates corresponding to individual number states. Because
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Figure 2. Diagram displaying relations between “single-click” and “double-click” probabilities.
The highlighted area contains all possible combinations of Bob’s detection probabilities stemming
from Eve's activity for a given detection efficiency (here, particularly, ng = 0.5) and a given mean
photon number in states sent by Alice (1 = 4). It is a region of insecure key generation. The
shape of the area depends on 7, the scaling on u [through discrimination probability Pp(u)].
The value of y = 4 is chosen to make the diagram well readable. The structure is the same for
lower, realistic values. The separate dotted curve represents a set of all possible “working points”
without an eavesdropper, i.e. a set of all possible pairs of expected P, and P,. Any particular
position of a working point depends on the values of the line transmittance (1), the detection
efficiency (np), and the mean photon number (1).

of the convexity of the above mentioned curve all such points must lie inside (or on the
boundary) of the polygon with vertices at the points corresponding to number states
(i.e. in the area highlighted in Fig. 2). This area can be called a region of insecurity.

We define the working point of a setup as the point whose coordinates are given
by expected values in the absence of an eavesdropper. If this working point falls into
the region of insecurity, Eve can get complete information on the key without a risk of
being disclosed. The set of all possible working points is represented by the dotted curve
in the diagram. Expected single-click probability P, represents z-coordinate, expected
double-click probability P, represents y-coordinate. Thus the explicit equation of the
working point curve reads

y=[1-01-2"". (12)

Now we have to find the values of parameters 71, ng, and p for which the working point
lies in the region of insecurity.



Working point || z, = 1 — exp(—nwnslt) | Yw = [1 — exp (_nL_ggg)r

Vertex N =1 | x; = Ppnp y1 =20
Vertex N =2 || 23 = Pp(2ng — 7]]23) Y = PDUJQg/2

Table 1. Coordinates of selected points in the parameter space of “observables’, which are the
probabilities of single clicks (x) and double clicks (y) in Bob's detectors.

3.1. Necessary condition for insecurity

If the expected probability of single clicks satisfies inequality P, > Pl(N) for all N then
the working point will certainly not fall to the region of insecurity. This leads to the
necessary condition for insecurity given by P, < Pp. To evaluate the implication for
the experimental parameters, we substitute Eq. (8). We get

—In[1 - Pp(u)

nLns < p . (13)

It means that for a fixed expected photon number p a system cannot be cracked by an
UsD attack if the total transmission efficiency n;np is higher than a certain threshold
which depends on the the expected photon number u. The surprising aspect is, that
the threshold does not go to 1 as u goes to infinity. Instead we find

(nLnB)(OO) = lim — ln[l - PD(M)]

MO0 ,u

= (1-27Y2) ~0.293. (14)

This shows, that that the implementation of quantum cryptography with weak coherent
states cannot be cracked completely by the USD attack for all values of the expected
photon number 1 as long as the total transmission satisfies nyng > 1 — 2-1/2,

3.2. Sufficient condition of insecurity

Now we will derive precise conditions determining when a working point falls into
the region of insecurity. In a first step we will show that for parameters of practical
applications it is sufficient to consider the scenario the working point falls below the
straight line going through the origin and the vertex N = 2. This condition corresponds

to -
T = Yp—- (15)

Yo
The coordinates of points used in this condition are defined in Tab. 1. In the second
step we can then determine whether in this scenario the working point lies inside or
outside the region of insecurity by checking on which side of the line connecting the
vertices N =1 and N = 2 it lies (see Fig. 2). If it is on the left, QKD is insecure. This

corresponds to the inequality
T < yway 7 + 2. (16)
2

First, let us turn to the inequality (15). Substituting expressions for all coordinates
according to Tab. 1 one obtains an inequality which is quadratic in the variable R =



exp (—nrnpp/2) with the parameter ng. We find that the working point lies below the
line connecting vertices N =0 and N =2 if R € (t_—f’;’f, 1). Thus the mean photon
number in coherent states sent by Alice must be lower than a threshold us given by

-2 4—3
< g = ln( 7713) . (17)
nLnB 4 — nB

We find that ps € [1/n1,21n3/n;] for any np and always s > 1. As one can see, this
condition is satisfied in all current experiments and does not pose a serious restriction
to the validity of our analysis especially for non-negligible loss.

Now let us turn our attention to the condition (16) which, whenever condition (17)
is fulfilled, determines whether the working point is in the region of insecurity. It can
be expressed in the following form

F(p,ne,mB) := 2wns — 2yuw(1 — ng) — Ppnp <0, (18)

Due to the complicated dependence of Pp on p we failed to find its analytical solution.
The analytical statement we can do without any extra approximation is based on the
observation that

oF

ou =0
This implies that there exists always a range of values for u starting from p = 0 for which
we have F' > 0, i.e. the security of the key distribution cannot be cracked completely
by the usD attack.

Condition (18) can be easily evaluated numerically. E.g., for values of line trans-
mittance 7, = 0.1 and detection efficiency ng = 0.5 (so that ps ~ 13.46) function F' is
positive if u € (0, ug) and negative (i.e. QKD is totally insecure) if u € (po, po) where
the zero point lies at p ~ 2.07 photons.

= nyﬁg >0 and F(0,nz,m8)=0.

3.3. Partly accessible loss in a system with large loss

Eve does not necessarily need to access the whole lossy quantum channel to be suc-
cessful. (By accessing we mean, that she can avoid these losses either by replacing a
quantum channel by a perfect, loss-free one, or by replacing it by classical communica-
tion and state preparation.) The formulas derived above still apply if we collect into the
quantity np all those losses on the way to Bob’s detector that are not accessible to Eve,
while 77, denotes now only that loss that is accessible to her. It is instructive to look
at the limit of high non-accessible losses (np < 1). In that case we can approximate
function F' of equation (18) by

1
F 3 (nw — M = PD) : (19)

The insecurity criterion ' < 0 in the region pu < us then leads to the condition

: 1 e— P 1
nLglr]zrlt:;<1— 1—2PD> %f%ﬁ/j?’ (20)

crit

which is independent of 5. Dependence of nf™* on u is shown as a solid line in Fig. 3.
The additionally condition (17) can be approximated by pu < 1/n. in leading order of
np (a dashed line in Fig. 3).
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Figure 3. The secure parameter regime for the losses accessible to Eve for large Bob's losses
(nB < 1) is the region above the solid line (£ > 0). In the region with FF < 0 and p < ug the
system is insecure. In the remaining region we have F' < 0, but since p > po, we cannot make
any definitive statements about security.

We can conclude that the system is secure against USD attacks in the regime of small
detection efficiencies ng if F' > 0 and u < ps. Furthermore, the system is insecure if
F <0 and g < pe. For the parameter region with p > us we can only make indirect
statements. One is, that if the system is secure for a pair of values (i, n.), then it must
be secure for all values (u,n}) with 17 > nr, otherwise Eve could gain an advantage
by not accessing all the loss available to her. In the remaining region we have F' < 0,
but since pu > u9, we cannot make any definitive statements about security. Note that
these considerations are valid for np < 1 and only in this limit np does no longer play
any role. For higher values of np this changes.

4. Comparison of USD attack and beam-splitting attack

Traditionally, security against the beam-splitting attack [13] has been used as a practical
level of security. In the beam-splitting attack the lossy line is replaced by an ideal
lossless one complemented by a beam splitter such that the total loss of the original
line is reproduced. The eavesdropper stores any photons coming out of the free arm
of the beam splitter. If both the eavesdropper and the receiver obtain a photon (it
is possible for multiphoton signals) Eve can measure her signal after she learns the
polarization basis in the public announcement and she will learn thereby the bit value
of these signals completely.

It is worth mentioning that security against beam-splitting attack allows that one
can obtain a secure key even for large average photon numbers [12, 18]. It is clear from
our analysis, however, that for large values of u and typical loss rates, the USD attack
will render the quantum key distribution protocol completely insecure.

In the USD attack the probability to identify a signal depends only on the average
photon number p, and once this probability is high enough to generate the expected
number of signals for the receiver (which depends on the amount of loss) then the



transmission becomes insecure. In the beam-splitting attack, on the other hand, the
total probability of identified signals depend on p and on the transmission coefficient
7, and this probability goes down with increasing loss for fixed p. In other words, the
beam-splitting attack becomes less efficient with increasing loss. This is easy to see in
a simple example of a two-photon signal. The probabilities p(n,2 —n) that n =0, 1,2
photons arrive at Bob’s detectors and n — 2 photons go to Eve in the beam-splitting
attack are given by

p(0,2) = (1-n)
p(2,0) = 7.

This means, that for high losses (n < 1) most likely both photons are sent to Eve.
Probability of this event is p(0,2) ~ 1 — 27, while the splitting probability goes down
as p(1,1) = 2n. The respective probabilities for n-photon signals are of the same order
of magnitude in 1. Therefore, clearly, there is a crossover as a function of 1 where for
fixed average photon number 7 the USD attack is more efficient than the beam-splitting
attack.

We would like to stress again that from a technological point of view the USD attack
seems to be easier to implement than the beam-splitting attack. There is no need of
a quantum channel with reduced loss and no need of quantum memory, as required by
the beam-splitting attack.

5. Conclusions

We have shown that unambiguous discrimination of linearly independent signal states
can be used as an effective attack against realistic quantum crypto-systems. This at-
tack enables eavesdropper to gain information on the key without causing any errors.
It does not require the ability to store quantum states or to perform complicated quan-
tum dynamics and it does not require to substitute the lossy quantum channel by a
perfect one. We have derived a set of conditions which allow to judge whether a given
system is insecure. In the limit of small detection efficiencies ng we have obtained an
analytic result that determines explicitly a set of parameters (line transmittances, de-
tector efficiencies and mean photon numbers in coherent states sent by Alice) for which
the transmission is secure with respect to the UsD attack. We have also showed that
security against beam-splitting attacks does not necessarily imply security against the
USD attack.
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