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Abstract. Heisenberg uncertainty relations yield sometimes rather trivial
statements. For instance, the uncertainty of the transversal momentum of a
particle behind a rectangular slit is infinite, which yields 1��x � �hh=2. Moti-
vated by the estimation theory we will show that a ‘‘good’’ uncertainty relation
can be recovered provided one gives the uncertainties a slightly different
meaning. This elementary example will also hint at the importance of the
information theory for the quantum physics.

1. Diffraction on the slit
Let us consider the standard setup and standard argumentation used in the

elementary textbooks of quantum mechanics for the exposition of Heisenberg
uncertainty relations [1]. For simplicity assume 1D geometry of a single slit
sketched in figure 1.

The particle goes through the slit impinging on the position sensitive screen
behind the slit. According to the de Brogli hypothesis it will effectively behave as a
wave with the de Brogli wave length �¼ h/p where p is the impulse of the particle.
Using a simple geometrical argumentation, each detection event on the screen may
be used for inferring the direction of the incoming particle. Hence this scheme
could be considered as a measuring device for determining the impulse. Invoking
the effect of diffraction, the quantum nature of particles will be manifested by a
diffraction pattern registered on the screen. Assuming the illumination by a plane
wave, the state describing the particle behind the slit reads

 ðxÞ ¼
expðikxxÞ=

ffiffiffi

a
p

, jxj � a=2,
0, jxj > a=2:

�

ð1Þ

Here kx ¼ k sin � is the component of the wave vector k ¼ 2�=� orthogonal to the
optical axis, and � is the wavelength of the particle. Denoting the detected position
of the particle on the screen by �, the probability of the detection of the particle at
point � in the far reach zone is given by the square of its Fourier transformed wave
function,

pð�j�Þ ¼
1

�
sinc2ð�� �Þ: ð2Þ

Here the dimensionless quantities used are � ¼ ðak=2dÞ� and � ¼ a=2kx. Taking
the first minimum of function (2) for defining its ‘‘spatial extent’’, the half-width
of the probability distribution is then determined as �kx ¼ 2�=a. Considering
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further that in the plane of the slit the location of the particle is known to be within
the half-width of �x ¼ a=2, the expected uncertainty relation reads

�px�x � h=2; ð3Þ

where p ¼ �hhk. This is often considered as a painless, quick and intuitive way of
formulating the uncertainty principle. Although relation (3) resembles the famous
Heisenberg uncertainty relation of quantum theory,

�px�x � �hh=2; ð4Þ

one should realize that the uncertainties in (4) are strictly defined as the root-
mean-square variances of observables unlike those in equation (3). This becomes
crucial in the case of the probability distribution (2) whose variance is infinite due
to its heavy tails [2]. Obviously, as the uncertainty of the momentum is infinitely
large, inequality (4) is trivially satisfied.

There are several ways for circumventing this obstacle, for example by an
alternative definition of the proper resolution measure, or by invoking entropic
uncertainty relations [3]. Motivated by recent progress in the understanding of
the key role played by information in quantum theory [? ?], we will proceed in
a different way and use the concept of the Fisher information. This information
imposes ultimate limitations on measurements, and as such it can be used to
describe the uncertainty relations in a generalized sense.

2. Fisher information of interference patterns
The build-up of an interference pattern is governed by a probabilistic law,

where the intensity (2) plays the role of a probability distribution governed by a
true parameter �. After registeringN particles, this parameter can be estimated. Of
course, different estimators will, in general, have different errors. However, an
important theorem of probability theory states that the error of any unbiased
estimator of � is lower bounded by the Fisher information I as follows,

ð��Þ2 � 1=I: ð5Þ

�
�

��

�

�

Figure 1. Geometry of the diffraction on the slit.
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Assuming that the statistics of the experiment is multinomial (the discretization
comes from the binning of the position measurement), the Fisher information
reads,

I ¼ NF ¼ N
X

�

p02ð�j�Þ

pð�j�Þ
, ð6Þ

where the prime denotes derivation with respect to �. Relation (5) is the well-
known Cramer-Rao lower bound (CRLB) [6, 7].

To achieve the resolution given by equation (5) it is necessary to register a
large number of particles N�1. Since the information provided by the optimal
estimator grows linearly with increasing number of particles, it is possible to define
the information gained per particle as F¼ I/N. This quantity provides the ultimate
resolution corresponding to a single ‘‘average’’ particle from the bunch of
registered events [?].

Let us apply this theory to the interference pattern behind the slit. It is easy to
calculate all the respective quantities

ð��Þ2 ¼
a

2�hh

� �2

ð�pxÞ
2, ð�xÞ2 ¼

a2

12
, F ¼

4

�

ð

d�
d

d�
sinc�

� �2

¼
4

3
: ð7Þ

Interestingly, the CRLB (5) reproduces exactly the expected Heisenberg uncer-
tainty relations for the impulse and position of the particle going through the slit.
Indeed, substituting equations (7) into CRLB (5) with I replaced by F we find that

�px�x �
�hh

2
: ð8Þ

There is a simple relationship between the Fisher information and the
variances of complementary variables. Considering the momentum representation,
 ð pÞ ¼ h pj i, the Fisher information may be rewritten in the form

F ¼

ð

dp
½ ð pÞ�0 ð pÞ þ  ð pÞ0 ð pÞ��2

 ð pÞ �ð pÞ
¼

ð

dp
h pj ½ð�X̂XÞ=ði�hhÞ; j ih j� jpi2

 ð pÞ �ð pÞ

¼
4ð�xÞ2

�hh2
�

ð

dp ð pÞ �ð pÞ
@

@p
arg þ

1

�hh
hxi

� �2

:

ð9Þ

This is the Fisher information associated with one average particle prepared
in state  ðpÞ. The corresponding momentum uncertainty per particle predicted
by the Cramér-Rao lower bound is

ð�pÞ2 � 1=F: ð10Þ

Equations (9) and (10) imply a Heisenberg-like uncertainty relation with the
difference that p in equation (10) is an estimator of the particle momentum. This
inequality will take exactly the form of a Heisenberg uncertainty relation whenever
the phase of the wave function in p-representation exhibits a linear dependence on
the momentum, which gives a wide class of minimum uncertainty states for the
information uncertainty relation on the slit.

Fisher information could also provide a new insight into the problem of
quantum complementarity. Given a state � we can ask which unitary operation
expð�i�XÞ� expði�XÞ applied to this state can be most accurately revealed by
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measuring an observable A. Obviously, the most favorable situation arises when
the operators X and A satisfy the relation

exp ði�XÞA exp ð�i�XÞ ¼ Aþ �, ð11Þ

which means that they obey the canonical commutation relations ½A;X� ¼ i.
Unfortunately, such direct measurements do not always exist, as for example in the
finite dimensional Hilbert spaces. But even in those cases, an operational formu-
lation can be given in the framework of the estimation theory where the question
can be rephrased as follows: what generator maximizes the Fisher information
corresponding to angle �, provided that operator A has been measured?

The answer to this question will be given elsewhere. Let us just mention that
for qubits, such an operational definition of complementarity based on the estima-
tion theory coincides with the usual definition.

We have formulated several arguments in favor of Fisher information and
its applications to quantum problems. Fisher information provides the ultimate
limitation for quantum measurements and as such provides also a nontrivial link
between the theory of statistics and quantum theory. Since quantum theory is
more ‘‘operational’’ than perhaps any other physical theory, this may yield new
interesting insights into its fundamentals.
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