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Gerald Badurek1, Zdeněk Hradil2, Alexander Lvovsky3,
Gabriel Molina-Teriza4, Helmut Rauch1, Jaroslav Řeháček2,
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Abstract. The theory of quantum state reconstruction is illustrated here on sev-
eral examples taken from modern experimental praxis. Maximum-likelihood estima-
tion is applied to experiments on physical systems of increasing complexity, starting
with a simple one-dimensional problem of quantum phase estimation, continuing
with the absorption and phase neutron tomographies, further discussing quantum
tomography of higher-dimensional discrete quantum systems, and closing with the
homodyne tomography of an infinite dimensional system - a mode of light. All these
experiments nicely demonstrate the utility of present state-of-art techniques for ma-
nipulating states of a neutron and internal as well as external states of a photon.

10.1 Introduction

Over the past hundred years, quantum theory proved to be an extremely
useful tool for describing and understanding nature on a microscopic level. Its
usual applications consist in predicting the outcomes of future experimental
results given a quantum state describing the physical system.

However, in experimental physics one often faces a different question:
“Given the outcomes of a particular set of measurements, what quantum
state do they imply?” Such inverse problems may arise for instance in the
stage of setting up and calibrating laboratory sources of quantum states, in
the analysis of decoherence and other deteriorating effects of the environ-
ment, or in some special tasks in quantum information processing such as
eavesdropping on a quantum channel in quantum cryptography.

Quantum state reconstruction is a highly nontrivial problem. The quan-
tum state of a system, however simple, cannot be determined by a single
measurement. Repeated identical measurements performed on multiple iden-
tical copies of a quantum state generally will not yield the complete infor-
mation about the ensemble in question. Such a set of measurements will,
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however, provide the probability distribution of the ensemble measured over
the eigenstates of the measurement apparatus.

To fully characterize an ensemble one needs to perform a set of multi-
ple, different measurements on an even larger set of the identically prepared
systems. By modifying the configuration of the apparatus, one acquires the
quantum state statistics associated with various measurement bases. A set of
these distributions contains complete information about the system, which
can be then extracted in the form of a density matrix. In a sense, many
different and mutually incompatible observations are compressed to a single
mathematical object.

Various theoretical approaches to this problem are reviewed in other chap-
ters in this volume. The purpose of this chapter is to provide the reader with
some examples of quantum tomography taken from the modern experimental
praxis. Maximum likelihood estimation will be applied to physical systems
of increasing complexity starting with a simple one-dimensional problem of
quantum phase, continuing through the absorption and phase neutron tomo-
graphies, further discussing quantum tomography of discrete quantum sys-
tems, and closing with the homodyne tomography of an infinite dimensional
system—a mode of light.

10.2 Maximum-Likelihood Phase Estimation

Phase measurements do not belong to the category of conventional mea-
surements since a Hermitian phase operator does not exist in the canonical
sense [1–5]. However, this does not mean that phase cannot be described in
quantum theory or even measured. Let us first briefly review some basic facts
related to experimental reality.

From the point of view of estimation theory [6] phase is a c-number pa-
rameter appearing in the transformation describing the action of a phase
shifter on the input state |Ψ〉

|Ψ(θ̄)〉 = e−iθ̄N̂ |Ψ〉, (10.1)

N̂ = â†â being the photon-number operator. Any phase measurement is
completely described by the statistics p(θ|θ̄) of its outcomes θ conditioned
on the true value θ̄ of the phase shift. Basically, two strategies may arise.
One can either look for the ideal measurement [7–11], i.e. the measurement
optimal from some point of view, or, provided that a measurement cannot be
chosen at our will, one should choose the statistical data analysis extracting
as much information about the parameter of interest as possible.

The statistics of the ideal phase measurement are just the statistics of the
Susskind-Glogower phase operator [12],

p(θ|θ̄) =
1
2π
|〈θ|Ψ(θ̄)〉|2, âN̂−1/2|θ〉 = eiθ|θ〉. (10.2)



10 ML Estimation in Experiment 375

Although the eigenstates of this operator are not orthogonal, they are over-
complete, and thus generate probability operator valued measure (POVM)
Π(θ) = |θ〉〈θ|, that defines the ideal phase measurement in the sense of gen-
eralized measurements.

Though there are ways to simulate measurement (10.2) by means of post
selection [13], this does not seem to be a practical solution. What is usually
measured in practice is energy, and phase sensitive devices called interferom-
eters are used to transform phase shifts into variations of output energies.
Due to the statistical nature of quantum theory, the resulting relationship
between the measured quantities and the parameters of interest is not de-
terministic. Such an indirect inference is usually called quantum estimation,
and its scheme is the following:

ρ→ true phase
shift θ̄

→ ρ(θ̄) → detection → n(θ̄) → estimation → θ(n).

An interferometer provides the input-output transformation of the known
initial state ρ. The subsequent measurement yields a phase sensitive data n
that are processed to get a phase estimate θ. The true phase shift θ̄ inside
the interferometer, which is a non-fluctuating parameter controlled by the
experimentalist, should carefully be distinguished from the phase estimate θ,
which is generally a random quantity.

The performance of the estimation of course depends on the choice of the
estimator. The point estimators of phase corresponding to the ML estimation
will be used here [8,14]. In accordance with the ML approach [15], the sought-
after phase shift is given by the value, which maximizes the likelihood function

L ≡ p(θ|n) ∝ p(n|θ). (10.3)

A schematic representation of a Mach-Zehnder (MZ) interferometer is
shown in Fig. 10.1. Its input ports are fed by n1 and n2 particles. Formally,
this device can be described by Lie algebra SU(2), the correspondence being
provided by the Schwinger representation of the angular momentum opera-
tors.

The phase resolution of the MZ interferometer strongly depends on the
properties of the input signal. Provided that the interferometer is operated
in the usual (classical) manner with the light entering one input port only,
|in〉 = |N, 0〉, the phase error is proportional to 1/

√
N . This regime is usually

referred to as the standard limit of phase measurements. When both the
input ports of the interferometer are fed by the signal with an equal number of
particles, |in〉 = |N/2, N/2〉, the theory predicts the ultimate phase resolution
of ∆θ ≈ 1/N , which is the quantum limit of phase measurements [9, 10].

While the classical limit can be achieved using a coherent source, or by ac-
cumulating data from repeated single particle interference experiments, the
quantum limit requires a bright source of highly nonclassical exotic states
such as Fock states or highly squeezed states [7, 9], which are still not read-
ily available in laboratories. But even in the absence of such resources one
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Fig. 10.1. Left side: Mach-Zehnder optical interforemeter; right side: silicon perfect
crystal interferometer used in neutron optics.

can still benefit from the proper data manipulation as will be shown on the
example of a semi-classical and fully quantum phase reconstruction.

The quantum phase reconstruction can also be regarded as the simplest
case of a quantum-state reconstruction. A single particle being in a super-
position of two paths is equivalent to a two-level system and can therefore
be visualized by a point inside the Bloch sphere. The action of the interfer-
ometer is related to the equatorial cut through this sphere: The phase shift
rotates the Bloch vector along the equator, while the decoherence affecting
the visibility contracts this vector. So the natural parameter space of the
phase reconstruction is a unit circle.

10.2.1 Quantum Phase Estimation

First, let us show that the operational phase concepts can naturally be em-
bedded in the general scheme of quantum estimation theory [6, 16] as was
done in [17–20].

Let us consider a MZ interferometer, where the measurement is performed
with zero and π/2 auxiliary phase shifters. The auxiliary shifter is needed
to get a unique phase estimate. Such a device is equivalent to the 8-port
homodyne detection scheme [21] with the four output channels numbered
by indices 3,4,5, and 6, where the numbers of particles are registered in each
run. Assume that the these quantities fluctuate in accordance with some
statistics. The mean intensities are modulated by a phase parameter θ̄

n̄3,4 =
N

2
(1± V cos θ̄), n̄5,6 =

N

2
(1± V sin θ̄), (10.4)

whereN is the total intensity and V is the visibility of the interference fringes.
Provided that a particular combination of outputs {n3, n4, n5, n6} has been
registered, the phase shift can be inferred.
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Now, for a while, let us assume that the phase sensitive device operates
with a Gaussian signal with phase insensitive noise. This is only an approx-
imation to the real situation since realistic signals are discrete. Under such
approximation, the likelihood function corresponding to the detection of given
data reads

L ∝ exp
{
− 1

2σ2

6∑
i=3

[ni − n̄i]2
}
. (10.5)

Here the variance σ2 represents the phase insensitive noise of each channel.
The sampling of intensities may serve for the estimation of the phase shift
and visibility simultaneously. Likelihood function (10.5) is maximized on the
physically allowed space of parameters V ≤ 1 by the following phase and
visibility,

eiθ =
n3 − n4 + i(n5 − n6)√
(n3 − n4)2 + (n5 − n6)2

, (10.6)

V = min

(
2

√
(n3 − n4)2 + (n5 − n6)2∑6

i=3 ni
, 1

)
. (10.7)

Notice that the prediction of this semi-classical theory (10.6) coincides with
the operational quantum phase introduced by Noh, Fougères and Mandel
(NFM) [22]. This means that operational phase concepts can be thought
of as special cases of ML phase estimation – ML estimation for Gaussian
signals. Such predictions are optimal only for signals represented by a con-
tinuous Gaussian signal with phase independent and symmetrical noises. Let
us note that a generalization of this concept to a larger number of auxil-
iary phase shifts detected [23] is known as the phase of the discrete Fourier
transformation.

Since realistic signals are discrete, the theory can be refined by considering
the actual statistics of the experiment. This can be demonstrated on the case
of Poissonian signals. These are frequently encountered in laboratories as ideal
lasers, or thermal sources of particles, such as neutron beams. ML estimation
based on the Poissonian likelihood function,

L ∝
6∏
i=3

n̄ni
i

ni!
e−n̄i , (10.8)

gives optimum values for the phase shift and visibility

eiθ =
1
V

[
n4 − n3

n4 + n3
+ i
n6 − n5

n6 + n5

]
, (10.9)

V =

√(
n4 − n3

n4 + n3

)2

+
(
n6 − n5

n6 + n5

)2

≤ 1, (10.10)
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provided that the estimated visibility (10.10) is smaller than unity. If not,
it is necessary to maximize the likelihood function (10.8) numerically on the
boundary (V = 1) of the physically allowed region of parameters.

Relations (10.9-10.10) provide a correction of the semiclassical Gaussian
theory with respect to the discrete Poissonian signals. The principle of in-
ference together with the two different assumptions about the nature of the
signal have given rise to two different phase estimates (10.6) and (10.9). One
may wonder, whether the improvement of phase inference gained by taking
the correct statistics of the experiment into account is worth giving up the
simple NFM formalism and resorting to numerical methods. Could the opti-
mization of the information yield from the measured data lead to a significant
increase of the accuracy of the phase fitting?

The difference between recipes (10.6) and (10.9) can be tested in a con-
trolled phase measurement. The phase difference is adjusted to a certain value
and estimated independently using both the methods (10.6) and (10.9) in re-
peated experiments. The efficiency of both methods can then be compared.

Of course, some measure of the estimation error is needed for this. Dis-
persion defined by the relation

σ2 = 1−
∣∣〈eiθ〉∣∣2 (10.11)

is one such reasonable measure. Here, the average is taken over the posterior
phase distribution of the corresponding phase estimator.

The evaluation of the average quadratic cost (10.11) is not the only way
to compare the efficiencies of different estimation procedures. Another possi-
bility is to use the rectangular cost function

C(θ − θ̄) =
{
−1 |θ − θ̄| ≤ ∆θ

0 |θ − θ̄| > ∆θ . (10.12)

The averaged rectangular cost 〈C(θ − θ̄)〉 measures how many times the
estimate θ falls within the chosen window ∆θ spanning around the true phase
θ̄. The difference

∆E = 〈C(θ − θ̄)〉Gauss − 〈C(θ − θ̄)〉Poiss (10.13)

then measures how much the Poissonian prediction is better than the Gaus-
sian one. If this quantity is found to be positive, the ML estimation is better
than its NFM counterpart.

Although the dispersion (10.11), and ∆E cannot be calculated explicitly
for an arbitrary input intensity N , it is possible to analyze the limit cases [20].
Obviously, both the predictions (10.6) and (10.9) will coincide provided that
there is almost no information available in the low intensity limit, N → 0.
Not so obvious is the fact that both predictions will also coincide in the high
intensity limit, N � 1, provided the visibility is low V → 0. To see this, let



10 ML Estimation in Experiment 379

Table 10.1. Asymptotic dispersions and overall quadratic costs of various phase
estimators. ML’ – unconstrained ML estimation; ML1 – single-parameter ML esti-
mation. For comparison, CRLB is also shown.

Estimator σ2 C̄ ≡ ∫ σ2dθ̄

NFM 1/N 2π/N
ML’

(
1 + cos2 2θ̄

)
/2N 3

2π/N
ML ≈ (1 + 0.5 cos2 2θ̄

)
/2N ≈ 5

4π/N
ML1 1/2N π/N
CRLB 1/2N π/N

us compare the asymptotic dispersion of the NFM estimator,

σ2
G ≈

1
V 2N

−1 +O
(

1
N2

)
, (10.14)

with the asymptotic expression for the (CRLB) on the dispersion of any
estimator,

σ2
CRLB =

V 2 − 1− 1
4V

4 sin2 2θ̄
V 2 − 1− 1

2V
2 sin2 2θ̄

V −2N−1 +O
(

1
N2

)
. (10.15)

If the visibility is low, both expressions will become identical. Therefore the
semiclassical theory is optimal in this limit case [23].

Asymptotic expressions for various phase estimators in the opposite limit
of high visibility V ≈ 1 are given in Table 10.1. Estimator ML’ is the phase
prediction given by (10.9), that is, one does not care about the possible
unphysical inferred visibilities V > 1, and ML1 is the single-parameter es-
timation obtained by setting V = 1 in the likelihood function (10.8) and
maximizing it only with respect to phase.

Notice that the uncertainties of all estimators scale as 1/
√
N . This is

to be expected in accordance with the standard quantum limit. However the
constant of proportionality depends on the estimator used. By taking physical
constraints into account the accuracy of phase fitting is improved.

The single-parameter ML1 estimator is seen to provide best phase predic-
tions. It attains the CRLB and hence is optimum. It yields a phase predic-
tion whose uncertainty is reduced by the factor of

√
2, that is by about 30%,

compared with the semi-classical theory. However, estimating phase alone
implicitly presumes good a-priori knowledge of the visibility. If the actual
value of the visibility is not known or fluctuates during the experiment, the
single-parameter estimator may lead to biased phase predictions. For large
intensities the bias might completely spoil the estimation [20].

10.2.2 Experiments

The performance of the semiclassical NFM and ML phase estimators have
been determined in a series of experiments utilizing two principal sources
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Fig. 10.2. The experimentally observed absolute (left panel) and relative (right
panel) difference between the dispersions of the NFM and ML estimators as a
function of the input mean number of photons N for fixed true phase θ̄ = π/3.
Error bars corresponding to 68% confidence intervals are also shown.

of particles – beams of thermal neutrons [19] and laser light [20]. The main
goal of the experiments was to compare the optimum phase prediction with
the semi-classical theory in the regime of only a few input particles. As a
side result, the theoretical asymptotic uncertainties given in Table 10.1 were
tested experimentally.

The dispersions (10.11) of the NFM (or equivalently Gaussian) and ML
phase estimators found in experiments with light are shown in Fig. 10.2.
The true phase was fixed at θ̄ = π/3. The number of detected quadruples
{n3, n4, n5, n6} used for the calculation of the dispersions varied from 1000
samples for the input mean number of photons N = 60 to more than 100, 000
samples for N = 0.1. The error bars corresponding to these finite numbers
of samples are the result of numerical simulation. The visibility during the
experiments was better than 99.6%.

The ML estimator was found to be significantly more accurate (by many
standard deviations) than its NFM semi-classical counterpart. This was con-
firmed by evaluating the difference of the rectangular costs (10.13), see the
left panel in Fig. 10.3. Here, the chosen input total energy roughly fits the
maximum, N ≈ 7.5, of the curve seen in Fig. 10.2.

A significant difference between the effectiveness of semi-classical and op-
timal treatments is apparent in Fig. 10.3. The optimal treatment provides
an improvement in estimation procedure, and the difference is more than 10
standard deviations beyond the statistical error. High stability and visibility
of interference fringes in the optical interferometer along with a high repeti-
tion rate of pulsed lasers made the improvement of the semi-classical phase
prediction more evident than in a similar comparison that had been done
with thermal neutrons [19], see the right panel in Fig. 10.3.

An experimental comparison of three different phase estimations – NFM,
ML’, and ML estimators – in the asymptotic regime is shown in Fig. 10.4. The
experiment was done with photons. For comparison, the theoretical values of
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Fig. 10.3. Experimentally obtained ∆E (squares) compared to theoretical values
(circles). Left panel: experiment with photons, N = 10 photons, visibility was
better than 99.5%; error bars correspond to 7500 measured samples. Right panel:
experiment with neutrons. The mean number of N = 8.54 incoming neutrons was
asymmetrically split between the ordinary (No = 2.21) and extraordinary (Nh =
6.33) channels. The average visibility was about 31%; error bars correspond to 690
registered samples.
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Fig. 10.4. Asymptotic dispersions of the semi-classical NFM estimator; theory
(solid line) and experimentally obtained values (squares). Asymptotic dispersions of
the unconstrained ML estimator; theory (dashed line) and experimentally obtained
values (triangles). Experimentally obtained dispersions of the ML estimation on
the physical space of parameters (circles). The corresponding input mean number
of photons and the estimated visibility were N = 160 and V = 99.2%, respectively.

dispersions given in Table 10.1 are also shown. Several important conclu-
sions can be drawn from Fig. 10.4. (i) We can see that the uncertainty of
the constrained ML estimation is definitely below the uncertainty of the un-
constrained estimation in agreement with theory presented in Table 10.1. It
means that insisting on the physical constraints (here the non-negativity of
the intensity) is important not only for the sake of interpretation, but it also
makes the estimation more efficient. Of course, both ML estimations beat
the phase resolution of the semi-classical NFM theory. (ii) The observed val-
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ues of dispersions exhibit a systematic error. The additional noise above the
theoretical uncertainty is caused by inherent phase fluctuations in the exper-
imental setup. Hence our statistically motivated evaluation of experimental
data can be used for inferring the amount of fluctuations, and therefore it
provides an independent and nontrivial way of calibrating an interferometer.

10.3 ML Neutron Absorption Tomography

Though the ML reconstruction has been proposed in quantum domain, it can
be applied advantageously to any statistical theory, particularly to absorption
tomography. This classical problem also illuminates the tomographic aspects
of the quantum-state reconstruction.

The standard reconstruction method in present computerized tomo-
graphic (CT) imaging is the filtered back-projection (FBP) algorithm based
on the inverse Radon transformation [24]. Technically, this transformation is
implemented using fast Fourier transformation routines, which makes the re-
construction process fast and highly efficient. FBP gives satisfactory results
in applications where (i) the intensity of the illuminating beam is so large
that its statistics can safely be ignored, and (ii) the sample can be scanned
over the whole 180◦ angular interval in small steps. In X-ray medical CT
imaging these two conditions are usually met.

Unfortunately FBP fails in case of missing projections and/or if strong
statistical fluctuations of the counting numbers are present in the small de-
tector pixels. The latter situation occurs e.g. in neutron tomography [25–28],
if monochromatic neutron beams are applied in order to avoid beam arti-
facts [29] or at the investigation of strong absorbing materials [30]. As present
neutron sources are thermal in nature, they generate weak beams. Particles
that have passed through the studied object are counted one by one and their
statistical fluctuations have strong influence on the reconstructed images.

The case of missing projections or incomplete data sets is another im-
portant issue. If technical problems arise during the tomographic scan, FBP
algorithm requires repeating the whole measurement. Partial or incomplete
data cannot be inverted using this method. Sometimes it may be required to
keep the sample in a cryostat during the measurement. The construction of
such a cryostat may not allow turning it upside-down, so part of the mea-
sured angles may be missing, or there may not be enough space to rotate the
sample in the full 180◦ interval. This was investigated in the past in detail
by means of algebraic reconstruction techniques [31–33].

The maximum-likelihood reconstruction method described in this sec-
tion can improve several tomographic applications in neutron optics which in
many cases are limited by the weak intensity and the poor detector resolu-
tion [34,35]. Generally, it achieves better reconstruction results or reduce the
scanning time in neutron optics and in medical and biological CT imaging.
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In the following we will focus on the absorption tomography in neutron
optics.

10.3.1 LinPos Tomography

Basic notions and the geometry of typical tomographic experiments are as
follows. Let us assume that the sample is illuminated by parallel monochro-
matic pencil beams, see Fig. 10.5. Data consist of the number of particles
counted behind the sample for M different scans – each scan being char-
acterized by its horizontal position h and rotation angle ϕ. Alternatively, a
broad illuminating beam combined with a position-sensitive detector (CCD
camera) placed behind the sample can be used. In that case h labels the
pixels of the camera. For the sake of simplicity a collective index j ≡ {h, ϕ}
will be used, hereafter, to label the scans.

Mean number n̄j of particles (intensity) registered in j-th scan is given
by the exponential attenuation law

n̄j = n̄0 exp(−
∫
µ(x, y)dsj), (10.16)

where n̄0 is the intensity of the incoming beam, µ(x, y) is the absorption index
of the sample in position {x, y}, and the integration is the path integration
along the pencil beam. This exponential attenuation law is a good approxima-
tion if scattering can be neglected. The beam hardening artifacts would also
modify relation (10.16) but this complication can be avoided experimentally
by the use of monochromatic beams [29].

Using neutron beams instead of X-ray photons has several advantages.
Neutrons interact with the matter in a different way than photons do. Since
neutrons are subject to the strong interaction, they can “see” and distinguish
among different isotopes of the same element. Neutrons can also penetrate
deeper into some materials such as metal surfaces, and many other objects
like objects made from plastic materials often show considerably more detail
when illuminated with neutrons rather than photons.

h

ϕ

x

y
sample

beam

CCD

cij

i

j

Fig. 10.5. Geometry of the experimental setup and the definition of coefficients
cij .
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The absorption index for thermal neutron beams can be expressed as

µ(x, y) = Σth(x, y)λ/λth, (10.17)

where Σth is the macroscopic thermal cross section, λ is the wavelength of
the illuminating beam, and λth is the thermal wavelength. Equation (10.17)
presumes a linear dependence of the involved cross sections on λ [36].

For practical purposes, it is convenient to discretize (10.16) as follows,

n̄j = n̄0 exp(−
N∑
i=0

µicij). (10.18)

The sample is now represented by a 2D mesh whose cells are assumed to be
homogeneous. The variables are now N numbers µi specifying absorption in
those elementary cells. Matrix {cij} defines the ovelaps of beams and cells,
see Fig. 10.5.

Let us first ignore the statistics of the illuminating beam, and assume
that the counted numbers of particles {nj} do not fluctuate, nj = n̄j , ∀j.
Taking the logarithms of both sides of (10.18), one obtains a system of M
linear algebraic equations for the N unknown absorption coefficients µi:

fj = pj , j = 1 . . .M, (10.19)

where we defined,

fj = − ln
nj
n0
, pj =

∑
i

µicij . (10.20)

Notice that the problem (10.19) is a linear and positive (LinPos) problem. Its
linearity is obvious, and positivity follows from the fact that no new particles
are created in the sample. The importance of LinPos problems for experimen-
tal physics stems from the fact that many physical quantities, for instance
mass, density, intensity, and so on, are intrinsically positive quantities that
very often depend on the parameters of interest in a linear way. Linearized
absorption tomography (10.19) is just one typical example taken from this
wide family of problems including, among others, the measurement of focal
intensity distribution for polarized input fields [37], or the characterization
of the photon content of light pulses [38] to give some examples.

The inversion of (10.19) is provided by the FBP algorithm,

µ ∝
∑
ϕ

f ! g, (10.21)

where ! denotes a discrete convolution of data with the regularized singular
transformation kernel [39]. However, by linearity of (10.21), the positivity of
the reconstructed absorption index is not guaranteed when the data is noisy.
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A negative value of a reconstructed µi would then suggest that particles were
being created in the i-th cell in the course of the experiment, which would ob-
viously be a wrong conjecture. Another problem arises when there are only a
few projections available. In such a case, the summation in (10.21) no longer
approximates the original integral and unwanted artifacts appear in the re-
constructions. Both these drawbacks can be avoided if the problem (10.19)
is solved in the sense of maximum likelihood on the space of physically al-
lowed absorption coefficients. In this approach one considers the data f and
the prediction of the theory p as two probability distributions. One looks for
absorption coefficients {µi} minimizing the Kullback-Leibler “distance”

D(f ,p) = −
∑
j

fj ln
pj
fj

(10.22)

between the data f and theory p. Here, a little more care is needed since p
and f are generally not normalized to unity. The minimum of the Kullback-
Leibler distance corresponds to the maximum of the likelihood functional [15]

L =
∏
j

(
pj∑
k pk

)fj

, (10.23)

that quantifies the likelihood of the given distribution {µi} in view of the
registered data. We seek the maximum-likely distribution of the absorption
indices. A convenient way to find it is the Expectation-Maximization (EM)
iterative algorithm [40,41],

µn+1 = R(µn) · µn, (10.24)

where

Ri =
1∑

j′
cij′

∑
j

fjcij
pj(µ)

, (10.25)

and µ0 is some initial strictly positive distribution µ(0)
i > 0, i = 1 . . . N . A

nice feature of EM algorithm is that its convergence is guaranteed for any
input data fj [42]. For this reason it became a valuable tool in many inverse
problems that can be reduced to the form of (10.19), e.g. in positron emission
tomography [42–44]. The original derivation of EM algorithm is based on al-
ternating projections on specially chosen convex sets of vectors. However, one
could directly use the calculus of variations to derive the necessary condition
for the extreme of the functional (10.23). Iterating these, one eventually ar-
rives at the EM algorithm again. An advantage of this alternative derivation
is that it can be also applied to more realistic physical models of the actual
absorption experiment. One such possible generalization will be shown in the
following subsection.
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10.3.2 Tomography with Poissonian Signals

Real signals are not composed of a sharp number of particles. For instance,
two kinds of signals often used in experiments —beams of thermal neutrons
and laser light— both exhibit Poissonian fluctuations of the number of parti-
cles. Monochromatic neutron beams also are correctly described by the Pois-
sonian statistics if the detected count events occur in a mutually independent
manner [45]. The knowledge of the true character of the signal illuminating
the sample is a useful piece of prior information, which can be utilized for
improving the performance of the tomographic imaging.

As the Poissonian character of the signal is preserved during the attenu-
ation, the counted numbers of particles behind the sample are random Pois-
sonian variables. The corresponding likelihood functional reads,

L =
∏
j

n̄
nj

j

nj !
e−n̄j . (10.26)

This is the joint probability of counting {nj} particles. Their mean values
{n̄j} obey the exponential law (10.16) as before. They depend on the absorp-
tion in the sample {µj} that is to be inferred from the data. The necessary
condition for the maximum of the likelihood (10.26) can be derived using the
calculus of variations. The extremal equation can be shown to have the same
vector form as the extremal equation of the LinPos problem (10.24) with the
vector R replaced by

R
(Poisson)
i =

n̄0∑
j′
cij′nj′

∑
j

cij exp(−
∑
i′
µi′ci′j). (10.27)

When the input intensity n̄0 is not known, it should be estimated too:

n̄0 =
∑
j

nj

/∑
j

exp(−
∑
i

µicij). (10.28)

As seen, the Poissonian tomography is intrinsically a nonlinear problem. This
has serious consequences for the convergence properties of the iterative al-
gorithm (10.24) and (10.27). Instead of converging to a stationary point it
might end up in oscillations. Typically, such convergence problems arise in the
presence of very noisy data. When this happens, it is necessary to decrease
the size of the iteration step as follows: Ri → Rαi , i = 1 . . .M, 0 < α < 1.
Of course, any solution to the regularized problem is also a solution to the
original problem.

10.3.3 Comparison with Standard Methods

In real experiments there are many factors that could influence the quality
of the measured data and therefore also the result of the tomography. Mis-
alignments present in the experimental setup, instability of the illuminating
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Fig. 10.6. The object.

Table 10.2. Quality of the input data. The last column shows the mean number
of counted particles per pixel in the incident beam.

reconstruction angles pixels intensity
a 13 161 ∞
b 19 101 ∞
c 20 101 ∞
d 7 301 ∞
e 15 161 2000

beam, white spots and damaged detector pixels can be such factors, to name
a few. To avoid this problem let us first show a few simulations. The data
were generated on a computer from the artificial object shown in Fig. 10.6.
It is a circle made of a homogeneous material with many small round holes
drilled through it. One additional rectangular piece of material was removed
from the circle to make it less symmetric. The absorption index of the mate-
rial was chosen in such a way that the maximum attenuation along a beam
was close to 50% of the input intensity.

In the simulations, the object was subject to five different experiments.
Their parameters are summarized in Table 10.2. First four experiments cor-
respond to the ideal situation of a very high beam intensity where the Poisso-
nian detection noise can safely be ignored. The last reconstruction simulates
more realistic conditions with 2000 counts per pixel in the open beam. Notice
that a relatively small number of rotations is chosen for all five experiments.
In this regime the inverse Radon transformation is expected to yield bad
results and the improvement of the maximum-likelihood tomography upon
the standard technique should be most prominent. This regime is also impor-
tant from the practical point of view. Doing more rotations implies a longer
measurement time and more radiation absorbed by a sample. The latter may
be an important factor if the imaging of biological samples is considered.
Provided the improvement of the reconstruction technique gives comparable
resolution with less data, imaging costs and damage done to a sample due to
radiation might be reduced.

Reconstructions from the simulated data are shown in Fig. 10.7 [46]. The
simulated data were first processed using the IDL imaging software (Research
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Fig. 10.7. Left panel: IDL reconstructions from the simulated data, for parameters
see Table 10.2. Right panel: ML reconstructions from the same data; the iterative
algorithm (10.24) and (10.27) has been used for reconstruction.

Systems Inc.) which implements the standard FBP algorithm (inverse Radon
transform), see the left panel in Fig. 10.7. This software is one of the indus-
trial standards in the computer assisted tomography. The same data were
then processed using the iterative algorithm based on the maximization of
the Poissonian likelihood function, see the right panel Fig. 10.7. In the ab-
sence of noise, see cases (a)-(d), the fidelity of a reconstruction depends on
two main factors—the spatial resolution of the detector, and the number of
rotations used. It is apparent from Fig. 10.7 that the latter factor is the more
important of the two. Very small number of angles cannot be compensated
by an increased spatial resolution of the detector, compare e.g. cases (c) and
(d), and reconstruction (d) is by far the worst one. However, ML tomogra-
phy is much less sensitive to the number of angles than the standard filtered
back-projection. Even the large rectangular hole in the object is hardly per-
ceptible in the IDL reconstruction (d) in Fig. 10.7, whereas it nicely shows in
the ML reconstruction from the same data. ML reconstructions are superior
to the standard ones also in cases (a)-(c); notice that the ML reconstruction
(c) that is based on as few as 20 different angles is nearly perfect.

Benefits of the ML tomography are fully revealed when the detected data
are noisy. This is case (e) in Table 10.2. Standard filtered back-projection
applied to noisy data faces serious difficulties. This is due to ill-posedness
of the Radon transformation where data are integrated with a singular filter
function. Obviously such deconvolution greatly amplifies any noise present in
the data. Having little or no prior information about the object it is difficult
to tell true details of the object from artifacts. ML tomography gives much
better results. Since noises are incorporated into the algorithm in a natural
and statistically correct way, artificial smoothing is not needed. Notice in
simulation Fig. 10.7e that the noisy data yields through the ML algorithm
a little distorted but otherwise clear image, unlike the corresponding very
noisy standard reconstruction. This is a nice feature of the intrinsically non-
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linear ML algorithm, which, in the course of reconstruction, self-adapts to
the registered data and always selects the most likely configuration.

10.3.4 Strongly Absorbing Materials: An Experiment

One specific application of neutron CT imaging is the quantitative analysis
and three-dimensional visualization of the 10B isotope distribution in boron
alloyed steel. Boron alloyed steel is used in nuclear engineering as neutron
shielding for the radioactive waste disposal equipment, such as components
for the compact fuel storage racks and transportation baskets. The main
demand on the sheets for these applications is, besides mechanical stability
and corrosion resistance, the largest possible thermal neutron attenuation,
which has to be uniform over the whole volume. The attenuation in the
steel depends mainly on the 10B isotope, which has a large attenuation cross
section for thermal neutrons σth(10B) = 3838.1(10)× 10−24cm2 [47].

Imaging of strongly absorbing samples suffers from the beam hardening
effect. The wavelength dependence of scattering cross section (10.17) causes
a spectral change of the neutron flux in the sample, where preferably low
energy neutrons are absorbed so that the remaining beam becomes richer
in high energy neutrons. Besides this effect, the following specific difficulties
occur with strong absorbing materials:

– The exposure time for one projection is several minutes and the total
measurement time for one tomographic data set lasts several hours. If
the data are analyzed with the FBP algorithm, one depends on a stable
operation of the neutron source and CCD detector.

– The low count numbers lead to increased statistical fluctuations which
get amplified in the FBP reconstruction.

– The imaging quality depends strongly on low background conditions. The
contribution of scattered thermal neutrons, fast neutrons, gammas, and
light penetration in the detector box has to be suppressed as far as pos-
sible.

– The stronger the attenuation in the sample, the more the result will in-
terfere with the choice of input parameters in the FBP routine.

All these reasons clearly favor ML statistical inversion over the determin-
istic FBP algorithm.

Let us show some examples of the tomographic investigations of strong ab-
sorbers that were performed at the 250 kW TRIGA reactor of the Atominsti-
tut in Vienna, where at a well-thermalized beamline, a neutron-tomography
facility had been implemented [48]. Surprisingly, neutron-tomography of
strong absorbers is still possible with weak beam intensities of about
105n/cm2s. High resolution camera optics with the nominal resolution of
80µm was used [48]. During the experiment, only a few neutrons per second
per pixel were registered. Naturally, the discrete character of the quantum
signal plays an important role at such low intensities.
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Fig. 10.8. Measured steel sample. This is a two component system, which consists
of an outer ring (∅ = 2 cm), partly filled with a second rod with 68% enlarged
boron content (∅ = 1 cm). Expected distribution of the absorption index in the
upper hollow (b) and lower filled (c) regions are also shown [30].

(a) (b)

Fig. 10.9. FBP reconstructions of the sample shown in Fig. 10.8. 50 different pro-
jections were used. (a) A typical reconstructed cut through upper region, where
instead of the second rod only an air hole is inside the ring; (b) a typical recon-
structed cut through the middle region, where the second steel rod with higher
boron content is inside the ring. The noise in the profile plots was suppressed by
averaging over several tens of reconstructed slices.

The measured sample, see Fig. 10.8 was a two-component system consist-
ing of a ring with an outer diameter of 2 cm and a hole of 1 cm diameter. The
hole was partially filled with a second rod of 1 cm diameter with somewhat
larger 10B content.

First we will show some typical results obtained with the standard FBP
algorithm, see Fig. 10.9. Notice, that despite a large number of projections
(angles) that were used for the inversion, the reconstructions are still rather
noisy. Also, the reconstructed absorption profiles are far from the expected
ones. This is caused partly by the previously mentioned beam hardening
effect that was not taken into account here.

Figure 10.10 illustrates the usefulness of the ML technique in cases where
only a few projections are available. The reconstructions are based on the
same experimental data as the corresponding Figs. 10.9a and 10.9b. However,
the number of projections was reduced from 50 to just 10 (!) projections. In
this extreme case the filtered back-projection fails completely. It is interesting
to notice that although no correction of the beam hardening effect was done
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(a)

(b)

Fig. 10.10. Reconstructions of the sample of Fig. 10.8 from only 10 (!) projections;
panels (a) and (b) correspond to slices shown in Figs. 10.8b and 10.8c, respectively.
Left: ML reconstructions; middle: ML profiles; right: standard FBP interpretation
of the same data is shown for comparison.

during the ML reconstruction, the reconstructed density profiles resemble the
true density profiles more closely than the corresponding FBP profiles shown
in Fig 10.9. Also the quality of the ML reconstruction from 10 projections
is not inferior to FBP results obtained from data sets that are five times
larger. A proper statistical treatment extracts more information from the
measured data than the standard reconstruction methods do. In this way, the
measurement time can be significantly reduced without loss of resolution. Still
better results can be expected provided the beam hardening is incorporated
into the physical model.

10.4 ML Neutron Phase Tomography

10.4.1 Experimental Setup

The absorption tomography discussed in the previous section provides only
partial information about the object of interest. Optical properties of ob-
jects are more completely described by the distribution of the complex index
of refraction n(x, y), whose real part called simply index of refraction, and
imaginary part called index of absorption are responsible for the phase shift
and absorption of the illuminating beam, respectively. It is clear that for the
3D visualization of the index of refraction some kind of interferometric tech-
nique is needed. In a sense, phase tomography is a combination of both the
previously mentioned inverse problems — the phase estimation discussed in
Sect. 10.2 and tomographic imaging discussed in Sect. 10.3.
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Fig. 10.11. Scheme of an nPCT experiment.

As has been already mentioned, in neutron optics one is often confronted
with low count numbers because the phase space density of present neutron
beams is 30 orders of magnitude below that of laser beams and many or-
ders below X-ray sources. This intensity problem has dramatically arisen in
the recently developed neutron phase contrast tomography (nPCT) [49].
PCT was originally invented in X-ray tomography with much higher coher-
ent intensities available [50–52]. In order to utilize nPCT it is necessary to
develop an advanced reconstruction technique, which can be applied to very
low count numbers. For instance, the typical count number in present nPCT
setups is around 200 n/2h in a 50 × 50〉µm2 pixel. In principle, focusing
techniques, e.g. asymmetric Bragg reflections, can enhance the density of
quasi-monochromatic neutron beams, but such hypothetic gains will be used
to reduce the measurement time rather than to raise the count numbers.
Therefore the low numbers of detected neutrons have to be accepted as the
limiting factor of nPCT.

A strong motivation for developing nPCT is its extreme sensitivity, which
is at least three orders of magnitude higher than in the conventional absorp-
tion tomography. The nPCT method proves its strength in extreme applica-
tions where other methods fail: (i) 3D investigation of non or weak-absorbing
substances, (ii) analysis of isotope distributions with high sensitivity, (iii) in-
vestigation of magnetic domains in bulk materials [53], and (iv) energy and
momentum exchange free analysis of magnetic (axial) and scalar potentials.

The experimental setup of nPCT is schematically shown in Fig. 10.11.
The sample is inserted into one arm of a perfect crystal interferometer while
an object of known characteristics placed in the other arm compensates the
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large overall phase shift introduced by the thick sample. The output beam
is then registered by a CCD camera with the spatial resolution of 50µm.
Like in the absorption tomography, the sample is rotated around the vertical
axes and up to several tens of scans are registered. Angle ϕ together with
the position h of a CCD pixel specify the path of the particles registered by
that pixel through the sample, see Fig. 10.5. For the sake of brevity, they will
again be represented by a single collective index j.

To get an unambiguous value of the reconstructed phase, a set of auxiliary
phases δj , controlled by the experimenter, is needed for the estimation. They
are provided by an auxiliary phase shifter, see Fig. 10.11, and the resulting
interferograms are simply called scans or phase projections [54]. In nPCT
their number should be chosen as less as possible so as to minimize the
measurement time.

The conceptual difference between the standard deterministic and ML
statistical inversions can be nicely illustrated on the example of nPCT. Stan-
dard nPCT consist of two separate steps: First, each set of interferograms is
processed to get the distribution of the total phase accumulated in the j-th
scan; this total phase is an integral of the unknown index of refraction along
the j-th beam path. In this way, the original problem is reduced to the con-
ventional tomographic imaging, and hence the inverse Radon transformation
of the accumulated phase yields the distribution of the index of refraction
within the object.

This straightforward procedure suffers from all known shortcomings of the
standard FBP routine, which are further accented in nPCT by still smaller
measured intensities and thus increased fluctuations. Additional problems
arising in the standard nPCT are caused by using the accumulated phases
as the starting point for tomographic reconstruction. Due to the high phase
sensitivity it is very likely that some of the projected (accumulated) phases
will exceed 2π phase interval. The correction of these “phase jumps” becomes
virtually impossible if the data are very noisy.

Most of these problems can be avoided when the ML statistical inver-
sion is adopted. Here, the object is decomposed into many elementary cells
each shifting the phase of the overlapping beam by only a fraction of the 2π
phase window. Thus the phase value of each cell is uniquely defined. Then
we look for such distribution of those elementary phases that is most likely
from the point of view of registered data. In this way, phase estimation and
tomographic reconstruction are done simultaneously.

10.4.2 ML Reconstruction Algorithm

Let us first discuss phase estimation in the context of nPCT. Consider an
interferometric measurement with mean intensity N and amplitude V . The
interference pattern,

n̄α = N + V cos(θ + δα), (10.29)
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will be scanned with L different settings of the auxiliary phase shifter uni-
formly distributed over the 2π phase window,

δα = α
2π
L
, α = 0, 1, . . . , L− 1. (10.30)

Interference pattern (10.4) is just a special case of (10.30) corresponding to
L = 4 phase shifts.

When the measurement is over, all the accumulated information can be
expressed as an a-posteriori likelihood function. It is essential that the like-
lihood includes all measured data, and, together with the physical model for
the detection probabilities, all experimental evidence. Thus, the likelihood is
the optimum starting point for a complete tomographic analysis.

Ideally, the only fluctuating quantity in the tomographic measurement
is the counted number of particles. The fluctuations produced by thermal
sources such as nuclear reactors are well described by the Poissonian statistics,
which was confirmed in several experiments [45,55]. Since the detections with
different settings δα are independent, the joint probability of registering data
n is simply a product

L =
∏
α

(
n̄nα
α e

−n̄α/nα!
)
. (10.31)

This is also the likelihood of the given value θ of the unknown phase shift.
In accordance with the maximum-likelihood principle we will take the

maximum likely phase as the inferred value of θ. Since the amplitude V and
the total mean number of particles N are not under experimenter’s control
and may vary from one pixel to another, these parameters should be estimated
together with phase. Their values are found by maximizing function (10.31),
or its logarithm. The latter in the case of uniformly distributed auxiliary
phase shifts simplifies to

logL ∝
∑
α

nα log[N + V cos(θ + δα)]−NL+ const.. (10.32)

Now it is convenient to introduce new variables x = V cos θ and y = V sin θ.
We are looking for the point where the likelihood has zero slope: ∂L/∂x =
∂L/∂y = ∂L/∂N = 0. From (10.32) we get the following extremal equations:

∑
α

nαX
N + x cos δα − y sin δα

= 0, X = (cos δα, sin δα,1). (10.33)

In general, these equations must be solved numerically. Closed-form solution
can be found only in some special cases such as α = 3 and α = 4.

A particularly simple solution exists for three auxiliary phases, when the
maximum of the Poissonian likelihood (10.31) coincides with the maximum
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of its Gaussian approximation,

L ∝ exp
[
− 1

2σ2

∑
α

(nα − n̄α)2
]
, (10.34)

yielding

x =
2
L

2∑
α=0

nα cos(−δα), y =
2
L

2∑
α=0

nα sin(−δα), N =
1
L

2∑
α=0

nα. (10.35)

These, going back to the original variables, can be written in the following
compact form [19]

V = 2|R|/L, eiθ = R/|R|, (10.36)

where

R =
2∑
α=0

nαe
−iδα . (10.37)

This quantity can be interpreted as the first coefficient of the discrete Fourier
transformation of the registered counts nα [23].

Therefore it is particularly useful to use three auxiliary phase shifts, for
in that case, the optimal phase estimation is easily handled by means of the
simple formula (10.36).

In nPCT, phase sensitive data njα are registered. Subscripts j and α
label scans (i.e. pixels of the CCD camera and rotations of the sample) and
auxiliary phases, respectively. As each scan contributes likelihood (10.34) and
different scans are independent observations, the total log-likelihood reads

logL ∝
∑
j

∑
α

(njα − n̄jα)2 + const., (10.38)

where the mean number of particles detected in the j-th projection is given
by

n̄jα = Nj + Vj cos(θj + δα + θrj ). (10.39)

Here θj is the total phase accumulated along the j-th projection, θj =∑
i cjiµi. Coefficients cji are the overlaps between the j-th projection and

the i-th elementary cell of the reconstruction mesh, as before, see Fig. 10.5,
and θrj are the reference phases describing the phase properties of the empty
interferometer. The latter can be estimated from the same set of projections
measured without the sample. Likelihood (10.38) is to be maximized over the
distribution µi of the optical density of the sample.
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Fig. 10.12. Simulated phase tomography with a weak neutron signal. The maximal
accumulated θj in the three cylinders making up the object (a) are 150 deg., 50
deg, and 30 deg for white, light gray, and dark gray, respectively. The mean count
numbers per pixel and visibilities are (b) N = 450, V = 33%; (c) N = 150,
V = 33%; (d) N = 30, V = 33%.

In neutron phase imaging, µ is composed of the sum of all scattering
length densities (Nb) of the isotopes contained in the sample:

µ = −λ
∑
l

Nl bl = −λ
∑
l

NAρl bl
Al

(10.40)

Nl represents the number of isotopes l per unit volume, ρl the isotope density,
NA the Avogadro constant (6.02214199(47)×1023 mol−1) and Al the atomic
weight. Parameter λ is the mean wavelength of the quasi-monochromatic
beam, and bl the coherent scattering length, which is a constant interaction
parameter. Most isotopes have a positive coherent scattering length but some
are known with negative bl. The coherent scattering length is defined positive
for repulsive optical potentials V̄ > 0 with the index of refraction less than
unity: n =

√
1− V̄ /E = 1−λ2Nbl/2π. The existence of positive and negative

phase shifts is a speciality of neutron optics and can be utilized for fading
out unwanted phase contributions.

A necessary condition for the maximum of logL,

∂logL
∂µi

= 0, ∀µi, (10.41)

yields on using (10.38) and (10.39) the following set of extremal equations,

µi = µi

∑
j Vjcji sin θjIm{Rj}∑
j Vjcji cos θjRe{Rj}

. (10.42)

These can be solved numerically by repeated iterations.
Figure 10.12 shows a simulation of a nPCT experiment with various in-

tensities and visibilities of the illuminating beam. The artificial object was
scanned from 31 different angles with a resolution of 81 pixels.
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(a) (b) (c)

Fig. 10.13. Simulated phase tomography with a weak neutron signal, N = 150 and
V = 33%. The maximal accumulated θj in the object is 4.2π rad. (a) the artificial
object; the ratio of the index of refraction in the white, light gray, dark gray, and
black cylinder is 1 : 0.8 : 0.5 : 0.2. (b) ML reconstruction from 31 angles and 81
pixels. (c) ML reconstruction from 21 angles and 41 pixels.

Case (d) is the most interesting one. Here the incident beam has such a
low intensity that its Poissonian fluctuations are comparable to the intensity
changes caused by the maximal phase shifts in the light gray and dark gray
cylinders. The useful phase information is thus almost lost in the background
noise, yet all three cylinders nicely show in the reconstruction.

Another example of the ML phase tomography is shown in Fig. 10.13.
The parameters of the simulated experimental setup are comparable to that
of Fig. 10.12 but now the maximal phase shift in the sample is well in excess of
4π radians. A priori knowledge about the shape and high index of refraction
of the white container could be easily incorporated into the reconstruction,
and as a result the internal structure of the object was nicely resolved.

A similar isotope gauge, a mixture of S33+S34 and H2O+D2O isotopes,
has recently been investigated at the nPCT setup ILL-S18 in Grenoble in
order to verify the sensitivity and spatial resolution of present nPCT.

10.4.3 Reference Phase Measurement

No interferometers are perfect. Already an empty interferometer shows a
nonuniform transversal distribution of phase difference between its two arms.
To get rid of this background phase the measurement is done in two steps:
with and without the sample. The most simple way how to subtract the back-
ground phase is to perform two separate phase reconstructions, then subtract
the reconstructed background phase from the reconstructed phase of the sam-
ple. This procedure is simple, but not optimal. It is not difficult to see why.
The inspection of (10.42) shows that the reconstructed indexes of refraction
µi depend on the visibilities Vj of the registered interference fringes. This is
natural since the reconstruction is a synthesis of many phase measurements
and phases measured under higher visibility are less affected by the noise
and hence more credible. For the same reason the phase introduced by an
empty interferometer is measured more accurately that phase introduced by
interferometer and sample. This additional knowledge should be incorpo-
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rated into the reconstruction routine. Denoting θ = θs + θr the total phase
measured with the sample, which is the sum of the reference phase and phase
introduced by the sample θs, and using (10.36) and (10.37) in (10.34) we can
rewrite the posterior distributions of θ and θr in the following compact form:

P (θ) ∝ eV cos(θ−θNFM) (10.43)
P (θr) ∝ eVr cos(θr−θr,NFM). (10.44)

NFM denotes Gaussian (semi-classical) phase estimates that maximize pos-
terior distributions (10.43) and (10.44), which are also known as von Mieses
normal distributions defined on the unit circle. As has been mentioned above
their widths are determined by visibilities. As we are interested only in phase
θs introduced by the sample alone, let us calculate its posterior distribution,

P (θs) =
∫∫

P (θ)P (θr)δ(θ − θr − θs)dθrdθ. (10.45)

The double integrations can be easily carried out, and the result expressed
in terms of the Bessel function I,

P (θs) ∝ I0
(√

V 2 + V 2
r + V Vr cos(θs − θ−,NFM)

)
, (10.46)

where θ−,NFM = θNFM − θr,NFM. Optical density of the sample can now be
estimated by maximizing the posterior distribution (10.46) with respect to
indexes µi. Such procedure accounts for the reference phases in an optimal
way.

10.4.4 Beyond Phase Tomography

Phase tomography discussed in the previous section is a simple example of the
quantum-process tomography. In this case the process is a unitary operation
that can be represented by a 2D rotation. The rotations vary in space, and the
detected particles probe their spatial distribution via quantum interference.

Obviously, to “see” more complicated transformations, more complex
probes are needed. It would be logical to proceed the exposition with the
case of spin 1/2 systems whose Hilbert space could be associated with the
3D Bloch sphere. The synthesis of measurements - projections, is capable
to determine an unknown quantum state, and such procedure posses all the
features of quantum tomography of the internal spin state. ML approach ac-
cording to the general receipt given in chapter by Hradil et al. in this volume
can be straightforwardly applied here. This was worked out explicitly in [56]
for the representation of the spin using the polarization vector.

Since magnetic momentum of particles is coupled to the magnetic field,
spin state tomography can be used as a means e.g. for non-destructive in-
vestigations of the magnetic domains of bulk materials. Here the beam of
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polarized neutrons goes through the specimen interacting with its magnetic
domains. Due to this interaction, the spin state of neutrons changes, and this
depolarization can be utilized for the visualisation of the magnetic domains in
the specimen just like in the case of phase tomography. However, the probed
operations are now represented by rotations in 3D space, which unlike 2D
rotations in phase tomography form a non-Abelian group of transformations.
Consequently, the tensorial character of the corresponding depolarization ob-
servable together with the non-commutativity of rotation matrices makes the
analysis rather involved. Though this is a challenging question with poten-
tial interesting applications, at present no analytical solution of this inverse
scattering problem is known. Up to now there are several approaches based
on deterministic techniques, but ML solution has not been devised yet.

10.5 Maximum-Likelihood Characterization
of Photonic Qutrits

Apart from using spin 1/2 particles as probes for sensing and visualization of
physical fields they can also be utilized for the physical realization of qubits in
the newly emerging field of quantum information processing. Much attention
has recently been turned to exploring the possibilities of applying quantum
systems in communication and computing protocols. Usually, these protocols
use the information encoded in such bidimensional systems. Nevertheless,
some proposals show that higher dimensional systems are better suited for
some purposes [57–64]. On a more fundamental level, higher dimensional
spaces provide with counter-intuitive examples of the relationship between
the quantum and the classical information, which cannot be found in two-
dimensional systems [65].

Recently, some experimental implementations of higher dimensional quan-
tum systems have appeared. Given the high technical status of photonic
technology and the fact that photons will for a long time remain the only
means for quantum communication, it is desirable to have qunits (systems
with n different orthogonal states) to be carried by photons. Encoding qunits
with photons has already been experimentally demonstrated using interfer-
ometric techniques, with time-bin schemes [66] and superpositions of spatial
modes [67]. Up to now, the only non-interferometric technique of encoding
qunits in photons is using the orbital angular momentum (OAM) of the
photons or, equivalently, the transversal modes [68–74].

Before we apply ML technique to the reconstruction these higher dimen-
sional states let us first review some basic facts about the quantum states of
orbital angular momentum degrees of freedom of light.

On theoretical grounds, one convenient basis which describes the transver-
sal modes of a light beam fulfilling the paraxial approximation is the
Laguerre-Gaussian (LG) functions basis: LGp,m(x, y). Here m is the order
of the phase dislocation characteristic of this set of functions and it accounts
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directly for the orbital angular momentum of the Laguerre-Gaussian mode
in units of � [75–77]. The other parameter p is a label which is related to the
number of radial nodes of the mode and (x, y) refer to any point in a plane
perpendicular to the beam propagation direction. The LG functions form a
complete and orthonormal basis for any complex function in the transveral
plane.

Holographic techniques, among other schemes, can be used to transform
LG modes [78,79]. Conveniently prepared holograms change the phase struc-
ture of the incoming beam, adding or removing the phase dislocations related
with the orbital angular momentum. Whereas optical single mode fibers act
as a filter for all higher LG modes, i.e. only the LG00 can be transmitted, the
combination of holograms and single mode fibers project the incoming photon
into different states. In this way we can define the basis of the experimentally
accessible states as:

〈x|0〉 = LG0,0(x, y), |m〉 = Hm(0)|0〉, (10.47)

where the vector |0〉 represents the effect of using only a single mode fiber to
detect the photon, x is a shortcut to represent any point in the transversal
space5, m is a positive or negative integer, and Hm(0) is the operator which
describes the action of the m-th order hologram when it’s centered, relative
to the fiber. Explicitly, the expression of this operator is

〈x1|Hm(0)|x2〉 = exp(−im arctan(
y1
x1

))δ(x1 − x2, y1 − y2). (10.48)

Albeit by construction, any of the modes in our basis posses orbital an-
gular momentum of m, they are not pure LG-modes. However, they can be
described as coherent superpositions of different modes with the same m, but
different p’s. In this sense, the base we have constructed in (10.47) is orthonor-
mal6, although not complete, since it does not expand the complete LG basis.
In the following we refer to all modes belonging to the subspace (10.47) as
“inner” modes and the rest of the modes will be addressed as “outer” modes.

Thus, any displaced hologram and, in general, any linear operator which
acts on our Hilbert space can be expressed like,

Hm(a, b) =
+∞∑
i=−∞

ci(a, b)Hi(0) + γ(a, b)Γ, (10.49)

where a, b are the displacements of the hologram relative to its centered posi-
tion. The operator Γ accounts for the possibility that the displaced hologram

5 The transversal position of a photon can only be accounted under the paraxial
approximation.

6 The normality of the functions comes from the fact that 〈0|0〉 = 1 and that the
hologram operations are unitary.
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Fig. 10.14. Experimentally measured transfer of the |0 > mode to “outer” modes
depending on the position of the hologram. The solid line represents the measured
normalized value of 1 −∑+1

i=−1 | < i|Hm(x, 0)|0 > |2, where x is the position of the
hologram in the x-axis. Other |m >modes only contribute slightly to this value. The
dashed lines represent the normalized measured values of | < 0|Hm(x, 0)|0 > |2 and
| < 1|Hm(x, 0)|0 > |2, and are presented for the sake of comparison. The maximum
transfer to “outer” modes happens around the position where | < 0|Hm(x, 0)|0 >
|2 = | < 1|Hm(x, 0)|0 > |2.

is performing transformations between “outer” and “inner” states, i.e. trans-
forming any “inner” state into an “outer” one, or the other way round.

The value of γ can be estimated by

|γ(a, b)|2 ∼ 1−
+∞∑
i=−∞

|〈i|Hm(a, b)|0〉|2, (10.50)

which is a feasible observable. In Fig. 10.14 we present an example of such
a measurement. The data was taken by preparing a photon in the |0〉 state,
and transforming its state by means of a hologram of order m = +1, which
could be displaced along the horizontal x-axis. Afterwards, the transformed
photon was projected onto three dimensional OAM Hilbert space consisting
of | − 1〉, |0〉 and |1〉. The other |m〉 states have a much smaller contribution
than the one due to “outer” states. In Fig.10.14 there are two positions
where the contribution of the “outer” modes is specially high. These positions
roughly correspond with an equal superposition of the two higher modes, i.e.
|c0| = |c1|.

10.5.1 Experimental Set-Up

The experimental set-up is shown in Fig. 10.15. A 351nm wavelength Argon-
ion laser pumps a 1.5−mm-thick BBO (β-barium-borate) crystal cut for
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Fig. 10.15. Experimental set-up. A 351nm wavelength laser pumps a BBO crystal.
The two generated 702nm down-converted photons are send to Alice and Bob’s sides
respectively. Before being detected each photon propagates through four different
holograms.

Type I phase matching condition. The crystal is positioned to produce down-
converted photons at a wavelength of 702nm emitted at an angle of 4◦ off the
pump direction. These photons are directly entangled in the orbital angular
momentum degree of freedom. In the actual protocol, an observer which we
call Alice, possess the source and can manage one of the downconverted pho-
tons, meanwhile the other downconverted photon is sent to another observer,
which, following a long tradition, we call Bob. Before being detected, each of
the two down-converted photons traverses four holograms which we divide in
two sets. Each set consists of one hologram with charge m = 1 and another
with charge m = −1. The first set of holograms provides the means of a
rotation in the three dimensional space expanded by the states | − 1〉, |0〉,
and |1〉. The second set, together with a single mode fibers and a detector,
act as projectors onto the three different basis states.

In the experiment, the tomographic reconstruction of Bob’s received
qutrit state was realized in two independent steps trying to avoid any bias
from ‘a priori’ information. First, the team from University of Vienna pro-
jected the photons in Bob side. The minimum number of measurements to
reconstruct the three dimensional state is 9. This number increases to 121
because of our enlargement to a 11-dimensional Hilbert space. In the end,
to explode the power of the ML reconstruction and to minimize errors, the
number of different projections was set around 2400.

As will be shown below in all the cases, the reconstructed three dimen-
sional state was a coherent superposition of the three “inner” vectors, which
relative weights and phases could be effectively controlled. The noise and
incoherence corresponded to a probability of less than 2%.
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10.5.2 Experimental Measurements

Prior to the measurement taking procedure, the rotating set of holograms was
analyzed to properly describe the transformation done. From the description
of each single hologram, we could express the action of each transformation
set in the following way:

〈x1|H1(a+1, b+1)H−1(a−1, b−1)|x2〉 = exp(−i arctan(
y1 − a1

x1 − b1
)

+ i arctan(
y1 − a−1

x1 − b−1
)− ikxx1 − ikyy1)δ(x1 − x2, y1 − y2),

(10.51)

where kx and ky are free parameters which depend on the alignment proce-
dure, and a±1, b±1 represent the displacements of the two holograms. Each
set of holograms is then described completely by eight parameters: the num-
ber of maximum coincidences, the width of the beam, four numbers to de-
termine the centered position of each hologram and the two parameters kx
and ky.

The estimation of these eight parameters was performed by fitting four
different experimental curves as shown in Fig. 10.16. The data which con-
formed the curves were taken by sending to Bob a photon prepared in the
|0〉 state. Bob fixed one of his holograms in one determined position and per-
formed a scan on one of the axis of the other hologram. The resulting state
was again projected to the |0〉 state, i.e. one of this curves can be described
with the following number 〈0|H1(x, 0)H−1(1, 1)|0〉 as a function of x. Each
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Fig. 10.16. Curve fitting for a set of holograms. First row and second row corre-
spond to a hologram of charge m = +1 and m = −1 respectively. Left and right
columns correspond to scans of the x and y axis respectively. Circles are experi-
mental measurements. Solid line correspond to the estimated result using (10.51)
and |0〉 as initial and final states.
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of the four curves corresponds to the scan of the four different axis of the
holograms.

The projections measurements were made by moving the set of two holo-
grams into around 2400 different positions and counting the number of coinci-
dent detections which took place in two seconds. The complete time for each
of this measurements was around six hours, due mainly to the software to
access the different motors. After this time some slight misalignments where
detected, which could be compensated mainly due to the large number of
different projections taken and the reconstruction process

10.5.3 Results

The registered data were processed using the maximum-likelihood reconstruc-
tion algorithm. Notice that the measurement is incomplete,

∑
j |j〉〈j| �= 1,

where |j〉 = H1(a
j
+1, b

j
+1)H−1(a

j
−1, b

j
−1)|0〉 are the projections done. This has

been taken into account, see Hradil et al. in this volume for more details.
From the technical point of view, the ML reconstruction was done by

iterating the extremal equation [80],

RρR = GρG, R =
∑
j

nj
pj
|j〉〈j|, G =

∑
j nj∑
j pj

∑
j

|j〉〈j|, (10.52)

starting from the maximally mixed state Here nj is the number of photon
pairs found in state |j〉 and pj = Tr{|j〉〈j|ρBob} are the corresponding prob-
abilities.

Let us mention that though the reconstruction is done on the full 3 + 8
dimensional Hilbert space spanned by the “inner” and “outer” states, we are
interested only in the former subspace. Therefore all the reconstructed states
are projected to this subspace to simplify the discussion.

As we have already mentioned, different projections done by Alice trans-
late through the entanglement to different state preparations on Bob’s side.
Four such remote preparations are shown in Fig. 10.17. All of them were
found to be very nearly pure states, their largest eigenvalues and correspond-
ing eigenvectors being (a) λmax = 0.99, |emax〉 = (0.31+0.61i)|0〉+0.71|−1〉;
(b) λmax = 0.97, |emax〉 = (0.2 + 0.16i)|0〉+ 0.68|1〉+ (0.68− 0.05i)| − 1〉; (c)
λmax = 0.99, |emax〉 = 0.65|0〉+ (−0.18− 0.52i)|1〉+ (−0.18− 0.5i)| − 1〉; (d)
λmax = 0.99, |emax〉 = (−0.54+0.2i)|0〉+0.58|1〉+0.58i|−1〉. In case (a) Alice
tried to prepare an equal-weight superposition of |0〉 and | − 1〉 basis states.
Utilizing the conservation of the orbital momentum in downconversion, this
was easily done by projecting her qutrit along the ray |0〉+ |1〉: Her hologram
with the positive charge was taken out of the beam path and the center of
the other other one was displaced with respect to the beam by a calculated
translation vector. In case (b) the remotely prepared state supposed to be an
equal-weight superposition of | − 1〉 and |1〉 states. Here both holograms had
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Fig. 10.17. Results of quantum state tomography applied to three different re-
motely prepared states of Bob’s qutrits. Left and middle panels show real and
imaginary parts of the reconstructed density matrices; right panels show the abso-
lute values of those elements for getting picture of how large the contributions are
of the three basic states.

to be used to remove the unwanted |0〉 contribution via destructive interfer-
ence. Due to the greater complexity of this operation the acutually prepared
state was found to still contain a small contribution of the |0〉 component. In
cases (c) and (d) the goal was to prepare an equal-weight superpositions of
all three basic “inner” states with different phases. The tomography reveals
that we have come very close to achieving this goal. The |0〉 component of
state (c) had only a slightly greater weight than the other two, while state
(d) was almost perfect.
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10.6 Maximum-Likelihood Quantum
Homodyne Tomography

In the final section of this chapter we discuss applications of the likelihood
maximization technique to quantum homodyne tomography. Homodyne char-
acterization of a quantum state of an optical mode is based on multiple phase-
sensitive measurements of its electric field. The field quantum noise statistics
collected at various optical phases provide enough information to reconstruct
the density matrix of the ensemble of interest.

Since its proposal [82] and first experimental implementation [83] in the
early 1990s, quantum homodyne tomography has become a robust and ver-
satile tool of quantum optics and has been applied in many different ex-
perimental settings. As any statistical method, it is suitable for combining
with the likelihood maximization technique. Indeed, a homodyne measure-
ment run yields a set of statistical data, whose likelihood with respect to a
particular quantum ensemble can be evaluated easily. The goal of this section
is to describe the way of finding the hypothetical ensemble which maximizes
the probability of acquiring a particular data set. In writing this section we
have assumed the reader to be familiar with the basics of quantum homo-
dyne tomography; otherwise we recommend to refer to chapter by Raymer
and Beck of this volume for a detailed review.

We consider a homodyne tomography experiment performed on an optical
mode prepared repeatedly in the same quantum state ρ̂. In an experimental
run one measures the field quadrature at various phases of the local oscillator.
Each measurement is associated with the observable X̂θ = X̂ cos θ + P̂ sin θ,
where X̂ and P̂ are the canonical position and momentum operators and θ
is the local oscillator phase.

For a given phase θ, the probability to detect a particular quadrature
value x is given by

prθ(x) = Tr[Π̂(θ, x)ρ̂], (10.53)

where Π̂(θ, x)= |θ, x〉〈θ, x| is the projector onto this quadrature eigenstate. In
the Fock (photon number state) basis, the projection operator is expressed as

Πmn(θ, x) = 〈m| Π̂(θ, x) |n〉 = 〈m|θ, x〉 〈θ, x|n〉 , (10.54)

where the overlap between the number and quadrature eigenstates is given by
the well known stationary solution of the Schrödinger equation for a particle
in a harmonic potential:

〈m|θ, x〉 = eimθ
(

2
π

)1/4
Hn(x)√
n!

exp(−q2), (10.55)

with Hn denoting the Hermite polynomials7.
7 The additional phase factor eimθ originates from the properties of the phase-space

rotation operator [81] Û(θ) = e−iθn̂. From Û†(θ)âÛ(θ) = âe−iθ we find for the
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Consider an experimental run consisting of N field quadrature measure-
ments at various local oscillator phases θi. For a given ensemble, the likeli-
hood of obtaining a specific set of results {xi} is the product of individual
probabilities (10.53) for each result

lnL =
∑
i

ln prθi
(xi). (10.56)

We now solve the inverse problem of estimating the ensemble ρ̂ that max-
imizes the likelihood of a given data set {θi, xi} by means of the iterative
algorithm described in chapter by Hradil et al.. We apply the iteration oper-
ator

R̂(ρ̂) =
∑
i

Π̂(θi, xi)
prθi

(xi)
, (10.57)

to the density matrix according to (3.40) of chapter by Hradil et al. so each
step preserves the positivity of the density matrix:

ρ̂k+1 = N
[
R̂(ρ̂k)ρ̂kR̂(ρ̂k)

]
, (10.58)

where N denotes normalization to a unitary trace.
In practice, the iteration algorithm is executed in the photon number

(Fock) representation. Since the Hilbert space of optical states is of infinite
dimension, the implementation of the algorithm requires its truncation so the
Fock terms above a certain threshold are excluded from the analysis. This
assumption conforms to many practical experimental situations in which the
intensities of fields involved are a priori limited.

We note that the scheme above does not involve evaluating marginal dis-
tributions, i.e. histograms of the quadrature data prθ(x) associated with par-
ticular phases. Elimination of this intermediate step from the reconstruction
scheme allows one to avoid approximating the phase and quadrature values
and thus further enhance the accuracy of the method.

It is instructive to compare the maximum likelihood quantum state esti-
mation with the traditional methods: reconstruction of the Wigner function
by means of the inverse Radon transformation [81] and evaluation of the

density matrix using quantum state sampling (see Raymer and Beck in this
volume and [84, 85]). Figure 10.18 shows application of these two technique
to the experimental data from [86]. The data set consists of 14152 quadra-
ture samples of an ensemble approximating a coherent superposition of the
single-photon and vacuum states.

The reconstruction shown in Fig. 10.18 reveals the advantages of the
ML technique in comparison with the standard algorithm. First, the finite

quadrature operator Û†(θ)X̂Û(θ) = X̂θ and for its eigenstate |θ, x〉 = Û† |0, x〉.
From the first and last relations above, we obtain 〈m|θ, x〉 = eiθm 〈m|0, x〉. The
quantity 〈m|0, x〉 is the energy eigenwavefunction of a harmonic oscillator.
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Fig. 10.18. Estimation of an optical ensemble from a set of 14152 experimental
homodyne measurements [86] by means of the inverse Radon transformation (a)
and the likelihood maximization algorithm (b). The Wigner function and the di-
agonal elements of the reconstructed density matrix are shown. The inverse Radon
transformation in (a) was performed by means of the filtered back-projection al-
gorithm with the cutoff frequency of 6.3. The statistical uncertainties in (b) were
determined by means of a Monte-Carlo simulation (see text).

amount and discrete character of the data available leads necessarily to statis-
tical noise which prevents one from extracting complete information about a
quantum state of infinite dimension. To deal with this issue, both techniques
apply certain assumptions on the ensemble to be reconstructed. While the
ML algorithm truncates the Fock space, the filtered back-projection imposes
low pass filtering to the Fourier image of the Wigner function8, i.e. assumes
the ensemble to possess a certain amount of “classicality” [82]. The latter
assumption is dictated by mathematical convenience and is much less phys-
ically founded than the former. The ripples visible in the Wigner function
reconstruction in Fig. 10.18(a) are a direct consequence of statistical noise
and are associated with the unphysical high number terms in the density
matrix. Such ripples are typical of the inverse Radon transformation [88].

8 The pattern function reconstruction of the density matrix is free form this draw-
back as it does not involve spectral filtering and relies on truncating the Fock
space instead.
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Second, the back-projection algorithm does not impose any a priori re-
strictions on the reconstructed ensemble. This may lead to unphysical fea-
tures in the latter, such as negative diagonal elements of the density matrix
in Fig. 10.18(a). The ML technique, on the other hand, allows to incorporate
the positivity and unity-trace constraints into the reconstruction procedure,
thus always yielding a physically plausible ensemble [89,90].

A third important advantage of the ML technique is the possibility to
incorporate the detector inefficiences. In a practical experiment, the pho-
todiodes in the homodyne detector are not 100% efficient, i.e. they do not
transform every incident photon into a photoelectron. This leads to a distor-
tion of the quadrature noise behavior which needs to be adjusted for in the
reconstructed ensemble.

A common model for an homodyne detector of non-unitary efficiency η
is a perfect detector preceded by a fictitious beam splitter of transmission
η. The reflected mode is lost so the transmitted density matrix undergoes a
so-called generalized Bernoulli transformation [81]:

〈m| ρ̂η |n〉 =
∞∑
k=0

Bm+k,m(η)Bn+k,n(η) 〈m+ k| ρ̂0 |n+ k〉 , (10.59)

where ρ̂0 and ρ̂η are the density matrices of the original and transmitted

ensembles, respectively, and Bn+k,n =
√(

n+k
n

)
ηn(1− η)k. Under these cir-

cumstances the probability (10.53) of detecting a quadrature value x becomes

prηθ(x) = 〈θ, x| ρ̂η |θ, x〉 (10.60)

=
∞∑

m,n=0

∞∑
k=0

Bm+k,m(η)Bn+k,n(η) 〈n|θ, x〉 〈θ, x|m〉 〈m+ k| ρ̂0 |n+ k〉 ,

so the projection operator Π̂(θ, x) becomes replaced by a POVM element
given by [91]

Êη(θ, x)=
∑
m,n,k

Bm+k,m(η)Bn+k,n(η) 〈n|θ, x〉 〈θ, x|m〉 |n+ k〉 〈m+ k| . (10.61)

Aware of the homodyne detector efficiency η, one runs the iterative algo-
rithm (10.57, 10.58) and reconstructs the original density matrix ρ̂0.

The performance of this technique is illustrated by Fig. 10.19 showing
the reconstructed photon statistics of a coherent state measured with an
inefficient detector. The estimated photon number distribution represents
correctly the original state, in contrast to that obtained via the quantum
state sampling followed by the inverted Bernoulli transformation [92].

Banaszek [93] has proposed an elegant modification of the ML state esti-
mation method, applicable specifically to the evaluation of the Wigner func-
tions. First, we notice that the Wigner function in the origin of the phase
space can be determined using the diagonal elements of the density matrix
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Fig. 10.19. (courtesy K. Banaszek, Oxford) Loss corrected reconstruction of the
photon number distribution of an α = 1 coherent state from 105 simulated ho-
modyne data samples with the detector quantum efficiency η = 0.85. Filled circles
represent the maximum likelihood estimation, hollow diamonds represent the quan-
tum state sampling reconstruction followed by an inverse Bernoulli transformation.

in the Fock basis [94]:

W (0, 0) =
∞∑
n=0

(−1)nρnn. (10.62)

These elements can be evaluated by means of the ML algorithm, simplified
in the following manner. Since we are interested only in the diagonal ele-
ments of the density matrix, we set all off-diagonal elements of ρ̂ to zero.
This new diagonal density matrix ρ̂′ corresponds to a optical ensemble which
is symmetric with respect to phase rotations. The phase-sensitive off-diagonal
elements of the projection operator (10.54) can therefore be neglected. Fur-
thermore, the iteration step (10.58) can be reduced to ρ̂k+1 = N

[
R̂(ρ̂′n)ρ̂′n

]
with no risk of arriving at a nonpositive density matrix.

Repetitive application of the iteration above reconstructs the photon dis-
tribution and the value of the Wigner function at the phase space origin. To
evaluate the Wigner function W (p, q) at any arbitrary point, one applies the
phase space displacement D̂(−p,−q) to the ensemble ρ̂ so the point (p, q) gets
transferred to the origin. In terms of the quadrature data, this corresponds
to the shift

xi → xi − q cos θi − p sin θi. (10.63)

Upon this transformation, we apply the iterative algorithm again and calcu-
late the Wigner function at the desired phase space location.

This scheme may appear more involved than the one discussed in the
beginning of the section, as one needs to run a separate iteration series for
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every point in which the Wigner function is to be calculated. However, due to
a smaller number of parameters and a simplified iteration step, each iteration
takes less time and the series converges faster. The choice of a particular
scheme depends on a specific task and on the chosen truncation threshold in
the Fock space.

Finally, we address the issue of statistical errors in ML homodyne to-
mography. Hradil et al. in this volume described the way of estimating the
error by diagonalizing the Fisher information matrix. Although this method
is generally applicable here, it does not regard the density matrix positivity
constraint. If one of the parameters lies near the boundary of the positivity
region, the statistical error will be governed by the first rather than the sec-
ond derivative of the likelihood, and the actual uncertainty will be smaller
than the one estimated.

A sensible alternative is offered by a clumsy, yet simple and robust tech-
nique of simulating the quadrature data that would be associated with the
estimated ensemble ρ̂ML if it were the true state. One generates a large num-
ber of random sets of homodyne data according to (10.53), then applies the
ML reconstruction scheme to each set and obtains a series of density ma-
trices ρ̂′

i each of which approximates the original matrix ρ̂ML. The average
difference 〈|ρ̂ML − ρ̂′

i|〉i evaluates the statistical uncertainty associated with
the reconstructed density matrix.

Conclusion

The goal of this chapter was two-fold. First of all, considering several differ-
ent experimental setups, the general principles of ML estimation discussed
in chapter by Hradil et al. were shown “at work.” The second goal was to
compare the outcomes of ML estimation to that of other, more standardly
used, reconstruction techniques. In all discussed cases, the ML estimation was
seen to provide better results. We hope we persuaded the reader that the ML
estimation is a versatile and highly efficient tool that can be applied to al-
most any reconstruction problem. We also believe that especially in quantum
theory, where the experiments are often very demanding, the high efficiency
of ML estimation is worth of somewhat larger computing costs compared to
standard techniques. The aim of our research could be paraphrased as our
credo: If the experiment deserves to be done, then the data certainly deserve
to be treated properly. Anybody familiar with the rules of logic would agree
that this statement could also be rephrased as the negative affirmation: If
the data are not treated properly, the experiment did not deserve to be done.
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