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Yet your mistrust cannot make me a traitor:
Tell me whereon the likelihood depends.

W. Shakespeare: As you like it

Abstract. Maximum Likelihood estimation is a versatile tool covering wide range
of applications, but its benefits are apparent particularly in the quantum domain.
For a given set of measurements, the most likely state is estimated. Though this
problem is nonlinear, it can be effectively solved by an iterative algorithm exploit-
ing the convexity of the likelihood functional and the manifold of density matrices.
This formulation fully replaces the inverse Radon transformation routinely used
for tomographic reconstructions. Moreover, it provides the most efficient estima-
tion strategy saturating the Cramer-Rao lower bound asymptotically. In this sense
it exploits the acquired data set in the optimal way and minimizes the artifacts
associated with the reconstruction procedure. The idea of maximum likelihood re-
construction is further extended to the estimation of quantum processes, measure-
ments, and discrimination between quantum states. This technique is well suited
for future applications in quantum information science due to its ability to quantify
very subtle and fragile quantum effects.

3.1 Introduction

Our world is controlled by chance and everybody must cope with it. Events
may but need not happen. Success and surviving depends on the ability of any
living creature to set the risk associated with a particular alternative and to
chose the optimal one. Chance has probably played a very important role in
the formation of life on the Earth as Darwin noticed centuries ago. But chance
manifests itself even in less sophisticated aspects of everyday life. Insurance
companies, share markets, lotteries, bookmakers, and betting agencies count
on chance. Chance has been commercialized and converted to money.

Its is intriguing to note that the chance in classical physics is caused by
the enormous complexity of the world, due to which deterministic solutions
are intractable in reality. In this sense, the origin of chance may be explained
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and quantified. The notion of chance acquires dramatically different meaning
in the quantum domain, since quantum theory is intrinsically a probabilistic
theory. Chance expressed by probabilities is here an indispensable ingredient
of any effect and deserves special attention. All information about the quan-
tum world comes through the probabilities. According to the Copenhagen
interpretation of quantum theory, probabilities are coded in a quantum state
describing the available knowledge about the system. Quantum theory han-
dles observable events on the most fundamental level currently available,
predicting the statistics of quantum phenomena.

The statistical nature of the quantum world is revealed in the experi-
mental reality. When performing repeatedly an experiment on the ensemble
of identically prepared systems, the experimenter cannot deterministically
control their result due to the unavoidable fluctuations. But what can be
observed is the statistics of certain events, expressed either in the form of
probabilities or in the form of average values and their moments. Quantum
theory answers the question: What statistics can be expected provided that
the quantum state is known? This demonstrates the central role played by the
quantum state. Its knowledge makes it possible to predict statistical results
of any measurement performed on the same system. The determination of the
quantum state itself represents an inverse problem, and as it is well known,
inverse problems are more involved than direct ones. The inverse problem
of determining the quantum state is called quantum state reconstruction or
quantum tomography.

Though the history of this problem can be traced back to the early days of
quantum mechanics, namely to the Pauli problem [1], experimental utilization
had to wait until quantum optics has opened a new era. The theoretical
predictions of Vogel and Risken [2] were closely followed by the experimental
realization of the suggested algorithm by Smithey et. al. [3]. Since that time
many improvements and new techniques have been proposed, an overview
can be found in [4]. Reconstruction of quantum states is now considered a
standard technique used in various branches of contemporary physics [5–7].
Methods of this kind treat the problem of quantum state reconstruction as
a special case of Radon transformation used in medicine X-ray tomography.
Chapter by Raymer and Beck of this volume is devoted to various aspects of
this wide spread treatment, which will be called standard in the following.

The purpose of this chapter is to contribute to the mosaic of quantum
state reconstruction techniques presented in the book, and to present an
alternative to standard schemes. The idea behind this is surprisingly simple.
In accordance with the elucidation of the role of chance in our world, it could
be paraphrased, loosely speaking, as the following strategy: Always bet on the
most likely interpretation. This method, is known in mathematical statistics
as the maximum likelihood (ML) estimation. It was proposed in the 1920s
by R. Fisher.

The principle of maximum likelihood is not a rule that requires justifica-
tion – it does not need to be proved. Nowadays it is widely used in many
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applications in optics, noise analysis, communications, geophysics, nuclear
physics etc. Among the most curious and spectacular applications that we can
find, is the discovery of tunnels in the demilitarized zone between North and
South Korea [8]. What makes this technique so attractive and powerful is its
efficiency. It plays the prominent role among the other estimation techniques
since it may reach the ultimate limit of accuracy predicted by Cramer-Rao
bound. In this chapter we will stress out another remarkable feature, namely
that ML estimation is predetermined for solving inverse quantum problems.
It naturally reproduces the structure of quantum theory such as the closure
or uncertainty relations. This fundamental reason justifies its usage, though it
leads to nonlinear algorithms and its numerical implementation is demanding
on computing resources.

In Sect. 3.2 various reconstruction techniques will be compared. Particu-
larly, the essence of the standard quantum state reconstruction will be briefly
reviewed pointing out weak points of this technique. This will serve as moti-
vation for the ML estimation, which will be further advocated as a versatile
and natural tool for solving quantum problems. For the sake of completeness,
ML quantum-state tomography will be briefly compared with alternative sta-
tistical approaches to this problem, such as Bayesian and Maximum Entropy
(MaxEnt) estimations.

In Sect. 3.3 basics of ML estimation of the quantum state will be presented
using the Jensen inequality. Since this will serve as a paradigm for further
applications, an elementary exposition on the introductory level will be given.
As a result, the extremal equation will be derived and its interpretation will
be given and compared to standard reconstructions.

In Sect. 3.3.4 the ML technique will be treated as a problem of a statistical
distance. The extremal equation will be re-derived using variational approach,
which is more suitable for further generalizations. The numerical aspects of
the extremal solution will be detailed on the example of a reconstruction of
two entangled qubits.

Section 3.4 will link the problem of the state reconstruction with the op-
erational information. As will be shown, the information content acquired in
the course of measurement may be quantified by means of Fisher information
matrix. Loosely speaking, it grasps the width of the likelihood functional.

In Sect. 3.5 we will apply the technique of ML estimation to the recon-
struction of quantum processes. Section 3.6 will address the estimation of
quantum measurements, and finally Sect. 3.7 will consider the problem of
quantum discrimination motivated by the ML estimation technique.

3.2 Overview of Quantum-State
Reconstruction Techniques

To address the problem of quantum state reconstruction, let us consider a
generic quantum measurement. The formulation will be developed for the
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case of finite dimensional quantum systems. The reader can think of a spin
1/2 system for the sake of simplicity. Applications to infinite dimensional
Hilbert spaces will be mentioned separately.

Assume that we are given a finite number N of identical copies of the
system, each in the same but unknown quantum state described by the den-
sity operator ρ. Given those systems our task is to identify the unknown true
state ρ as accurately as possible from the results of measurements performed
on them. For simplicity we will assume all measurements in the sense of von
Neumann. The generalization to a positive valued operator measure (POVM)
is straightforward.

Let us consider, for concreteness, that N particles prepared in the same
state have been observed in M different output channels of the apparatus.
For spin one-half particles those channels could be for instance the M = 6
output channels of the Stern-Gerlach apparatus oriented along x, y, and z
directions, respectively.

Provided that each particular output

|yj〉〈yj |, j = 1, . . . ,M (3.1)

has been registered nj times,
∑
j nj = N, the relative frequencies are given as

fj = nj/N. Using these ingredients, the true state ρ is to be inferred. For the
sake of simplicity, the measurement performed will be assumed as complete,
i.e.

H ≡
∑
j

|yj〉〈yj | = 1. (3.2)

This condition is satisfied for Stern-Gerlach measurements mentioned above.
Later we will release this condition and consider incomplete measurements
too. The probabilities of occurrences of various outcomes are generated by
the true quantum state ρ according to the well-known quantum rule,

pj = 〈yj |ρ|yj〉. (3.3)

Let us now briefly discuss various approaches to the quantum state recon-
struction.

3.2.1 Standard Reconstruction

If the probabilities pj of getting a sufficient number of different outcomes |yj〉
were known, it would be possible to determine the true state ρ directly by in-
verting the linear relation (3.3). This is the philosophy behind the “standard”
quantum tomographic techniques. For example, in the rather trivial case of a
spin one half particle, the probabilities of getting three linearly independent
projectors determine the unknown state uniquely. Here, however, a serious
problem arises. Since only a finite number of systems can be investigated,
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there is no way to find out those probabilities. The only data one has at his
or her disposal are the relative frequencies fj , which sample the principally
unknowable probabilities pj . It is obvious that for a small number of runs,
the true probabilities pj and the corresponding detected frequencies fj may
differ substantially. As a result of this, the modified realistic problem,

fj = 〈yj |ρ|yj〉, (3.4)

has generally no solution on the space of semi-positive definite hermitian
operators describing physical states. This linear equation for the unknown
density matrix may be solved for example by means of pattern functions,
see e.g. [4, 9], what could be considered as a typical example of the stan-
dard approach suffering from the above mentioned drawbacks. In the case
of homodyne detection the discrete index j should be replaced by the pair
of continuous variables x and φ denoting the detected value and phase of
a quadrature operator. The quantum state of a single-mode quantum field
represented by the Wigner function W (α) can then be formally written as
the following integral transformation

W (α) =
∫
dφdxK(x, φ)f(x, φ), (3.5)

where K(x, φ) denotes a kernel of the integral transformation. Notice, that
such a standard solution is linear with respect to data. No matter how inge-
niously the inversions in the standard reconstruction schemes are done, there
always remains some problems caused by the application of this treatment in
quantum theory. All measurements in practice are inevitably limited as far as
the amount and accuracy of data is concerned. The continuous parameter can
be scanned only in a limited number of positions, and such a measurement
done with a finite ensemble will always be affected by fluctuations. Moreover,
the kernels involved in the standard reconstruction of the type (3.5) are often
singular. When the standard approach is applied to real data, serious prob-
lems with positivity of reconstructed density matrix may appear. Though
these simple techniques give us a rough picture of the unknown state, they
are not able to provide the full quantum description.

3.2.2 ML Estimation

Having measurements done and their results registered, the experimenter’s
knowledge about the measured system is increased. Since quantum theory
is probabilistic, it makes little sense to pose the question: “What quantum
state is determined by that measurement?” A more appropriate question is:
“What quantum states seem to be most likely for that measurement?”

Quantum theory predicts the probabilities of individual detections, see
(3.3). From them one can construct the total joint probability of registering
data {nj}. We assume that the input system (particle) is always detected in
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one of M output channels, and this is repeated N times. Subsequently, the
overall statistics of the experiment is multinomial,

L(ρ) =
N !∏
i ni!

∏
j

〈yj |ρ|yj〉nj , (3.6)

where nj = Nfj denotes the rate of registering a particular outcome j. In
the following we will omit the multinomial factor from expression (3.6) as
it has no influence on the results. Physically, the quantum state reconstruc-
tion corresponds to a synthesis of various measurements done under different
experimental conditions, performed on the ensemble of identically prepared
systems. For example, the measurement might be a subsequent recording of
an unknown spin of the neutron (polarization of the photon) using different
settings of the Stern Gerlach apparatus, or the recording of the quadrature
operator of light in rotated frames in quantum homodyne tomography. The
likelihood functional L(ρ) quantifies the degree of belief in the hypothesis
that for a particular data set {nj} the system was prepared in the quantum
state ρ. The ML estimation simply selects the state for which the likelihood
attains its maximum value on the manifold of density matrices.

The mathematical formulation of ML estimation in quantum theory will
be worked out below showing that it provides a feasible statistical inversion.
This is guaranteed by the convexity of both the set of density matrices and
likelihood functional. As will be demonstrated, provided that the standard
method yields a physically sound (semipositive) solution, the same density
matrix is also a ML solution. On the contrary to standard approaches, ML
principle is a highly nonlinear fitting procedure. Let us clarify some physical
reasons for why it is so.

For simplicity, let us consider the textbook example of a spin 1/2 system
and simple Stern-Gerlach (SG) detections. Let us assume that several pro-
jections have been registered. How to use all of them without discarding any
information? Some observations may appear incompatible with each other
due to the fluctuations and noises involved. That is why the overdetermined
system of (3.4) is inapplicable in the presence of noise. Moreover, different SG
projections cannot be treated on equal footing. They are observing various
“faces” of the spin system. Such measurements, even when done with equal
numbers of particles, possess different errors. It is not difficult to see why.
The measured frequencies fluctuate around the true probabilities according
to the binomial statistics, and significantly, their root-mean square errors de-
pend on the overlap between the projections and the true (but unknown!)
spin state. Various SG measurements are also incompatible in the sense of
quantum theory, because projections to different directions do not commute.
Such data cannot be obtained in the same measurement, but may be col-
lected subsequently in the course of repeated detections, where, in general,
different observations will be affected by different errors. But these errors in
turn depend on the unknown state. The estimation procedure must therefore
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predict the unknown state and consider the data fluctuations simultaneously.
This indicates the nonlinearity of the optimal estimation algorithm. As will
be demonstrated later, ML estimation does this job.

3.2.3 Other Statistical Approaches

In this short subsection let us mention two other statistically motivated ap-
proaches to the quantum state reconstruction problem. The heart of the
Bayesian statistical inference is Bayes’s rule [10]

p(H|D) =
p(D|H)p(H)

p(D)
, (3.7)

where p(D|H) is the probability of data D given hypothesis H, p(H) is
the prior probability that hypothesis H is true, P (H|D) is the posterior
probability that hypothesis H is true given data D, and the normalization
p(D) =

∑
H p(D|H)p(H) is the marginal probability of data D. Bayes’s rule

shows how the acquired data D updates our knowledge, p(H) → p(H|D).
This formulation is classical in the sense that it involves classical probabil-
ities, but it can also be extended to to quantum domain, see [11] and the
chapter by Fuchs and Schack in this volume. On the conceptual level this can
be done easily associating hypothesis H with a quantum state, H → ρ, and
data D with a particular output of the measurement. Invoking the linear-
ity of the quantum theory, the quantum state associated with the posterior
distribution p(ρ) on the space of density matrices reads

ρ =
∫
dρp(ρ)ρ. (3.8)

The linkage of the Bayesian reasoning to ML seems to be clear – it represents
just a rough approximation replacing a probability distribution by a single
peak localized at the most likely state. This is true, but the problem of
quantum Bayesian inference is more complicated than it looks. Namely, it is
not clear what should be chosen as the proper measure for the integration
over the manifold of mixed states. Beside this, when resorting to Bayesian
estimation the inferred state is not going to be the maximally likely one in
general. This is a bit counterintuitive, since why it should be better to throw
away the chance and diminish the probability of success resorting to a less
probable interpretation?

Another statistically motivated approach is the maximum entropy infer-
ence devised by Jaynes [12] and since then applied to many physical prob-
lems [13]. The chapter by Bužek also in this volume is a detailed exposi-
tion of this approach. Its formulation hinges on the entropy as a measure
of information. Loosely speaking, the MaxEnt principle looks for maximally
unbiased solutions fulfilling the given set of constraints. In tomographic ap-
plications, the constraints depend on the registered data. In this sense the
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MaxEnt reconstruction provides the most pessimistic guess compatible with
the observations made. Its mathematical formulation is conceptually simple.
Entropy of a quantum state is is defined as follows,

S = −kTr[ρ log ρ], (3.9)

k being an arbitrary constant (Boltzmann constant kB in statistical physics,
here we will set it to k = 1). As constraints we usually fix the expectation
values of some set of observables or projectors,

ai = Tr[ρAi], (3.10)

ai are real numbers inferred from the measurement, and Ai are the corre-
sponding observables (q-numbers). The normalization, Trρ = 1, can be taken
as an additional constraint with a0 = 1 and A0 = 1̂. MaxEnt solution can
always be written in the form,

ρ = exp[
∑
i

λiAi], (3.11)

where the Lagrange multipliers λi can be determined from the constraints
(3.10) by solving a set of coupled nonlinear equations. This can be difficult,
particularly when the operators Ai do not commute.

To compare the MaxEnt and ML estimations let us have a closer look on
the constraints corresponding to the sampled probabilities (Ai = |i〉〈i|). It is
not difficult to see that such constraints are equivalent to problem (3.4) of the
standard reconstruction scheme. Consider the case of a p-dimensional Hilbert
space, where the unknown quantum state is uniquely specified by p2 − 1
parameters. This is also the maximum number of constraints which may be
satisfied simultaneously. But even in the case of under-determined problems,
some constraints may still appear as inconsistent due to the fluctuations
present in the observed data. This is a serious obstacle for the straightforward
application of the MaxEnt principle to the sampled probabilities. To get a
physically correct reconstruction, the constraints have to be released.

3.3 ML Quantum-State Estimation

3.3.1 Extremal Equation

The mathematical formulation of ML estimation will be developed here. The
likelihood functional corresponding to detected data (3.6) should be maxi-
mized on the manifold of density matrices. This will guarantee getting a cor-
rect and physically sound interpretation of obtained results. No additional
assumptions are needed. Here we will formulate the ML extremal equation
for a generic case of projective measurements |yi〉〈yi|; generalization to mea-
surements described by elements of a probability valued operator measure is
straightforward as will be shown later.
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ML estimation consist in maximizing the likelihood functional,

L(ρ) =
∏
i

〈yi|ρ|yi〉ni . (3.12)

Here, and in the following, we omit the unimportant multinomial multiplica-
tive factor. In order to maximize (3.12), the Jensen inequality between the
geometric and arithmetic averages will be adopted,

∏
i

[
xi
ai

]fi

≤
∑

i
fi
xi
ai
, (3.13)

where xi ≥ 0 and ai > 0 are auxiliary positive nonzero numbers and fi =
ni/N. The equality sign is reached if and only if all the numbers xi/ai are
equal. We will use boldface to denote vectors, i.e. a and x. Setting xi =
〈yi|ρ|yi〉, the dimension of these vectors is given by the number of independent
projections, parameters ai being a subject of further considerations. This
inequality may be easily adopted for the maximization of likelihood since,

(
L(ρ)

)1/N =
∏
i

(
〈yi|ρ|yi〉

)fi

≤
∏
j
a
fj

j Tr{ρR(y,a)} (3.14)

≤ λ(y,a)
∏
i
afi

i . (3.15)

Operator R is a positive semi-definite operator defined by its expansion into
the measured, generally non-orthogonal projectors as:

R(y,a) =
∑

i

fi
ai
|yi〉〈yi|. (3.16)

Relation (3.14) follows simply from the definition of the likelihood (3.12)
and from the Jensen inequality (3.13) for any allowed vector a. The last
inequality (3.15) represents the maximization of the previous expression over
all density matrices. Parameter λ(y,a) representing the largest eigenvalue
of the operator R defines the upper bound of the likelihood. Let us clarify
under what conditions the equality sign will be achieved in the chain of
inequalities (3.14) and (3.15). Fixing the parameters ai, the most general
extremal state ρe should have its support in the subspace corresponding to
the maximal eigenvalue λ,

R(y,a)ρe = λ(y,a)ρe. (3.17)

This guarantees the equality sign in the inequality (3.15). Setting further,
ai = 〈yi|ρe|yi〉, the equality sign in (3.14) will be achieved too. Put together,
the extremal equation for the ML density matrix reads,

Rρ = ρ, (3.18)
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where the operator

R =
∑

i

fi
〈yi|ρ|yi〉

|yi〉〈yi| (3.19)

is state dependent, Lagrange multiplier λ = 1 by normalization, and the sub-
script “e” was omitted for brevity. Notice also, that there are many equivalent
forms of this extremal equation. Particularly, the extremal state is seen to
commute with the operator R, [R, ρ] = 0, since ρ is hermitian. An alternative
form of extremal equation reads,

∑
i

fi
〈yi|ρ|yi〉

Πi = 1ρ, (3.20)

where 1ρ denotes the identity operator defined on the support of the (un-
known) extremal density matrix, and Πi = |yi〉〈yi| are POVM elements cor-
responding to measurement.

3.3.2 Example of Simple Measurements

Let us show some special solutions linking the ML estimation to standard
reconstruction schemes. The latter, based on linear inversion, is obtained as
the solution of equations fi = 〈yi|ρ|yi〉. If a semi-positive definite solution
exists, such a density matrix will also maximize the ML functional. This
follows from the Gibbs inequality, [14]

∑
i

fi ln 〈yi|ρ|yi〉 ≤
∑
i

fi ln fi. (3.21)

Consider the textbook example [15] of a measurement represented by a single
nondegenerate hermitian operator A, A|a〉 = a|a〉. Its discrete orthonormal
eigenvectors, 〈a|a′〉 = δaa′ provide the closure relation

∑
a |a〉〈a| = 1̂. The

probability of measuring a particular value of A on a system that has been
prepared in a quantum state ρ is pa = 〈a|ρ|a〉. When this measurement is
repeated on N identical copies of the system, each outcome a occuring na
times, the relative frequencies fa = na

N will sample the true probabilities pa
reproducing them only in the limit N → ∞. Experimenter’s knowledge can
then be expressed in the form of a diagonal density matrix

ρest =
∑
a

fa|a〉〈a|. (3.22)

This state is apparently semi-positive definite, and as a consequence of in-
equality (3.21) it also maximizes the likelihood functional. In formula (3.22)
we have just stated the result of the experiment {na} in one special way; in
fact, no tomography is involved there. Similar knowledge is obtained by com-
patible observations, i.e. by measurements described by commuting operators
with a common diaginalizing basis {|a〉}.
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In order to find also non-diagonal elements of the unknown density matrix,
some other measurements non-compatible with A should be adopted. This
can be done by projecting the unknown state onto a set of non-commuting
eigenvectors of operators Aj , j = 1, 2, . . . . Such a measurement is going to
give us more information than just the diagonal elements of the density matrix
in some a priori given basis. Maximum-likelihood synthesis and interpretation
of such general observations will be given in the following section.

3.3.3 Interpretation of the ML Solution

An intriguing property of ML extremal equation (3.20) is that it resembles the
closure relation

∑
j |yj〉〈yj | = 1̂. Indeed, in terms of re-normalized projectors

Π
′
i = (fi/pi)Πi , the extremal equation reads

∑
i

Π
′
i = 1ρ. (3.23)

Moreover, the expectation values of such re-normalized projectors taken with
the extremal state reproduce identically the detected frequencies

Tr(ρΠ
′
i ) ≡ fi, ∀i. (3.24)

Maximum likelihood estimation thus can be interpreted as a renormalization
of observations done, which apart from being able to fit the registered data
exactly provides a resolution of unity and thus represents a genuine quantum
measurement.

This can now be contrasted to the standard formulation of the estimation
problem which is based on the solution of a linear set of equations,

Tr(ρΠi) = fi, ∀i, (3.25)

while the closure relation,
∑
i

Πi ≡ 1, (3.26)

is fulfilled as identity. Notice that roles of the closure relation and probabil-
ity rule in ML approach are reversed with respect to that in the standard
formulation.

Let us stress once more that the standard reconstruction has often no
solution on the set of density matrices, whereas the ML formulation has
always a solution. If the standard reconstruction yields a density matrix,
then this state is also maximum-likely quantum state, but not vice versa.

Another interesting feature of the ML reconstruction technique is that the
method itself, through the closure relation (3.23), defines “the field of view”
of the tomographic scheme as the subspace, where the reconstruction is done.
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No such interpretation of the standard solution is possible. We consider this
mutual relationship between the standard and ML reconstructions as a strong
argument in favor of the latter method.

In view of the above analysis one may wonder why standard methods are
so popular. The answer is that in many applications, the ensembles of mea-
sured systems are so huge, that fluctuations, which scale as 1/N , can entirely
be neglected. Standard methods are then preferred due to their simplicity
and much lower computing costs.

As will be shown later in Sect. 3.4, the ignoring of the positivity constraint
always lowers the accuracy of the estimation procedure. However, this unde-
sirable effect may be suppressed by enlarging the ensemble of probed par-
ticles, at least in applications where the positivity is not crucial. That is
why the X-ray tomography in medicine is such a wonderful tool, though the
standard back projection based on the deterministic inverse Radon trans-
formation is used on fluctuating data. However, in applications with much
smaller count rates, such as in neutron radiography discussed by Badurek
et al. in this volume, the ill posed nature of inverse problems fully reveals
itself by the appearance of severe artifacts. The same may and usually does
happen in quantum tomography.

3.3.4 Maximum Likelihood as a Statistical Distance

Probabilistic interpretation of quantum theory suggests that a statistical
treatment of the observed data [17–19] is more natural and appropriate than
the deterministic one. Maximum likelihood estimation [17], which is the main
subject of this chapter looks for the most likely quantum state. The likeli-
hood (3.12) quantifies our degree of belief in the given hypothesis ρ. However,
one can also think of the likelihood as a sort of statistical distance D[f ,p(ρ)]
between the theory pj and data fj . Via its minimization we find the density
matrix ρe that generates through (3.3) probabilities pj lying as “close” to the
observed frequencies fj as possible. This statistical distance is known in the
theory of statistics as the relative entropy or Kullback-Leibler divergence [21]:

D[f ,p] = −
∑
j

fj ln pj . (3.27)

Indeed, adopting metric (3.27) is equivalent to finding the maximum of the
likelihood functional (3.12).

At first sight it might seem that there is no reason to prefer one par-
ticular metric to another one – different metrics leading to different results.
This ambiguity can be resolved by considering the formal description of the
reconstruction process [20]. If the whole measurement and subsequent recon-
struction is looked at as a single generalized measurement, see Sect. 3.3.3,
then the relation between the actually performed measurement and result-
ing probability operator measure becomes particularly simple and easy to
interpret if Kulback-Leibler distance (3.27) is adopted.
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ML methods are well-known in the field of inverse problems and they have
found many applications in reconstructions and estimations so far [22–25].
Unfortunately, except in most simple cases, the maximization of the likelihood
functional is a challenging problem on its own.

In the following we will show two different but related ways to maximize
the likelihood (3.12). The first one is based on splitting the complex prob-
lem of estimating the density operator into two simpler tasks: finding the
optimal eigenvalues and eigenvectors. The second approach relies on a direct
application of the calculus of variations [17,26].

Both these routes will provide alternative derivations of the extremal
equation (3.18) of Sect. 3.3.1, and give us some hints how to solve it iter-
atively.

3.3.5 Maximization of the Likelihood

In the classical signal processing an important role is played by linear and
positive (LinPos) problems [27, 28]. Since these are closely related to the
problem of quantum state reconstruction it is worthwhile to recall how the
positive and linear problems can be dealt with using the ML approach.

Let us consider that the probabilities pj of getting outcomes yj are given
by the following linear and positive relation

pj =
∑
i

rihij , p, r,h > 0. (3.28)

Here r is the vector describing the “state” of the system. For example, the
reconstruction of a one-dimensional object from the noiseless detection of its
blurred image could be accomplished by inverting the relation (3.28), where
r and p would be the normalized intensities of the object and image, and
h would describe the blurring mechanism. Again here the presence of noise
(fj �= pj) tends to spoil the positivity of the reconstructed intensity r.

The solution to LinPos problems in the sense of ML can be found using
the expectation-maximization (EM) algorithm [27,28],

r
(n)
i = r

(n−1)
i

∑
j

hijfj
pj(r(n−1))

, (3.29)

which if initialized with a positive vector r0 (r0i > 0∀i) is guaranteed to
converge to the global minimum of the Kullback-Leibler divergence D[f ,p]
for any input data f .

This algorithm is convenient from the point of view of the numerical anal-
ysis. It is certainly much more convenient than the direct multidimensional
maximization of the corresponding ML functional lnL =

∑
j fj ln pj [29].

This brings us back to the problem of quantum state reconstruction. It would
be nice to have a similar iterative algorithm for dealing with the problem
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(3.4), or equivalently for maximizing the ML functional (3.12). On the one
hand it is clear that the problem of quantum state reconstruction is not a
LinPos problem, since the quantum rule (3.3) cannot be rewritten to the
form of (3.28) with a known positive kernel h. As a consequence of this, the
EM algorithm cannot be straightforwardly applied here. On the other hand
the reconstruction of the elements of the density matrix becomes a LinPos
problem if the eigenbasis diagonalizing the density matrix is known. In this
case the unknown density matrix can be parametrized as follows

ρ =
∑
k

rk|φk〉〈φk|, ρ|φk〉 = rk|φk〉, (3.30)

where ri are eigenvalues of ρ, the only parameters which remain to be de-
termined from the performed measurement. Using (3.30), relation (3.3) can
easily be rewritten to the form of LinPos problem (3.28).

Unlike the standard quantum measurement of a single observable, a series
of sequential measurements of many non-commuting operators determines
not only the diagonal elements of ρ but also the diagonalizing basis itself. This
hints on splitting the quantum state reconstruction into two subsequent steps:
the reconstruction of the eigenvectors of ρ in a fixed basis, which represents
the classical part of the problem, followed by the “rotation” of the basis {|φi〉}
in the “right” direction using the unitary transformation

|φ′
k〉〈φ′

k| = U |φk〉〈φk|U†. (3.31)

Its infinitesimal form reads

U ≡ eiεG ≈ 1 + iεG. (3.32)

Here G is a hermitian generator of the unitary transformation and ε is a
positive real number small enough to make the second equality in (3.32)
approximately satisfied.

Consider now the total change of the log-likelihood caused by the change
of diagonal elements of density matrix and rotation of basis. Keeping the
normalization condition Trρ = 1, the first order contribution to the variation
reads

δ lnL =
∑
k

δrk(〈φk|R|φk〉 − 1) + iεTr {G[ρ,R]} . (3.33)

Operator R was defined earlier in (3.19). We remind the reader that it is a
semi-positive definite operator depending on ρ.

Inspection of (3.33) reveals a simple two-step strategy to make the likeli-
hood of the new state ρ′ as high as possible [within the limits of the validity of
the linearization (3.32), of course.] In the first step, the first term on the right
hand side of (3.33) is maximized by estimating the eigenvalues of the density
matrix keeping its eigenvectors |φk〉 constant. The iterative EM algorithm
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(3.29) described above can straightforwardly be applied to this LinPos prob-
lem. As the second step, the likelihood can further be increased by making
the second term on the right hand side of (3.33) positive. This is accomplished
by a suitable choice of the generator G of the unitary transformation (3.32).
Recalling the natural norm induced by the scalar product defined on the
space of operators, (A,B) = Tr{A†B}, the generator G may be chosen as

G = i[ρ,R]. (3.34)

This choice guarantees the non-negativity of its contribution to the likelihood
and is optimal in the sense of the above introduced scalar product. Notice
that this derivation holds only if the second order contribution in ε to (3.32)
and (3.33) is negligible. From this, an upper bound on the value of ε can be
derived. Parameter ε can then be adaptively changed in each U step in order
to minimize the computing time.

Now we have at our disposal all ingredients comprising the EMU quan-
tum state reconstruction algorithm [30]. Starting from some strictly positive
density matrix ρ0, this initial guess is improved, first by finding new eigen-
values using the EM iterative algorithm (3.29), and then again by finding
new eigenvectors by a suitable unitary (U) transformation of the old ones
according to (3.31-3.32) and (3.34). Repetition of these two steps, each mono-
tonically increasing the likelihood of the current estimate, resembles climbing
a hill. Convexity of the likelihood functional (3.12), L(αρ1 + (1 − α)ρ2) ≥
αL(ρ1) + (1−α)L(ρ2), α ∈ 〈0, 1〉, then guarantees that the global maximum
is always attained eventually.

The EMU algorithm naturally leads to the previously introduced extremal
equation for the density matrix [17, 26]. The stationary point of EMU algo-
rithm is characterized by the vanishing variation of the log likelihood (3.33).
Since the variations δrk, ε are arbitrary parameters, this is equivalent to the
Lagrange-Euler equation for density matrix,

Rρe = ρe, (3.35)

that was already derived in Sect. 3.3.1 by other means.
For the sake of completeness, let us present one more derivation based on

the calculus of variations [26]: For generality let us assume that a generalized
measurement described by POVM elements {Pij},

∑
j Πj = 1 was performed

repeatedly N times. The theoretical probability of observing outcome j is
pj = TrρΠj . Let us now maximize the logarithm of the likelihood functional
on the space of positive operators subject to normalization Trρ = 1. The
latter constraint will be dealt with using an undetermined Lagrange multiplier
λ while the positivity is ensured by decomposing ρ as follows, ρ = A†A. A
necessary condition for ρ to be the maximum likely state is now that the
functional,

F =
∑
j

fj ln
(
Tr{A†AΠj}

)
− λTr{A†A} (3.36)
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is stationary in the independent variable A. Varying A to A+ δA, where δA
is a small variation, the value of F will change as follows:

δF =
∑
j

fj
pj

Tr{ΠjA†δA} − λTr{A†δA}. (3.37)

Since ρ is an extremal point, δF must vanish for all δA, which means that

∑
j

fj
pj
ΠjA

† = λA†. (3.38)

On the left hand side we recognize the operator R introduced before in (3.19)
with projectors |yj〉〈yj | replaced by POVM elements Πj . Multiplying this
equation by A from the right side we get

Rρ = λρ. (3.39)

Lagrange multiplier λ is determined simply by taking trace and using the
normalization condition, which yields λ = 1. This completes the alterna-
tive derivation of the extremal equation (3.35) for the maximum likelihood
quantum-state estimate.

Except in the most simple cases it is impossible to solve (3.35) by analyti-
cal means. This is, of course, a consequence of its strong nonlinearity in ρ. To
find the solution numerically one can use the above described EMU algorithm
which combines the classical EM algorithm with a rotation of the eigenbasis
of ρ in each step. Another possibility is to apply iterations directly to the
extremal equation (3.35). Since for a general ρ, the left hand side of (3.35)
is not even a hermitian operator it is first necessary to rewrite (3.35) to an
explicitly positive semidefinite form. Notice that if (3.35) holds so will its
adjoint ρ = ρR. Using this in (3.35) we get

RρR = ρ, (3.40)

where on both sides are now positive semidefinite operators. Starting from
some unbiased density matrix such as the maximally mixed state, (3.40) can
be used to find the first approximation, and this procedure can be repeated
until the stationary point of transformation (3.40) is attained. Unfortunately,
unlike for classical EM algorithm the convergence of this quantum algorithm
is not guaranteed in general. However it is not difficult to prove its conver-
gence for sufficiently small steps when the transformation R is “diluted” as
follows R→ (I+αR/2)/(1+α/2), where I is the identity operator and α is a
small positive number. Considering now the ith step of the algorithm (3.40),
the current density matrix ρi is transformed as follows:

ρi+1 = (1− α)ρi + α
ρiRi +Riρi

2
. (3.41)
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Terms quadratic in α have been neglected. Denoting

ρ′ =
ρiRi +Riρi

2
, (3.42)

it is seen that (i + 1)th iteration ρi+1 is a convex combination of ρi and
ρ′. Loosely speaking it is obtained by moving a “distance” α from the old
density matrix along the line connecting it with a “density matrix” ρ′. Now we
will show that L(ρi+1) ≥ L(ρi), which is the same as lnL(ρi+1) ≥ lnL(ρi).
Evaluating log-likelihood at ρi+1, expanding it in α and neglecting higher
order terms we get

lnL(ρi+1) = lnL(ρi) + α
[
Tr{Riρ′} − 1

]
. (3.43)

It remains to show that the last term on the right hand side is positive:

Tr{Riρ′} = Tr{RiρiRi} = Tr{RiρiRi}Tr{ρi} ≥ Tr2{Riρi} = 1. (3.44)

In the second to last step the Cauchy-Schwarz inequality has been used, and
the last step follows from the definition of operator R. So we proved that a
sufficiently small step always increases the likelihood. Since this functional
has no side minima (convexity), the algorithm converges monotonically to
the global maximum.

All results discussed so far have to be modified in the case of incomplete
detections. Provided that H �= 1 in (3.2), the closure relation may be always
recovered in the form ∑

j

H−1/2|yj〉〈yj |H−1/2 = 1. (3.45)

This corresponds to the renormalization of the true probabilities pj =
〈yj |ρ|yj〉 as follows: pj → pj/

∑
i pi. This formulation incorporates the case

of incomplete detection. Notice, that the extremal equation (3.35) remains
valid, provided we introduce renormalized operators

R→ R′ = (H ′)−1/2R(H ′)−1/2, ρe → ρ′
e = (H ′)1/2ρe(H ′)1/2,

where we defined H ′ = H/
∑
j pj . All the conclusions derived for complete

measurements may be extended to this case of incomplete measurement as
well.

This formulation coincides with the ML estimation provided that the ex-
periment is governed by Poissonian statistics. Assume that ni samples the
mean number of particles npi, where pi is as before the prediction of quan-
tum theory for a detection in the i-th channel and n is an unknown mean
number of particles. The relevant part of log-likelihood corresponding to the
Poissonian statistics reads lnL ∝

∑
i ni ln(npi)−n

∑
i pi. The extremal equa-

tion for n can easily be formulated as the condition n =
∑
i ni/

∑
i pi. On

inserting this estimate of the unknown mean number of Poissonian particles
into the log-likelihood we reproduce the renormalized likelihood function.
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3.3.6 Maximum Likelihood as a Statistical Distance Continued . . .

Having shown several ways how to maximize likelihood we can now come back
to the justification of the Kullback-Leibler divergence as a plausible statis-
tical distance. Let us assume the existence of a quantum measure D(d,p),
which parameterizes the distance between measured data and probabilities
predicted by quantum theory. We will search for the state(s) located in the
closest neighborhood of the data. Repeating steps leading to (3.38) and (3.39)
we get a new extremal equation,

∑
j

∂D

∂pj
Πjρ = λρ. (3.46)

Of course, different measures D yield different extremal equations whose
solutions are also different in general. Lagrange multiplier λ is determined
from the normalization condition Trρ = 1 as before,

λ =
∑
i

∂D

∂pj
pj .

As any composed functionG[D(f ,p)]fulfills the same extremal equation (3.46)
with the Lagrange multiplier rescaled as λ dGdD , we will consider, without the
loss of generality, the normalization condition λ = 1.

The extremal equation (3.46) has the form of a decomposition of the
identity operator on the subspace, where the density matrix is defined by

∑
i

∂D

∂pj
Πj = 1ρ. (3.47)

This resembles the definition of a POVM characterizing a new generalized
measurement [31]. To link the above extremalization with quantum theory,
let us postulate the natural condition for the quantum expectation values,

Tr
(
∂D

∂pj
Πjρ

)
= fj . (3.48)

This assumption seems to be reasonable. The synthesis of sequential non–
compatible observations may be regarded as a new measurement scheme,
namely the measurement of the quantum state. The quantum measure D
then fulfills the differential equation

∂D

∂pj
pj = fj . (3.49)

and singles out the solution in the form

D(f ,p) =
∑
j

fj ln pj . (3.50)
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This is nothing else than the log-likelihood or Kullback–Leibler relative infor-
mation [21]. Formal requirements of quantum theory, namely the interpreta-
tion of the extremal equation as a POVM, result in the concept of maximum
likelihood in mathematical statistics. In this sense maximum likelihood esti-
mation may be considered as a new quantum measurement.

3.3.7 Example: Entangled Photons

Let us illustrate ML quantum-state estimation on a simple example of a
two-photon entangled state generated by the spontaneous downconversion
source of White et al. [32]; for more examples see Badurek et al. in this
volume. In their experiment, White et al. measured the nominal Bell state
(|HH〉+ |V V 〉)/

√
2 along sixteen distinct directions: {|yj〉} = {|HH〉, |HV 〉,

|V H〉, |V V 〉, |HD〉, |HL〉, |DH〉, |RH〉, |DD〉, |RD〉, |RL〉, |DR〉, |DV 〉,
|RV 〉, |V D〉, |V L〉}. H, V , D, R, and L being horizontal, vertical, diagonal,
right circular, and left circular polarization, respectively. Counted numbers
of coincidences along these directions can be found in [32]. Let us use their
experimental data to estimate the true state of entangled photons.

Due to various sources of errors, the true state is expected to differ from
the nominal state. Notice that the chosen measurements are not complete,
that is H =

∑
j |yj〉〈yj | �= 1̂. This has been taken into account, see the

discussion after (3.45).
Starting from the maximally mixed state (|HH〉〈HH| + |V V 〉〈V V | +

|HV 〉〈HV | + |V H〉〈V H|)/4, new eigenvalues and eigenvectors of density
matrix are found using (3.29) and (3.31). This has been repeated until a
stationary point of the iteration process has been attained. The diagonal
representation of the reconstructed density matrix reads

ρML
e = 0.962 |φ1〉〈φ1|+ 0.038 |φ2〉〈φ2|. (3.51)

The other two eigenvalues are zero. The eigenvectors |φ1〉 and |φ2〉 are given
in Table 3.1.

The reconstructed density matrix (3.51) agrees well with the qualitative
reasoning given in [32]. Namely, the reconstructed state is almost a pure state
– a slightly rotated Bell state. The apparent incompatibility of the nominal
state with the registered data was interpreted in [32] as the result of possible
slight misalignments of the axes of analysis systems with respect to the axes

Table 3.1. Eigenvectors of the reconstructed density matrix.

|φ1〉 |φ2〉
|V V 〉 0.696 − 0.027i 0.630 + 0.071i
|V H〉 −0.050 − 0.020i −0.284 + 0.174i
|HV 〉 −0.040 + 0.015i −0.150 − 0.247i
|HH〉 0.712 − 0.062i −0.634 − 0.035i
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of the downconversion source. This is, of course, reflected in the reconstructed
state (3.51), which quantifies such misalignments and might serve for hunting
down the errors, and calibrating the experimental setup. For such purposes
the error analysis of the presented reconstruction technique becomes crucial.
The results of numerical simulations suggest that the fidelity of the recon-
structed state corresponding to tens of thousands of detections (like in [32])
is typically better than 0.99. More detailed discussion of estimation errors
will be presented in the next section.

Notice also that the reconstructed density matrix (3.51) is semi-positive
definite. This should be contrasted with the result of the standard recon-
struction given in [32]. The deterministic inversion of (3.4) has the following
diagonal representation: r1 = 1.022, r2 = 0.068, r3 = −0.065, r4 = −0.024.
The corresponding eigenvectors need not be specified here. Apparently, the
standard reconstruction is an unphysical, non-positive matrix. It is worth
noticing that the negative eigenvalues are comparable in magnitude with the
non-diagonal elements of ρML

e in H-V basis, see Table 3.1. This is a nice
example of a situation when standard methods fail even though rather high
number of particles (tens of thousands) has been registered. ML reconstruc-
tion provides always physically sound results. Moreover, it represents genuine
quantum measurement of entangled state.

It is also interesting to see how large an improvement upon the standard
direct inversion can be expected if more computationally demanding ML
estimation is used. Let us illustrate this again on the simple example of two
entangled qubits.

To compare two different estimators some measure of the quality of re-
construction is needed. A natural requirement is that the reconstructed state
should come as close to the true one as possible. The word “close” here is
however somewhat ambiguous. A number of different measures of distance
could be used each leading to slightly different results. Let us here mention
Jozsa fidelity (generalized overlap) F = Tr2{

√√
ρ1ρ2

√
ρ1} [33] , relative en-

tropy Er = Tr{ρ1 log ρ2}, and trace-class distance D = Tr{|ρ1 − ρ2|}/2 to
name a few. All these measures have good operational meaning. The fidelity
is closely related to Wootters statistical distance [34] and also quantifies
probability of success of the error-free state discrimination [35, 36]. Er is
linked to the probability of mistaking ρ1 for ρ2 in optimum discrimination
and large N limit [37]. The last distance D quantifies the reliability of the
predictions based on the reconstructed state. It measures how much on the
average the probabilities of particular outcomes of measurements predicted
by ρ1 differ from the probabilities predicted by ρ2. D has the advantage that
unlike the fidelity and relative entropy it defines distance also between two
non-positive operators. This is important because the direct inversion often
yields unphysical results, as we have seen above, and we want to compare the
results as they are without any tampering with them.

The results of two simulations are summarized in Fig. 3.1. In the up-
per panel, the errors of the standard and ML estimation are compared for
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Fig. 3.1. Errors of the ML (squares) and standard (circles) reconstructions in
dependence on the (simulated) experimental situation. Upper panel: the source
generates Bell states ρ̄ = (|HH〉 + |V V 〉)(〈HH| + 〈V V |)/2; its intensity N is the
independent variable. Lower panel: the intensity is kept constant at N = 200 photon
pairs; the purity and the degree of entanglement are varied, ρ̄ = (1 + ασ1 ⊗ σ1 −
ασ2 ⊗ σ2 + ασ3 ⊗ σ3)/4.

a different number of detected photon pairs (measuring time). One of the
four Bell states was chosen as the true state. Notice that the relative ML
improvement upon the standard method remains constant over a wide range
of intensities and numerically it is close to the Euler number e ≈ 2.71. This is
a significant improvement worth of technically more involved ML reconstruc-
tion procedure. Lower panel shows the dependence of estimation errors on
the purity (or degree of entanglement) of the true state for a fixed intensity of
the source of photon pairs. Apparently, ML estimation is significantly better
for highly pure states while it is just a shade better for highly mixed states.
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The improvement increases with moving the true state closer to the bound-
ary of the convex space of physically allowed states. This can be understood
as follows: Under the given conditions the standard and ML reconstructions
would coincide provided the standard reconstruction would fall within the
physically allowed region. This is simply because for the 16 measured observ-
ables there is a one to one correspondence between the registered data and
the (not necessarily positive) operator representing the source. Only when
the standard procedure fails to yield a physical state its result differs from
the ML estimate. In that case L has maximum outside the closed set on
which it should be maximized and we thus search for the maximum likely
state on the boundary. Obviously the probability that this happens becomes
larger for states lying closer to the boundary. Figure 3.1 demonstrates that
the ML reconstruction scheme is particularly efficient in that case.

Here one remark seems to be in order. The chosen system of two qubits
is a rather simple one of dimension 4. For more complicated systems the
boundary of the set of density matrices becomes a very complicated set of
states and, loosely speaking, almost any state is located near some border. It
is reassuring that ML scheme is capable of handling those cases well.

3.4 Estimation Errors and Fisher Information

In the previous section we have discussed several unique features of ML infer-
ence. Among them, the high efficiency of ML estimators is perhaps the most
important one. Error of ML estimation is tightly connected to an interesting
measure of information named after R. A. Fisher [38]. Let us first illustrate
this useful concept on the simple example of the estimation of a single param-
eter θ. Consider a result x of a measurement occurs with probability p(x|θ).
Now suppose that y has been registered. From this result we are to estimate
the true value of parameter θ. Any function θ(x) of data, called estimator,
can be used for this purpose. If this experiment was repeated with the same
setting of θ, some other value might have been observed which would in gen-
eral lead to a different estimated value of θ. Of course different estimators
can yield very different errors when applied to the same measured data. An
important result by Cramér and Rao [39, 40] states that no matter in how
clever way an estimator is designed, its error is always bounded from below by

(∆θ)2 ≥ 1
F
, (3.52)

where F is the Fisher information defined as

F =
〈( d
dθ

ln p(x|θ)
)2
〉
x

, (3.53)

and the angle brackets denote averaging over data. Inequality (3.52) is called
the Cramér-Rao lower bound (CRLB) and its importance stems from the
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fact that it provides the ultimate resolution of estimation. Another impor-
tant theorem due to Fisher [38] says that ML estimators attain this bound
asymptotically for large amount of registered data (detected particles). So if
many observations are collected, ML estimation is the most efficient estima-
tion strategy.

Let us now evaluate the overall performance of ML quantum-state tomog-
raphy with the help of CRLB. First we will chose a convenient parameteri-
zation of the quantum system under observation. Any density matrix can be
decomposed in an orthonormal basis {Γk} of traceless hermitian operators
defined on the Hilbert space of the system

ρ = 1/p+
p2−1∑
k=1

akΓk, (3.54)

where p is the dimension of the Hilbert space. For the system of n qubits, a
natural basis is the one generated by Pauli spin matrices Γk = σk1 ⊗ . . . ⊗
σkn/n; k = k1 + 21k2 + . . . + 2n−1kn; k1, . . . , kn = 0, 1, 2, 3, though other
choices are possible [41]. Generators Γk have the property of Tr{ΓiΓj} = δij .
Real parameters ak are now the unknown parameters that are to be estimated
from the measurement. As in the case of a single parameter, their errors are
bounded by CRLB,

Var(ak) ≥ (F−1)kk, (3.55)

where F is a multidimensional generalization of the Fisher information,

Fkl =
〈
∂ logL
∂ak

∂ logL
∂al

〉
n
. (3.56)

L is the joint probability of observing data n. At the same time this function
is the likelihood of the given vector a parameterizing the quantum state.

Any measurement can be described by POVM elements {Πj}, where in-
dex j labels independent output channels. Statistics of such a generalized
measurement is multinomial, see (3.6). The relevant part of the total proba-
bility now reads,

L =
∏
j

(
TrρΠj

)nj
. (3.57)

Let us evaluate the Fisher information matrix in this most general case. Us-
ing (3.54) and (3.57) in definition (3.56), we get

Fkl =
∑
i

∑
j

Tr{ΓkΠi}Tr{ΓlΠj}
pipj

〈ninj〉. (3.58)

Averaging with respect to multinomial distribution with a total of N repe-
titions of the measurement yields 〈ninj〉 = N2pipj −Npipj +Npiδij , where



82 Zdeněk Hradil et al.

δij is the Kronecker symbol. Only the last term gives a nonzero contribu-
tion since d(

∑
j pj)/dak = 0 due to the normalization to unity. The Fisher

information matrix thus simplifies to

Fkl = N
∑
j

Tr{ΓkΠj}Tr{ΓlΠj}/pj . (3.59)

Unfortunately the variances of ak alone do not provide enough information
needed for placing “error-bars” on the reconstructed state, nor do they suf-
fice for determining how much the predictions based on it could be in error.
This is due to the possible correlations of fluctuations of different ak that
might arise in the reconstruction procedure. To avoid such correlations let us
decompose the state of the system in a new basis Γ ′ – such that the corre-
sponding Fisher matrix becomes diagonal. This has a clear physical meaning:
On registering counts n, the probability P (n|a) characterizes the likelihood
L of various states a. In the asymptotical limit of a large amount of accu-
mulated data the likelihood can be approximate by Gaussian distribution. In
terms of the Fisher matrix it reads:

logL = logP (n|a) ≈ −
∑
kl

(ak − ãk)(al − ãl)Fkl, (3.60)

where ã specifies the maximum-likelihood solution. Let us define the error
volume as the set of density matrices which have likelihoods that do not drop
below a certain threshold, L ≥ const. According to (3.60) the error volume is
an ellipsoid, whose axes lie in the directions of the diagonalizing basis Γ ′, their
lengths being given by the eigenvalues of the inverse of Fischer information
matrix. Obviously, all the states inside the ellipsoid are still likely solution
of our inverse problem. The rotation of the error ellipsoid is described by
unitary transformation of the generators,

Γ ′
k = U†ΓkU =

∑
i

uki Γk. (3.61)

Orthogonal (p2 − 1) dimensional matrix of coefficients uki will be denoted by
U to distinguish it from the operator U . In the new basis the state of the
system reads,

ρ− 1/p =
∑
k

a′
kΓ

′
k =

∑
k

a′
kU

†ΓkU =
∑
k

∑
i

a′
ku
k
i Γk. (3.62)

Similarly, the measurement can be decomposed in the Γ basis,

Πj =
∑
k

qjkΓk. (3.63)

The transformation properties of Fisher information matrix are simple. Us-
ing (3.61) and (3.63) in (3.59), we find that under the rotation of basis F
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transforms as follows:

F ′
kl =

∑
m

∑
n

ukm

(∑
j

qjmq
j
n

pj

)
uln. (3.64)

The term in parenthesis can be recognized as the old Fisher information
matrix, so finally we get

F ′ = UFUT . (3.65)

As seen, the transition from the old basis to the new one coinciding with the
axes of the error ellipsoid (F ′ becomes diagonal) is provided by matrix U
composed from the eigenvectors of the Fisher matrix. They depend on the
measurement that has been done and on the true probabilities which can
be (approximatively) calculated from the maximum-likely state. The fluc-
tuations of a′

k, now being independent, then can be propagated to all the
quantities of interest using the standard methods of error analysis.

From this point of view, the synthesis of all the quantum observations is
equivalent to the registration of the orthogonal observables Γ ′ defining those
axes. In this new representation the Fisher matrix attains the diagonal form,
which means that the estimates of the transformed quantum-state “coordi-
nates” ā′

k = Tr{ρ̄Γ ′} fluctuate independently. This hints at the possibility
to form a single number quantifying the performance of the reconstruction
scheme as a whole by adding together those independent errors:

ε =
∑
k

〈(∆a′
k)

2〉 =
∑
k

〈(∆ak)2〉 ≥ Tr{F−1}. (3.66)

Notice that this number does not depend on the chosen operator basis. Error
ε has an interesting geometrical interpretation: Hilbert-Schmidt distance

d(ρ, ρ̄) = Tr{(ρ− ρ̄)2} (3.67)

is a natural metric that can be defined on the space of hermitian operators.
Let us evaluate the Hilbert-Schmidt distance between the true state ρ̄ and
its estimate ρ. Decomposing both states as ρ̄ =

∑
k ākΓk, and ρ =

∑
k akΓk,

we get

d(ρ, ρ̄) =
∑
k

(ak − āk)2. (3.68)

The mean distance (error) is then given by averaging d over many repetitions
of the estimation procedure, each yielding slightly different estimates of the
true state,

〈d〉 =
∑
k

〈(∆ak)2〉. (3.69)
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Fig. 3.2. Squared errors (variances) of the elements of the reconstructed density
matrix. Left panel: simulation; right panel: CRLB. ρ̄ = (1+0.8σ1⊗σ1−0.8σ2⊗σ2+
0.8σ3 ⊗ σ3)/4; N = 2000 pairs. We note that the diagonal is situated horizontally.

But according to (3.66) this quantity is bounded from below by the trace of
the inverse Fisher matrix,

〈d〉 ≥ Tr{F−1}. (3.70)

Thus the mean error of the optimal estimation from the measurement of the
chosen set of observables is given by the trace of the inverse of the Fisher
matrix. In particular, Tr{F−1} quantifies the performance of ML estimation
schemes per particle in the limit of a large amount of collected data N � 1.
Its reciprocal then quantifies information about the unknown quantum state
acquired in the measurement.

Also notice that since each new observed quantum system contributes
equally to the Fisher information, see (3.59), it is possible to define total
information about the quantum state gained per particle as follows:

I =
1

NTr{F−1} (3.71)

This quantity measures the quality of a given reconstruction scheme. One
can use it for comparing performances of different sets of tomographic mea-
surements or for investigating their invariance properties.

As an example, let us compare errors calculated from the Fisher informa-
tion with actual errors of the quantum estimation of a state of two entangled
qubits. The chosen set of 16 projections is the same as that discussed in
the previous section; for details see [32]. The results for a slightly mixed
entangled true state and observation of 2000 pairs of photons are shown in
Fig. 3.2. Right panel shows variances of the estimated elements of the density
matrix in |HH〉, |HV 〉, |V H〉 and |V V 〉 basis predicted by CRLB. Left panel
shows actual errors that were obtained by averaging over many repeated es-
timations. Notice that the reconstructed values of the diagonal elements are
much more reliable than the rest. This is perhaps caused by the choice of the
set of measured observables since the four basis vectors can be found among
them. It is also clear that Fisher information in this case gives reliable error
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estimates. In a completely analogous fashion one could use Fisher informa-
tion to derive error estimates for more complicated inverse problems such as
the estimation of quantum operations or measurement that will be described
in the following.

3.5 Estimation of Quantum Processes

The quantum-state tomography discussed in the preceeding sections pro-
vides a precise quantitative method of characterization of sources of quantum
states. However, the preparation of quantum states is often only the initial
part of experiments. Typically, one would like to manipulate the quantum
states by applying some unitary transformations, or transmit the quantum
states via some channel to a distant location. The holy grail of the quantum
information science is to construct a quantum computer which would pro-
vide an ultimate control over the evolution of quantum states. In practice,
errors will unavoidably occur, stemming from decoherence, losses, etc. Thus,
the quantum state ρ will typically become entangled with the environment
and the evolution of ρ cannot be described as a unitary transformation of ρ.
Therefore, a more general theory of transformations of quantum states must
be invoked.

A very general framework is provided by the formalism of quantum oper-
ations (also called quantum processes or quantum channels) [42]. Assuming
that the environment interacting with ρ is not initially entangled or correlated
with the device that prepares the state ρ, the most general transformation
of a quantum state ρ allowed by the laws of the quantum mechanics is the
so-called linear completely positive (CP) map E . The condition that the envi-
ronment and the state preparation device are not correlated is satisfied in the
vast majority of the experiments and the formalism of quantum operations
is thus applicable in practically all cases.

Given current interest in the quantum-information processing it is thus
of paramount importance to develop tools for characterization of quantum
processes. The concept of quantum process tomography has been introduced
independently by Nielsen and Chuang [43] and by Poyatos et al. [44]. The
reconstruction of quantum process has many practical applications, ranging
from the probing of quantum communication channels to the evaluation of
the performance of quantum gates and eventually debugging of quantum
computers [43–50]. Several experimental demonstrations of the quantum
process tomography in NMR [51, 52] and quantum optics systems [53–55]
have been reported recently.

Most proposed quantum-process reconstruction techniques are based on
direct linear inversion of experimental data. These methods are conceptually
simple but may yield unphysical results. On the other hand, all necessary
properties of the deterministic quantum transformations, namely the com-
plete positivity and trace preservation can be naturally incorporated within
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the maximum-likelihood approach as the appropriate constraints [56, 57]. In
what follows we shall show that the ML estimation of quantum process can be
formally formulated in a very similar way as the ML estimation of quantum
states.

The discussion is greatly facilitated by the Jamiolkowski isomorphism [58]
that associates a positive-semidefinite operator E with a CP map E . This for-
malism is briefly reviewed below. The main formal difference between estima-
tion of processes and states lies in a higher number of constraints involved in
the former case. The trace-preservation condition gives rise to altogether d2

real constraints, where d is the dimension of the Hilbert space H of the input
states. Rigorous ML estimation should take all these constraints into account
properly. We shall demonstrate how this can be accomplished in practice and
how the ML estimate of E can be efficiently numerically computed from the
acquired experimental data. We will also touch upon several topics of current
interest, such as the probing of quantum processes by entangled states and
the reconstruction of trace-decreasing CP maps, which describe probabilistic
(conditional) quantum operations.

3.5.1 Jamiolkowski Isomorphism

The deterministic quantum operation E must satisfy the following conditions
(see [42] for an excellent detailed discussion):

(i) Positivity. If ρin ≥ 0 then ρout ≡ E(ρin) ≥ 0, the map transforms density
operators onto density operators.

(ii) Complete positivity. The positivity is not a sufficient condition for E to
be a physical map. The reason is that the input state ρin may be a part
of a maximally entangled state |ψ〉AB . Let H and K denote the Hilbert
spaces of input and output states, respectively, and denote d = dimH.
The map E must preserve positive semidefiniteness of ρAB when applied
to one part of ρAB . We say that E is completely positive iff the extended
map M = Ih,A ⊗ EB is positive for all h, where h is a dimension of the
auxiliary Hilbert space H′

A, I denotes an identity operation and M acts
on operators on the Hilbert space H′

A ⊗HB . In fact, it suffices to take
h = d.

(iii) Trace preservation. The deterministic maps must preserve the total
probability, hence Tr(ρout) = Tr(ρin) must hold for all ρin.

There are several ways how the CP map can be described mathematically.
Physically, every linear trace-preserving CP map can be realized as a unitary
operation UE on an extended Hilbert space H⊗A of the system and ancilla,
where the ancilla is initially prepared in a blank pure state |0〉A,

ρout = TrA[UE ρin⊗ |0〉A〈0|U†
E ]. (3.72)

There is a big freedom in the choice of UE so this description of E is not very
suitable for our purposes.
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Another widely used formalism is the Kraus decomposition which states
that every CP map can be expressed in terms of a set of operators Aj as
follows,

ρout =
∑
j

AjρinA
†
j .

The trace preservation condition amounts to the constraint
∑
j A

†
jAj = I.

The Kraus decomposition is particularly useful when studying quantum noise
and quantum error correction. However, the decomposition is not unique and
infinitely many sets of operators {Aj} can describe the same map E .

The mathematical representation of CP maps that we shall employ relies
on the isomorphism between linear CP maps E from operators on the Hilbert
space H to operators on the Hilbert space K and positive semidefinite opera-
tors E on the Hilbert space H⊗K. This representation is sometimes referred
to as Jamiolkowski isomorphism. Its main advantage is that it eliminates all
the free parameters and provides a compact description of the CP map E .

Let us investigate what happens if the map E is applied to one part of
the maximally entangled state on H⊗H. Let us define

|ψ〉AB =
d∑
j=1

|j〉A|j〉B (3.73)

and consider the positive semidefinite operator E on H⊗K,

E = IA ⊗ EB(|ψ〉AB〈ψ|). (3.74)

By definition, E is positive semidefinite, E ≥ 0. One immediately finds that

E =
∑
j,k

|j〉〈k| ⊗ E(|j〉〈k|). (3.75)

It is an easy exercise, which we leave for the reader, to verify that the input-
output transformation can be expressed in terms of the operator E as

ρout = TrH[EρTin ⊗ I], (3.76)

where T denotes transposition in the basis |j〉 and TrH denotes the partial
trace over the input Hilbert space. The deterministic quantum transforma-
tions preserve the trace of the transformed operators, TrK[ρout] = TrH[ρin].
Since this must hold for any ρin the operator E must satisfy the condition

TrK[E] = IH, (3.77)

where IH is an identity operator on space H. The condition (3.77) effectively
represents (dimH)2 real constraints as advertised earlier.
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3.5.2 Reconstruction of Trace-Preserving CP Map

Having established the mathematical formalism, we can now proceed to the
reconstruction of the CP map. The experimental setup that we have in mind
is as follows. Some sources prepare various input states ρm that are used for
the determination of the quantum process. Here we assume that we have full
knowledge of ρm. Later on, we will remove this assumption and will analyze a
more complex scenario when one simultaneously reconstructs the states and
the process. The states ρm are sent through the quantum channel E . Mea-
surements described by POVMs Πml are carried out on each corresponding
output state E(ρm). Let fml denote the relative frequency of detection of the
POVM elementΠml. These frequencies approximate the theoretical detection
probabilities

pml = Tr[E(ρm)Πml] = Tr
[
E ρTm ⊗Πml

]
, (3.78)

where we used (3.76). The quantum process E should be reconstructed from
the knowledge of the probe states ρm and the measured frequencies fml.

With the help of the Jamiolkowski isomorphism we may formulate the
exact maximum-likelihood principle for estimated CP map E in a very sim-
ple and transparent form. The estimated operator E should maximize the
constrained log-likelihood functional [56,57]

Lc[fml, pml(E)] =
∑
m,l

fml ln pml − Tr[ΛE], (3.79)

where Λ = λ ⊗ IK and λ is the (hermitian) matrix of Lagrange multipliers
that account for the trace-preservation condition (3.77). The extremal equa-
tions for E can be obtained by varying functional (3.79) with respect to E,
similarly to the case of quantum state estimation. This leads to the extremal
equation

E = Λ−1KE, (3.80)

where the operator K reads

K =
∑
m,l

fml
pml

ρTm ⊗Πml. (3.81)

Further we have from (3.80) and Hermicity that E = EKΛ−1. When we
insert this expression in the right-hand side of (3.80), we finally arrive at
symmetrical expression suitable for iterations,

E = Λ−1KEKΛ−1. (3.82)

The Lagrange multiplier λ must be determined from the constraint (3.77).
On tracing (3.82) over space K we obtain quadratic equation for λ which
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may be solved as

λ = (TrK[KEK])1/2 , (3.83)

where we take the positive root, λ > 0. The system of coupled (3.82)
and (3.83) may be conveniently solved numerically by means of repeated
iterations, starting from some unbiased CP map, for example E(0) =
IH⊗K/(dimK). It is important to note that (3.82) preserves the positive
semidefiniteness of E and also the constraint TrK[E] = IH is satisfied at
each iteration step.

The feasibility of this reconstruction technique has been confirmed by
extensive numerical simulations for various single- and two-qubit CP maps E ,
various sets of probe density matrices ρm and POVMs Πml. As an illustrative
example, we describe the reconstruction of a single-qubit trace preserving
CP map. The operator E is characterized by 16 real parameters. The trace-
preservation condition yields four constraints, which leaves 12 independent
parameters. The maximum-likelihood estimation then amounts to finding
the maximum of the log-likelihood functional in a 12-dimensional space, with
highly non-trivial boundary defined by E ≥ 0.

In the numerical simulations, we have considered six different probe
states — the eigenstates of three Pauli matrices σx, σy, and σz. 3N copies of
each input state are used. On each corresponding output state, a spin pro-
jection along axes x, y and z is measured N times. The detected frequencies
were generated by means of Monte Carlo simulations. The maximum likeli-
hood estimate of the true process has been obtained by iteratively solving
the nonlinear extremal equations (3.82) and (3.83.

As the first example, consider the partially depolarizing channel (DC)

EDC = ηI + (1− η)O, (3.84)

where I is the identity operation while O denotes the totally depolarizing
channel that maps all density matrices onto maximally mixed state, O(ρ) =
I/2. The results of the simulated quantum process tomography are shown
in Fig. 3.3. For observations on N = 100 copies of each probe state, the
reconstruction works very well and the estimated process is typically very
close to the true one, as confirmed by the small values of the estimation
errors displayed in Fig. 3.3.

Our second example is the amplitude damping channel (ADC) that de-
scribes a decay process. This channel naturally arises when the qubit is rep-
resented by two levels of an atom, where |1〉 is the ground state while |0〉 is
the excited state. Even in vacuum, the atom may emit a photon and decay
to the ground state due to the coupling of the atom to the vacuum fluctu-
ations of the electromagnetic field. If the spontaneous emission occurs with
probability η2, then in the basis |00〉, |10〉, |01〉, |11〉 the ADC is described
by the operator
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Fig. 3.3. Reconstruction of a depolarizing channel (3.84) with η = 0.5. 3N = 300
copies of each of six input probe states have been used – see text for more details.
The left panel shows the matrix elements of the reconstructed operator E and
the right panel displays the difference between reconstructed and exact operators
∆E = Eest − Etrue. Only real parts of complex elements are shown.
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Fig. 3.4. Reconstruction of an amplitude damping channel (3.85) with η = 0.5.
Similarly as in Fig. 3.3, only real parts of complex elements are shown.

EADC =



η2 0 0 η
0 0 0 0
0 0 1− η2 0
η 0 0 1


 . (3.85)

An example of the simulated tomography of the amplitude damping channel
is given in Fig. 3.4. Similarly as in the case of the depolarizing channel, the
maximum-likelihood estimate is in good agreement with the true process. An
important point that should be emphasized is that in both examples, the esti-
mated process is really a trace preserving completely positive map and all the
constraints imposed by quantum mechanics are satisfied. In particular, E ≥ 0
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and TrK[E] = IH holds. As discussed in previous sections, the maximum-
likelihood estimation is asymptotically (for large number of probes N) the
optimal estimation method because it saturates the Cramér-Rao bound. All
these facts illustrate the advantages of this approach in comparison to simpler
data processing techniques.

3.5.3 Entangled Probes

The above discussed reconstruction of a single-qubit CP map bears striking
resemblance to the estimation of the entangled-two qubit state which was dis-
cussed in Sect. 3.3. This similarity is direct consequence of the Jamiolkowski
isomorphism. Following the definition (3.74), the operator E representing the
CP map can be in fact prepared physically in the laboratory if we first pre-
pare a maximally entangled state on the Hilbert space H⊗H and then apply
the CP map to one part of this entangled state. In this way, the quantum-
process tomography can be transformed to the quantum-state tomography.
More generally, this suggests that it may be useful to employ entangled quan-
tum states as probes of an unknown quantum process [48,49].

Let ρm,AB denote the entangled state on the Hilbert space HA⊗HB that
serves as a probe of the CP map E that is applied to the subsystem A. A
joint generalized measurement described by the POVMs Πml if performed
on the output Hilbert space K ⊗HB . The log-likelihood functional still has
the form (3.79), only the formula for the probability pml changes to

pml = TrHAHBK[(E ⊗ IHB
)(ρTA

m,AB ⊗ IK)(IHA
⊗Πml)], (3.86)

where TA stands for the partial transposition in the subsystem A. Conse-
quently, the operatorK appearing in the extremal equations (3.82) and (3.83)
must be calculated as follows,

K =
∑
l,m

fml
pml

TrHB
[(ρTA

m,AB ⊗ IK)(IHA
⊗Πml)]. (3.87)

Apart from these modifications of pml and K one can proceed as before and
solve (3.82) and (3.83) by means of repeated iterations.

3.5.4 Probabilistic Operations

The transformations of the quantum states may be probabilistic. Such a
conditional map E succeeds with probability

qm ≡ Tr[E(ρm)] = Tr[E ρTm ⊗ I] (3.88)

and fails with probability 1− qm. Since qm ≤ 1, the inequality TrK[E] ≤ IH
must hold. Note that the re-normalized output state ρm,out = E(ρm)/qm is a
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nonlinear function of ρm. Probabilistic transformations arise in many areas
of quantum information processing and quantum state manipulation. We can
mention the conditional generation of quantum states [59–61], entanglement
distillation protocols [62,63], and the probabilistic scheme for quantum com-
puting with linear optics and single photons proposed by Knill, Laflamme
and Milburn [64]. Three alternative ways for manipulating CP decreasing
maps will be presented.

The tomography of probabilistic CP maps can be in fact re-formulated
as a tomography of a trace preserving CP map provided that we know in
each case whether the probabilistic map succeeded or failed. The observation
of a failure is a valid measurement outcome which can be associated with a
POVM element Π∅. Without loss of generality, we may assume that the total
output Hilbert space Ktot is a direct sum of the Hilbert space K and a one-
dimensional space Kfail spanned by |∅〉, Ktot = K⊕Kfail. Thus whenever the
operation fails, we assume that the output state is |∅〉. The state |∅〉 serves
as a sink for all unsuccessful trials and Π∅ = |∅〉〈∅|. The POVM {Πml}Nl=1
that describes measurement of the output states in the Hilbert space K is
completed by adding the element Π∅ so that the new POVM satisfies the
closure relation on Ktot.

Instead of the trace-decreasing map E we shall reconstruct the extended
trace-preserving map Ẽ that maps operators on H onto operators on Ktot.
Let fm∅ denote the number of observed failures of the application of the map
E to the probe state ρm. The constrained log-likelihood functional can be
obtained as a simple extension of (3.79),

Lc[Ẽ] =
∑
m,l

fml ln pml +
∑
m

fm∅ ln pm∅ − Tr[ΛẼ], (3.89)

where pml = Tr[ẼρTm⊗Πml] and pm∅ = Tr[Ẽ ρTm⊗Π∅]. The trace-preserving
CP map Ẽ can be reconstructed with the use of the iterative algorithm de-
scribed in the Sect. 3.5.2. From the estimated operator Ẽ we can extract the
sought after operator E by projecting Ẽ onto the subspace H⊗K.

In many experiments, however, we cannot determine how often the condi-
tional map succeeded. This problem typically arises in the experiments with
photon pairs generated by means of spontaneous parametric downconversion.
This process is random and we do not know whether the photon pair was
generated until we detect it. In certain experimental setups, this prevents
us from measuring the number of unsuccessful events fm∅. Without knowing
fm∅, we cannot use the trick with extension to the trace-preserving map and
we must try to estimate directly the trace-decreasing map E .

Consequently, the constraint (3.77) should be replaced with TrKE ≤ IH.
If we do not know the frequency of failures, E can be determined only up to
an overall normalization prefactor and the constraint TrKE ≤ IH is thus irrel-
evant. In the log-likelihood (3.79) we must replace pml with the re-normalized
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probabilities pml/qm. We thus have to maximize

L =
∑
l,m

fml(ln pml − ln qm), (3.90)

under the constraint E ≥ 0.
The extremal equation for E can be derived by introducing the decompo-

sition E = A†A and varying (3.90) with respect to A. We obtain RE = SE,
where

S =
∑
m,l

fml
qm
ρTm ⊗ I. (3.91)

This operator replaces the Lagrange multiplier Λ. Since S is invertible, we
can express E = S−1RE and symmetrize the extremal equation which yields

E = a−1S−1RERS−1, (3.92)

where a = Tr[S−1RERS−1] is a normalization factor chosen such that
Tr[E] = 1.

Alternatively, the ML estimate of E can be determined by the analogue
of the EMU algorithm. This approach can be applied here because we are
not bound by the constraints (3.77) and we can thus consider independently
the variations of the eigenstates r2j and eigenvalues |ej〉 of E =

∑
j r

2
j |ej〉〈ej |.

Assume small variations rj → rj + δrj and |ej〉 → exp(iεH)|ej〉, where H is
a Hermitean operator. The corresponding variation of L is given by

δL = 2
∑
j

rjδrj
∑
l,m

〈ej |Xml|ej〉+ iεTr
(
H
∑
m,l

[E,Xml]
)

(3.93)

where

Xml =
fml
pml

ρTm ⊗Πml −
fml
qm
ρTm ⊗ I. (3.94)

From (3.93) we can deduce δrj and H that will increase the log-likelihood,

rj → rj + ηrj
∑
m,l

〈ej |Xml|ej〉, |ej〉 → exp(−ε
∑
m,l

[E,Xml])|ej〉. (3.95)

At each iteration step, η and ε can be further optimized in order to achieve
maximum increase of L. Moreover, after each iteration, we can re-normalize
E → E/Tr[E]. Note, that this does not change the value of L.

3.5.5 Unknown Probes

Up to now quantum states and processes have been treated independently.
Widely accepted strategy of how to approach a complex problem is to specify
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Fig. 3.5. Scheme of setup for the generalized measurement of quantum process
using unknown quantum states as probes.

some partial subproblems, address them separately and merge the solutions.
This technique usually gives a good answer in the technical sense. Though
this is possible even in quantum theory, there are no fundamental reasons for
such a factorization. To consider the full problem without splitting it into iso-
lated subproblems is technically more advanced but could be advantageous.
This strategy can be demonstrated on the synthesis of the problems treated
separately in the previous paragraphs. Let us assume the estimation of the
generic quantum process (CP map) E with the help of a set of probe states
ρm, identity of which is also unknown [57]. What is only known to the exper-
imenters are the output of certain measurements performed on the ensemble
of probe states and on the ensemble of transformed probe states. All the
physically relevant results can be derived exclusively from the acquired data,
where input states and their transformation are inseparably involved.

In accordance with the theory presented above let us consider the set of
probe states ρm on the space H. By means of unknown quantum process E
these states are transformed onto output states ρm,out in the space K. The ob-
servation must be more complex now involving the detection on the ensemble
of both the input and the output states. For this purpose the corresponding
POVM elements will be denoted by πmk and Πml. The diagram involving
detected signals and measurements is shown in Fig. 3.5. Let fmk denote the
relative frequency of detection of the POVM element πmk in the input space
H and Fml denote the relative frequency of detection of the POVM element
Πml in the output space K. The frequencies fmk,

∑
k fmk = 1, and Fml,∑

l Fml = 1, approximate the true probabilities pmk and Pml of individual
outcomes, respectively,

pmk = TrH[ρmπml] , Pml = TrK[ρm,outΠml] = Tr
[
E(ρTm ⊗Πml)

]
, (3.96)

where the relation (3.76) was used. The estimated process E and probe states
ρm should maximize the constrained log-likelihood functional

L =
∑
m,k

fmk ln pmk +
∑
m,l

Fml lnPml −
∑
m

µmTr [ρm]− Tr [ΛE] . (3.97)
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The additivity of log likelihood reflects the independence of observations per-
formed on the input and output states. The Lagrange multipliers µm and
Λ = λ⊗ IK fix necessary constraints—the trace normalization of the states,
Tr[ρm] = 1, and the trace-preserving property (3.77) of the process E.

Maximization of this functional again leads to coupled extremal equations
and iterative algorithm that preserves all necessary properties of estimated
quantum states ρm and quantum process E. It can also be shown that com-
bined ML strategies yield results superior to other methods [57].

3.6 Estimation of Quantum Measurements

Let us imagine that we possess an apparatus that performs some measure-
ment on a certain quantum mechanical system. We are not sure which mea-
surement the device carries out and we would like to calibrate it. This problem
is in a sense complementary to the reconstruction procedures for quantum
states discussed in the previous sections. Here, the role of the states and the
measuring apparatus will be inverted and we shall use known states ρm to
probe the measuring device.

3.6.1 Calibration of the Measuring Apparatus

Suppose that the apparatus can respond with L different measurement out-
comes. As is well known from the theory of quantum measurement [31, 65],
such a device is completely POVM whose L elements Πl, l = 1, . . . , L gov-
ern the measurement statistics. Let us recall that the probability pml of the
measurement readout Πl when measuring the quantum state with density
matrix ρm can be expressed as

pml = Tr[Πlρm]. (3.98)

The POVM elements are positive semi-definite hermitian operators, Πl ≥ 0,
which decompose the identity operator,

L∑
l=1

Πl = I. (3.99)

This ensures the probability normalization
∑L
l=1 pml = 1.

The general strategy to determine the POVM consists of performing a set
of measurements on various known quantum states and then inferringΠl from
the collected experimental data [66]. The POVM can be easily estimated by
direct linear inversion of (3.98). Let fml denote the total number of detections
of Πl for the measurements performed on the quantum state ρm. Assuming
that the theoretical detection probability pml given by (3.98) can be replaced
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with the corresponding relative frequency, we may write

Tr [Πlρm] ≡
d∑

i,j=1

Πl,ijρm,ji =
fml∑L
l′=1 fml′

, (3.100)

where d is the dimension of the Hilbert space on which the operators Πl
act. Formula (3.100) establishes a system of linear equations for the ma-
trix elements of the operators Πl. If sufficient amount of data is available
then (3.100) can be inverted (e.g. by the least squares method [67,68]) and we
can determine Πl. This approach is a direct analogue of linear reconstruction
algorithms devised for quantum-state and quantum-process reconstructions.
The linear inversion is simple and straightforward, but it does not guarantee
the positivity of the reconstructed POVM elements. Consequently, the linear
estimation may lead to unphysical POVM, predicting negative probabilities
pml for certain input quantum states. To avoid such problems, one should re-
sort to a more sophisticated reconstruction strategy. In what follows we show
how to calibrate the measuring apparatus with the use of the maximum-
likelihood (ML) estimation [69]. The reconstruction of the POVM is thus
another example of the remarkable utility and versatility of the estimation
methods based on the maximum-likelihood principle.

3.6.2 Maximum-Likelihood Estimation of the POVM

The estimated operatorsΠl should maximize the log-likelihood functional [69]

L[{Πl}] =
L∑
l=1

M∑
m=1

fml ln pml, (3.101)

where M is the number of different quantum states ρm used for the recon-
struction and note that pml depends on Πl through (3.98).

We proceed as before and derive the extremal equations for the most
likely POVM. The constraint (3.99) has to be incorporated by introducing a
hermitian operator λ whose matrix elements are the Lagrange multipliers. We
thus have to find the maximum of the constrained log-likelihood functional

L′[{Πl}] = L[{Πl}]−
L∑
l=1

Tr[λΠl]. (3.102)

As usual, the extremal equations for Πl can be derived by introducing the
decomposition Πl = A†

lAl, varying L′ with respect to Al, and setting the
variations equal to zero. After some algebraic manipulations, one obtains

Πl = λ−1RlΠl, (3.103)
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where

Rl =
M∑
m=1

fml
pml

ρm.

The extremal equation can be symmetrized by substituting Πl = ΠlRlλ
−1

into the right-hand side of (3.103), and we have

Πl = λ−1RlΠlRlλ
−1. (3.104)

The Lagrange multiplier λ must be calculated self-consistently from the con-
straint (3.99). This yields

λ =

(
L∑
l=1

RlΠlRl

)1/2

, (3.105)

where the positive branch of the square root is taken. The extremal eqa-
tions (3.104) and (3.105) can be conveniently solved by means of repeated
iterations. We emphasize that the conditions Πl ≥ 0 and

∑
lΠl = I are

exactly fulfilled at each iteration step Πl → λ−1RlΠlRlλ
−1.

If there exists a POVM whose elements Πel exactly solve linear equa-
tions (3.100) then the ML estimate coincides with Πel . In this case it holds
for all l,m that

pml =
fml∑L
l′=1 fml′

. (3.106)

On inserting this expression into (3.103), we find after some algebra that the
set of L equations (3.103) reduces to the formula for the operator of Lagrange
multipliers

λ =
M∑
m=1

L∑
l=1

fmlρm. (3.107)

The principal advantage of the ML estimation lies in its ability to handle
correctly any experimental data and to provide reliable estimates in cases
when linear algorithms fail. As noted before, the linear inversions may provide
unphysical estimates, namely operators Πl, which are not positive definite.
It should be noted that such a failure of linear inversion is rather typical
and can occur with high probability. This is most apparent in the case of
von Neumann measurement, when the operators Πl are rank-one projectors
and d − 1 eigenvalues of each Πl are equal to zero. For sufficiently large
number of measured data, the linear estimate of a matrix element of Πl is
random variable with Gaussian distribution centered at the true value. In
the basis where the projector Πl is diagonal, its d − 1 diagonal elements
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fluctuate around zero. It follows that in most cases at least one diagonal
element is negative and the linear inversion yields non-positive {Πl}, which
cannot describe any measuring device.

These problems of linear algorithms stem from the difference between
recorded relative frequencies and theoretical probabilities, which are assumed
to be equal in (3.100). The frequencies fml are fluctuating quantities with
multinomial distribution characterized by probabilities pml. In the experi-
ment we can, in principle, detect any fml. However, some sets of relative
frequencies do not coincide with any theoretical probabilities (3.98) calcu-
lated for given quantum states ρm used for the calibration. In other words,
sometimes there does not exist a POVM that would yield probabilities pml
equal to detected relative frequencies and a direct linear inversion of (3.100)
may then provide an unphysical result. The observation of several different
quantum states by a single measuring apparatus is equivalent with the mea-
surement of several noncommuting observables on many copies of a given
quantum state. Thus the ML estimation of the quantum measurement can
be interpreted as a synthesis of information from mutually incompatible ob-
servations [20,26].

The determination of the quantum measurement can simplify consider-
ably if we have some reliable a-priori information about the apparatus. In
particular, the structure of the POVM may be fixed by the superselection
rules. As an example let us consider a class of optical detectors that are sen-
sitive only to the number of photons in a single mode of an electromagnetic
field. The elements of the POVM describing a phase-insensitive detector are
all diagonal in the Fock basis,

Πl =
∑
n

rln|n〉〈n| (3.108)

and the ML estimation reduces to the determination of the eigenvalues rln ≥
0, which is an instance of the LinPos problem. The extremal equation (3.103)
simplifies to

rln =
rln
λn

M∑
m=1

fml
pml

ρm,nn, λn =
M∑
m=1

L∑
l=1

fml
pml

ρm,nnrln. (3.109)

Here pml =
∑
n ρm,nnrln. We have thus recovered a generalized version of

the expectation-maximization algorithm discussed in Sect. 3.3.

3.6.3 Stern-Gerlach Apparatus

Let us illustrate the reconstruction of the POVM by means of numerical simu-
lations for Stern-Gerlach apparatus measuring a spin-1 particle. We compare
the linear inversion and ML estimation and demonstrate that the ML algo-
rithm outperforms the linear estimation.
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Fig. 3.6. Example of maximum-likelihood reconstruction of a POVM that char-
acterizes a Stern Gerlach apparatus that measures spin along the (1, 0, 1)/

√
2 axis.

Nine different pure states have been used for the reconstruction, and 100 copies of
each state have been measured. The upper panels show the reconstructed POVM
elements while the lower panels display the estimation errors ∆Πj . Only real parts
of complex matrix elements are displayed.

Let Sx, Sy, and Sz denote the operators of spin projections onto axis x, y,
and z, respectively. We choose the three eigenstates of Sz as the basis states,
Sz|sz〉 = sz|sz〉, sz = −1, 0, 1. In our numerical simulations, nine different
pure quantum states are used for the calibration: three eigenstates of Sz and
six superposition states

1√
2
(|jz〉+ |kz〉),

1√
2
(|jz〉+ i|kz〉), (3.110)

where jz, kz = −1, 0, 1 and jz < kz. The measurement on each state is
performed N times. We consider a Stern-Gerlach apparatus that measures
the projection of the spin component along direction n. This von Neumann
measurement has three outcomes and the POVM elements Πl are projectors

Πj = |jn〉〈jn|, jn = −1, 0, 1, (3.111)

where Sn|jn〉 = jn|jn〉 and Sn = nxSx + nySy + nzSz.
We have performed Monte Carlo simulations of the measurements and we

have subsequently reconstructed the POVM from the simulated experimental
data. The ML estimates Πl,ML were obtained by an iterative solution of
the extremal equations (3.103) and (3.105). A typical example of the ML
reconstruction of the POVM is given in Fig. 3.6 for n = (1, 0, 1)/

√
2. The

linear estimates Πl,lin were found by solving the system of (3.100) by means
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Fig. 3.7. Variances of linear (◦) and ML (�) estimates versus the number of
measurements N . The figure shows results for Stern-Gerlach apparatus measuring
spin along the axis n = (1, 1, 1)/

√
3.

of least squares inversion. In order to compare these two procedures, we define
the variances of the estimates as

σ2
ML =

〈∑
l

Tr
[
∆Π2

l,ML
]〉

ens
, σ2

lin =
〈∑
l

Tr
[
∆Π2

l,lin
]〉

ens
, (3.112)

where ∆Πl,ML = Πl,ML −Πl, ∆Πl,lin = Πl,lin −Πl, and 〈〉ens denotes aver-
aging over the ensemble of all possible experimental outcomes.

We have repeated the reconstruction of the POVM for 100 different sim-
ulated experimental data and the ensemble averages yielded σ2

ML and σ2
lin.

The variances were determined for 10 different N and the results are shown
in Fig. 3.7. We can see that the ML estimates exhibit significantly lower fluc-
tuations than the linear ones. The ML estimation procedure guarantees that
the reconstructed POVM elements are positive semidefinite operators. This
restriction to physically allowed Πl significantly improves the reconstruction
accuracy. This is a considerable practical advantage of the ML estimation
compared to linear inversions.

3.7 Discrimination Between Quantum States

Discrimination between a set of known quantum states ρj , j = 1 . . . N can be
understood as a limiting case of quantum-state estimation with “multiple-
delta-peaked” prior information. The problem becomes more interesting if
we are allowed to choose the measurement at our will. The goal is then to
optimize the discriminating apparatus with respect to some figure of merit.

It is no wonder that methods and tools similar to those developed in
previous sections for the maximization of the likelihood can also be applied
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to the quantum state discrimination problem as well. This similarity will be
pursued in this section.

Like density matrices in quantum estimation, the generalized measure-
ments we optimize here are subject to positivity constraints that make quan-
tum discrimination a highly involved nonlinear problem.

Theoretical and experimental aspects of quantum discrimination are de-
scribed in detail by Bergou et al. and Chefles in this volume. The reader is
advised to consult those chapters for basic facts and definitions.

3.7.1 Minimum-Error Discrimination

The goal of minimum-error discrimination is to maximize the probability,

PS =
N∑
j=1

pjTr[ρjΠj ], (3.113)

of guessing the right state out of a set of N states, where the N -component
POVM {Πj} describes one of Bob’s general guessing strategies, and pj is
the prior probability of ρj being sent. Let us note in passing, that there are
no fundamental reasons for taking error probability as the cost of decisions.
Depending on applications, other measures of merit may turn out to be more
appropriate, see e.g. [70].

In compact form the problem reads:

maximize PS subject to constraints
Πj ≥ 0, j = 1, . . . , N,∑
j Πj = 1.

(3.114)

Unfortunately, attacking this problem by analytical means has a chance to
succeed only in the simplest cases (N = 2) [31], or in cases with symmetric
or linearly independent states [77–80]. In most situations one must resort to
numerical methods. An iterative algorithm for finding the maximum of the
average success rate over projection valued POVM was derived in [81]. Later,
an iterative algorithm solving the problem (3.114) in its full generality was
devised in [82].

We are going to seek the global maximum of the success functional PS
subject to the constraints given in (3.114). To take care of the first constraint
we will decompose the POVM elements as follows Πj = A†

jAj , j = 1, . . . , N .
The other constraint (completeness) can be incorporated into our model us-
ing the method of uncertain Lagrange multipliers. Putting all these things
together, the functional to be maximized becomes

L =
∑
j

pjTr{ρjA†
j Aj} − Tr{λ

∑
j

A†
j Aj}, (3.115)
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where λ is a hermitian Lagrange operator. This expression is now varied with
respect to N independent variables Aj to yield a necessary condition for the
extremal point in the form of a set of N extremal equations for the unknown
POVM elements,

pjρjΠj = λΠj , j = 1, . . . , N, (3.116)

originally derived by Holevo in [83]. For our purposes it is advantageous to
bring these equations to an explicitly positive semidefinite form,

Πj = p2jλ
−1ρjΠjρjλ

−1, j = 1, . . . , N. (3.117)

Lagrange operator λ is obtained by summing (3.117) over j,

λ =


∑

j

p2jρjΠjρj




1/2

. (3.118)

The iterative algorithm comprised of theN+1equations (3.117) and (3.118)
provides an elegant and efficient way to optimize Bob’s discriminating mea-
surement.

One usually starts from some “unbiased” trial POVM {Π0
j }. After plug-

ging it in (3.118) the first guess of the Lagrange operator λ is obtained.
This operator is, in turn, used in (3.117) to get the first correction to the
initial-guess strategy {Π0

j }. The procedure gets repeated, until, eventually,
a stationary point is attained. Both the positivity and completeness of the
initial POVM are preserved in the course of iterating [82]. It is interesting to
notice that when the initial POVM is chosen to be the maximally ignorant
one, Π0

j = 1/N, j = 1, . . . , N , the first correction is quite similar to the
“pretty good” measurement [84]. For equally probable states, pj = 1/N,∀j,
they are equivalent. Interestingly enough, the pretty good measurement is
known to be optimal in certain cases [80].

Since (3.117) and (3.118) represent only a necessary condition for the
extreme, one should always check the optimality of the stationary point by
verifying the following set of conditions [31,83]:

λ− pjρj ≥ 0, j = 1, . . . , N. (3.119)

It is worth mentioning that this condition can also be derived from the theory
of the semidefinite programming (SDP) [85, 86]. SDP tools also provide an
alternative means of solving the problem (3.114) numerically [87]. To see the
link between the quantum discrimination and SDP theory let us remind that
the dual problem of SDP is defined as follows:

maximize : − TrF0Z, subject to
Z ≥ 0,
TrFiZ = ci, i = 1, . . . , n,

(3.120)
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Fig. 3.8. A cut through the Bloch sphere showing the states to be discriminated.

where data are n + 1 hermitian matrices Fi and a complex vector c ∈ C
n,

and Z is a hermitian variable. Our problem (3.114) reduces to this dual SDP
problem upon the following substitutions:

F0 = −
n⊕
j=1

pjρj , Z =
n⊕
j=1

Πj ,

Fi =
n⊕
j=1

Γi, ci = TrΓi, i = 1, . . . , h2. (3.121)

Here operators {Γi, i = 1, . . . , h2} comprise an orthonormal operator basis in
the h2-dimensional space of hermitian operators acting on the Hilbert space
of our problem: TrΓjΓk = δjk, j, k = 1, . . . , h2. For simplicity, let us take Γ1
proportional to the unity operator, then all ci apart from c1 vanish. In SDP
the necessary condition (3.116) for the maximum of the functional (3.115) is
called the complementary slackness condition. When inequalities in (3.119)
hold it can be shown to be also sufficient.

The advantage of the SDP formulation of the quantum-state discrimina-
tion problem is that there are strong numerical tools designed for solving
SDP problems, for their review see [87]. They make use of the duality of SDP
problems. The optimal value is bracketed between the trial maximum of the
dual problem and trial minimum of the primal problem. One then hunts the
optimal value down by making this interval gradually smaller. SDP tools
are much more complicated than the proposed algorithm (3.117)-(3.118) but
they are guaranteed to converge to the real solution.

Let us illustrate the utility of our algorithm on a simple example of dis-
criminating between three coplanar pure qubit states. The geometry of this
problem is shown in Fig. 3.8. Ψ1 and Ψ2 are equal-prior states, p1 = p2 = p/2,
symmetrically placed around the z axis; the third state lies in the direction
of x or y. A similar configuration (with Ψ3 lying along z) has been investi-
gated in [79]. Exploiting the mirror symmetry of their problem the authors
derived analytic expressions for POVMs minimizing the average error rate.
For a given angle ϕ the optimum POVM turned out to have two or three
nonzero elements depending on the amount of the prior information p.
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Fig. 3.9. Average error rate (1 − PS) in dependence on Bob’s prior information
p; ϕ = π/16. Regions I, II, and III are regions where the optimum discriminating
device has two, three, and two output channels, respectively.

Our problem is a bit more complicated one due to the lack of mirror sym-
metry. Let us see whether the transition from the mirror-symmetric configu-
ration to a non-symmetric one has some influence on the qualitative behavior
of the optimal POVMs. Minimal error rates calculated using the proposed
iterative procedure (3.117 and 3.118) for the fixed angle of ϕ = π/16 are
summarized in Fig. 3.9. For large p (region III) the optimum strategy consist
in the optimal discrimination between states Ψ1 and Ψ2. When ξ becomes
smaller than a certain ϕ-dependent threshold (region II), state Ψ3 can no
longer be ignored and the optimum POVM has three nonzero elements. Sim-
ple calculation yields

pII,III =
1

1 + sinϕ cosϕ
(3.122)

for the threshold value of the prior. However, when p becomes still smaller
(region I), the optimum POVM will eventually become a two-element POVM
again – the optimal strategy now being the optimal discrimination between
states Ψ1 and Ψ3. This last regime is absent in the mirror-symmetric case. The
transition between regions I and II is governed by a much more complicated
expression than (3.122), and will not be given here.

The convergence properties of the algorithm are shown in Fig. 3.10 for
three typical prior probabilities representing regions I, II, and III of Fig. 3.9.
After a short transient period an exponentially fast convergence sets in.
Sixteen-digit precision in the resulting error-rate is usually obtained after
less than one hundred iterations. Let us close the example noting that al-
ready a few iterations are enough to determine the optimum discriminating
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Fig. 3.10. Accuracy of the calculated error rate of the optimal POVM vs. the
number of iterations. Convergence of the proposed algorithm is shown for three dif-
ferent priors: p = 0.6 (squares), p = 0.8 (triangles), and p = 0.9 (circles). Ordinate
is labeled by the precision in decimal digits.

device to the precision the elements of the realistic experimental setup can
be controlled within the laboratory.

3.7.2 Minimum-Error Discrimination
Involving Inconclusive Results

The above discussed scenario can be considered as limiting cases of a more
general scheme that involves certain fraction of inconclusive results PI for
which we maximize the success rate. The main feature of this scheme is that
if we allow for inconclusive results then we can improve the relative (or re-
normalized) success rate

PRS =
PS

1− PI
. (3.123)

In other words, with probability PI Bob fails completely and he cannot say
at all which state was sent to him. However, in the rest of the cases when
he succeeds he can correctly guess the state with higher probability than if
he would not allow for the inconclusive results. Thus, there exists a trade-off
between probability PI of inconclusive results and a re-normalized success
rate. For pure linearly independent states this generalized scenario was dis-
cussed in papers [88, 89]. The analysis was extended to general mixed states
in [90–92].

Let us assume that the quantum state sent to Bob is drawn from the set of
N mixed states {ρj}Nj=1 with the a-priori probabilities pj . Bob’s measurement
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on the state may yield N + 1 different results and is formally described by
the POVM whose N + 1 components satisfy

Πj ≥ 0, j = 0, . . . , N,
N∑
j=0

Πj = 1. (3.124)

The outcome Π0 indicates failure and the probability of inconclusive results
is thus given by

PI =
N∑
j=1

pjTr[ρjΠ0]. (3.125)

For a certain fixed value of PI we want to maximize the relative success
rate (3.123) that is equivalent to the maximization of the success rate (3.113).
To account for the linear constraints (3.124) and (3.125) we introduce La-
grange multipliers λ and a where λ is hermitian operator and a is a real num-
ber. Taking everything together we should maximize the constrained success
rate functional

L =
N∑
j=1

pjTr[ρjΠj ]−
N∑
j=0

Tr[λΠj ] + a
N∑
j=1

pjTr[ρjΠ0]. (3.126)

With the help of Cholesky decomposition and calculus of variation we arrive
at the extremal equations for the optimal POVM,

(λ− pjρj)Πj = 0, j = 1, . . . , N, (3.127)
(λ− aσ)Π0 = 0, (3.128)

where the operator σ introduced for the sake of notational simplicity reads

σ =
N∑
j=1

pjρj . (3.129)

From the constraint Tr[σΠ0] = PI we can express a in terms of λ,

a = P−1
I Tr[λΠ0]. (3.130)

Furthermore, if we sum all (3.127) and also (3.128) and use the resolution of
the identity (3.124), we obtain the following formula for λ,

λ =
N∑
j=1

pjρjΠj + aσΠ0. (3.131)

The analytical solution of this extremal problem seems to be extremely
complicated. Nevertheless, we can solve again the extremal equations numer-
ically [90] as in the case of ambiguous discrimination. In principle, one could
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iterate directly (3.127) and (3.128). However, the POVM elements Πj should
be positive semidefinite hermitian operators. All constraints can be exactly
satisfied at each iteration step if the extremal equations are symmetrized.
First we express Πj = pjλ

−1ρjΠj and combine it with its hermitian conju-
gate. We proceed similarly also for Π0 and we get

Πj = p2jλ
−1ρjΠjρjλ

−1, j = 1, . . . , N, (3.132)

Π0 = a2λ−1σΠ0σλ
−1. (3.133)

The Lagrange multipliers λ and a must be determined self-consistently so
that all the constraints will hold. If we sum (3.132) and (3.133) and take into
account that

∑N
j=0Πj = 1, we obtain

λ =


 N∑
j=1

p2jρjΠjρj + a2σΠ0σ




1/2

. (3.134)

The fraction of inconclusive results calculated for the POVM after the itera-
tion is given by

PI = a2Tr[σλ−1σΠ0σλ
−1]. (3.135)

Since the Lagrange multiplier λ is expressed in terms of a, (3.135) forms
a nonlinear equation for a single real parameter a (or, more precisely, a2).
This nonlinear equation can be very efficiently solved by Newton’s method
of halving the interval. At each iteration step for the POVM elements, we
thus solve the system of coupled nonlinear equations (3.134) and (3.135) for
the Lagrange multipliers. These self-consistent iterations typically exhibit an
exponentially fast convergence [82,90].

As the fraction of inconclusive results PI is increased the success rate
PS decreases. However, the relative success rate PRS grows until it achieves
its maximum PRS,max. If {ρj}Nj=1 are linearly independent pure states, then
PRS,max = 1 because exact IDP scheme works and the unambiguous discrim-
ination is possible. Generally, however the maximum is lower than unity. The
analytical expression for this maximum can be found [90].

Let us illustrate the trade-off between probability of inconclusive results
and relative success rate PRS on explicit example. We consider the problem of
optimal discrimination between two mixed qubit states ρ1 and ρ2. To simplify
the discussion, we shall assume that the purities of these states as well as the
a-priori probabilities are equal, P1 = P2 = P, p1 = p2 = 1/2. The mixed
states can be visualized as points inside the Poincaré sphere and the purity
determines the distance of the point from the center of that sphere. Without
loss of generality, we can assume that both states lie in the xz plane and are
symmetrically located about the z axis,

ρ1,2 = ηψ1,2(θ) +
1− η

2
1, (3.136)
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where ψj = |ψj〉〈ψj | denotes a density matrix of a pure state,

|ψ1,2(θ)〉 = cos
θ

2
|0〉 ± sin

θ

2
|1〉, (3.137)

and θ ∈ (0, π/2). The parameter η determines the purity of the mixed
state (3.136), P = (1 + η2)/2.

From the symmetry it follows that the elements Π1 and Π2 of the optimal
POVM must be proportional to the projectors ψ1(φ) and ψ2(φ), where the an-
gle φ ∈ (π/2, π) is related to the fraction of the inconclusive results. The third
component Π0 is proportional to the projector onto state |0〉. The normaliza-
tion of the POVM elements can be determined from the constraint (3.124)
and we find

Π1,2(φ) =
1

2 sin2(φ/2)
ψ1,2(φ),

Π0(φ) =
(

1− 1
tan2(φ/2)

)
|0〉〈0|.

(3.138)

The relative success rate for this POVM reads

PRS =
1 + η cos(φ− θ)

2(1 + η cos θ cosφ)
(3.139)

and the fraction of inconclusive results is given by

PI =
1
2

(1 + η cos θ)
(

1− 1
tan2(φ/2)

)
. (3.140)

The formulas (3.139) and (3.140) describe implicitly the dependence of the
relative success rate PRS on the fraction of the inconclusive results PI.
From (3.130) and (3.131) one can determine the Lagrange multipliers λ and a
for the POVM (3.138) and check that the extremal equations (3.127), (3.128)
are satisfied. The maximum PRS,max is achieved if the angle φ is chosen as
follows,

cosφmax = −η cos θ. (3.141)

On inserting the optimal φmax back into (3.139) we get

PRS,max =
1
2

[
1 +

η sin θ√
1− η2 cos2 θ

]
. (3.142)

The optimal POVM (3.138) can be also obtained numerically. We demon-
strate the feasibility of iterative solution of the symmetrized extremal equa-
tions (3.132), (3.133), (3.134), and (3.135) for mixed quantum states (3.136)
with the angle of separation θ = π/4. The trade-off of the relative success
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Fig. 3.11. Relative success rate PRS versus the fraction of inconclusive results PI

for the optimal discrimination of two mixed states (3.136) with θ = π/4 and four
different parameters η = 0.7, η = 0.8, η = 0.9, and η = 1.0.

rate and the probability of inconclusive results is shown in Fig. 3.11 for vari-
ous purities of the states being discriminated. For the given probability PI of
inconclusive results and the given purity of the states the extremal equations
are solved self-consistently by means of repeated iterations. The success rate
PS is calculated from the obtained optimal POVM and re-normalized ac-
cording to (3.123). The numerically obtained dependence of PRS on PI is in
excellent agreement with the analytical dependence following from formu-
las (3.139) and (3.140). Typically, a sixteen digit precision is reached after
several tens of iterations. The trade-off curves shown in Fig. 3.11 reveal the
monotonous growth of PRS until the maximal plateau (3.142) is reached.

Conclusions

We have presented a powerful reconstruction method that is capable of deal-
ing with any experimental data. It stems from mathematical statistics but can
be interpreted equally well in terms of quantum theory. Though the formula-
tions of mathematical statistics and quantum theory are rather independent,
they both overlap when describing measurement and information. Maximum
likelihood plays a prominent role among other estimation techniques. It ex-
ploits the full information potential of registered data, preserves the structure
of quantum theory such as completeness or uncertainty relations, and reaches
the ultimate resolution asymptotically. This seems to be crucial for the future
potential applications in quantum information science for quantifying all the
subtle and fragile quantum effects.
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