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In newly developed neutron phase tomography, wave properties of neutrons are exploited for the nonde-
structive testing of the internal structure of matter. We show how limitations due to small available intensities
of present neutron sources can be overcome by using an advanced maximum-likelihood reconstruction algo-
rithm. Unlike the standard filtered back-projection, the developed procedure gives reasonable results also when
used on very noisy data or data consisting of only a few measured projections. This is demonstrated by means
of simulations and also experimentally. The proposed method leads to considerably shorter measuring times
and/or increased precision.
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I. INTRODUCTION

In neutron optics one is often confronted with low count
numbers because the phase space densities of present neutron
beams is many orders of magnitude below that of laser and
x-ray synchrotron beams. This intensity problem has dra-
matically arisen in the recently developed neutron phase con-
trast tomographysnPCTd f1g. PCT was originally invented in
x-ray tomography with much higher intensities available
f2–4g. In order to utilizenPCT it is necessary to develop an
advanced maximum-likelihoodsML d reconstruction tech-
nique, which can be applied to very low count numbers. For
instance, the typical count number in our presentnPCT setup
is about 100n/2h in a 50350 mm2 pixel. In principle focus-
ing techniques, e.g., asymmetric Bragg reflections, can en-
hance the density of the quasimonochromatic and well-
collimated neutron beams, but such hypothetic gains will
rather be used to reduce the measurement time than to raise
the count numbers. Therefore the low numbers of detected
neutrons have to be accepted as the limiting factor ofnPCT,
and our strategy is to master the tomographic reconstruction
even in that extreme case.

Our motivation for developingnPCT is its extreme sensi-
tivity, which is at least three orders of magnitude higher than
that of conventional transmission tomography. ThenPCT
method proves its strength in extreme applications where
other methods fail:sid 3D investigation of non- or weak-
absorbing substances,sii d analysis of isotope distributions
with high sensitivity,siii d investigation of magnetic domains
in bulk materials, andsivd energy and momentum exchange
free analysis of magneticsaxiald and scalar potentials. In
short, neutron phase tomography seems to be extremely use-
ful for the investigation of internal structure in material sci-
ence.

Our first results have been obtained using the standard
filtered-backprojectionsFBd method f5g. The tomographic
projection of a scalar phase field can be described similar to
a scalar density field. But there are important differences
between phase and transmission tomography. Phases are not
directly measurable, and they are restricted to thef0,2pg
interval.

In general, a set of reference phases controlled by the
experimenter is needed for the estimation of phases. The use
of an auxiliary phase shifterd j is routinely applied in neutron
interferometry and the resulting phase shifter interferograms
are simply called scansf6g. In principle only two reference
phases are needed for the unique phase determination in the
f0,2pg interval. But our choice of three reference phases
sd j =0° ,120° ,240°d has several advantages. It will be
shown later that for three reference measurements an analyti-
cal evaluation of the unknown parameterssphase, visibility,
mean numberd is possible. Generalization to an arbitrary
large set of auxiliary phases was given inf7g. However, since
the total measurement time is proportional to the number of
scans taken and the currently available coherent neutron in-
tensities are low, small sets of reference phase measurements
are preferred.

The second difference is directly related to the FB
method, where the accumulated phases are the starting point
for tomographic reconstruction. Due to the high phase sensi-
tivity it is very likely that the projected phases exceed 2p,
which requires an additional phase correction before apply-
ing the conventional FB routine.

Other FB shortcomings should be addressed shortly. The
image quality depends strongly on the filter parameters and
has not the objectivity of the presented ML method. Addi-
tionally, noise gets amplified in the standard FB filtersf8g. It
was demonstrated inf9g that the standard FB routine fails for
strongly fluctuating data. The FB algorithm requires equidis-
tant projection angles covering the full 180° interval. If one
projection is missing or contains bad data, then the whole
reconstruction fails. Poor results are obtained if only a few
projections are available. These FB constraints hinder the
full exploitation of neutron tomography, therefore a ML re-
construction algorithm has been developed, which over-
comes the FB shortcomings mentioned.

This paper is organized as follows: In Sec. II we discuss
in detail the estimation of the total phase accumulated in a
sample. In Sec. III our maximum-likelihood algorithm for
the phase-contrast tomography is derived. Optimal treatment
of reference phase measurements leading to a refined recon-
struction routine is discussed in Sec. IV. In Sec. V we apply
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our procedure to data simulating extreme experimental con-
ditions as well as to experimental data. We close with the
summary of results in Sec. VI.

II. nPCT AND PHASE ESTIMATION

For independent measurements, as it is the case for Pois-
sonian statistics, all the accumulated information can be ex-
pressed as ana posteriori likelihood function. It is essential
that the likelihood includes all measured data, and, together
with the physical model for the detection probabilities, all
experimental information. Thus the likelihood is the opti-
mum starting point for a complete tomographic analysis.

The experimental setup ofnPCT is schematically shown
in Fig. 1. The sample is inserted into one arm of a perfect
crystal interferometer while an object of known characteris-
tics placed in the other arm compensates the large overall
phase shift introduced by the thick sample. The output beam
is then registered by a CCD camera with the spatial resolu-
tion of 50 mm. Like in absorption tomography, the sample is
rotated around the vertical axis and up to several tens of
scans are registered. Anglew together with the positionh of
a CCD pixel specify the path of the particles registered by
that pixel through the sample; see Fig. 2. For the sake of
brevity, h and w will be represented by a single collective
index j . To get an unambiguous value of the reconstructed
phase, each scan is repeated several times with different set-
tings of the auxiliary phase shifter.

nPCT involves two nontrivial inverse problems: phase es-
timation and tomographic imaging. Let us first discuss the
former one and justify our particular choice of auxiliary
phases. Consider an interferometric measurement with inten-
sity N and amplitudeV. The measured interference pattern,

n̄asūd = N + V cossū + dad, s1d

depends on the true valueū of the sought after phase. To
estimate it, the interference pattern will be scanned withL
different settings of the auxiliary phase shifter uniformly dis-
tributed over the 2p phase window,

da = a
2p

L
, a = 0,1, . . . ,L − 1. s2d

If thermal phase drifts are negligible, then the only fluctuat-
ing quantity in a tomographic measurement is the count
number of particles. Its fluctuations are described by the
Poissonian statistics, which was confirmed in several experi-
mentsf10,11g. Since the detections with different settingsda

are statistically independent events, the joint probability of
registering datan is simply a product of Poissonian likeli-
hood functions,

Lsud = p
a

n̄a
nasud
na!

en̄asud. s3d

This is also the likelihood of a given valueu of the unknown
phase shift.

In accordance with the maximum likelihood principle, we
will take the maximum likely phase as the inferred value of
u. This value is found by maximizing functions3d or its
logarithm. In the case of uniformly distributed auxiliary
phase shifts, when the identityoa cossu+dad=0 holds, the
log-likelihood simplifies to

log L = o
a

na logfN + V cossu + dadg − NL. s4d

At this point it is convenient to introduce new variablesx
=V cosu andy=V sinu. We are looking for the point where
the likelihood has zero slope:]L /]x=]L /]y=]L /]N=0.
From Eq.s4d we get the following extremal equations:

o
a

na cosda

N + x cosda − y sinda

= 0,

o
a

na sinda

N + x cosda − y sinda

= 0, s5d

o
a

na

N + x cosda − y sinda

= L.

In general, these equations have to be solved numerically, for
instance by some iterative procedure. However, there is one
special case where the solution of Eq.s5d can be obtained in
a closed form. This solution is related to another estimation
problem—phase estimation in the presence of Gaussian sig-
nal. The likelihoods3d is consistent with the fact that the
detected signal consists of discrete particles. Now consider a

FIG. 1. Scheme ofnPCT experiment.

FIG. 2. Geometry of a tomographic imaging.
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thought experiment with Gaussian signal described by the
likelihood

L = p
a

exp„− sn̄a − nad2/s2
…. s6d

In this case, all measured quantities are affected by the same
amount of noises, no matter what the true values of the
estimated parameters are. Such behavior would be typical for
continuous signalswavesd. As can be easily checked, Gauss-
ian likelihood s6d is maximized by the quadratic estimator
sleast square fitd:

x = 2o
a

na coss− dad/L,

y = 2o
a

na sins− dad/L, s7d

N = o
a

na/L,

which, going back to the original variables, can be written in
the following compact form:

V = 2uRu/L, eiu = R/uRu, s8d

where

R= o
a

nae−ida s9d

is the first coefficient of the discrete Fourier transformation
sDFTd of the registered countsna f12g. Now since the Gauss-
ian assumption about the detected signal is only an approxi-
mation to the true statisticsf13,14g, the estimators8d will
generally not be the optimal one. However, one can easily
verify, that if three auxiliary phase shifts are usedsL=3d, the
solution s7d will also satisfy the Poissonian extremal equa-
tions s5d. This means that it is particularly useful to use three
auxiliary phase shifts for in that case the optimal phase esti-
mation is easily done by means of the simple analytical for-
mula s8d.

III. MAXIMUM-LIKELIHOOD nPCT ALGORITHM

In nPCT, phase sensitive datanja are registered. Indexesj
anda label scanssi.e., pixels of the CCD camera and rota-
tions of the sampled and auxiliary phases, respectively. Since
each scan contributes likelihoods6d and different scans are
independent observations, the total likelihood reads

log L = o
j

o
a

snja − n̄jad2. s10d

Again, the mean numbers of particles detected inj th scan
form an interference pattern,

nja = Nj + Vj cossu j + da + u j
rd, s11d

where the total phase accumulated along thej th projection is
discretized as follows:

u j = o
i

cjimi . s12d

Here the coefficientcji quantifies the overlap between thej th
projection and theith elementary cell of the reconstruction
mesh. Reference phasesu j

r appearing in Eq.s11d describe the
phase properties of the interferometer alone. They can be
estimated from the same set of projections measured with the
sample removed.

Likelihood s10d is to be maximized over the distribution
mi of the scattering density in the sample. In neutron phase
imaging,m is given by the sum of scattering length densities
sNbd of all P isotopes comprising the sample:

m = − lo
l=1

P

Nlbl = − lo
l=1

P
NArlbl

Al
. s13d

HereNl represents the number of isotopesl per unit volume,
rl the isotope density, NA the Avogadro constant
f6.02214199s47d31023 mol−1g, andAl the atomic weight.l
represents the mean wavelength of the illuminating quasimo-
nochromatic beam, andbl the coherent scattering length,
which is a constant interaction parameter accurately known
for most isotopesf15g. Most of them have a positive coher-
ent scattering length but some are known with negativebls.
The coherent scattering length is defined positive for repul-

sive optical potentialsV̄.0 with the index of refraction less

than unity: n=Î1−V̄/E=1−l2Nbl /2p. The existence of
positive and negative phase shifts is a specialty of neutron
optics. It can be utilized for fading out unwanted phase con-
tributions.

Using Eqs.s10d and s11d in the extremal conditions

]L
]mi

= 0, ∀ mi , s14d

we get

mi = mi

o
j

Vjcji sinu j Im hRjj

o
j

Vjcji cosu j RehRjj
. s15d

This set of nonlinear equations for the unknown distribution
of m j is the main theoretical result of this paper. Notice that
the system Eq.s15d has been put in a form suitable for itera-
tions. Starting from some initial distribution of scattering
density mi, the maximum-likely distribution is obtained by
repeated iterations. This will be illustrated in Sec. V. A uni-
form distribution ofmi makes usually a good starting point,
but other choices may be used as well, especially if some
prior knowledge about the geometry or composition of the
sample is available.

IV. REFERENCE PHASES

No interferometers are perfect. Already an empty interfer-
ometer shows nonuniform distribution of phase difference
between its two arms. To remove this background phase, the
phase measurement is done in two steps: With the sample
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and without it. The most simple way how to proceed is to
determine the reference phase separately and then subtract it
from the total phase as it is indicated in Eq.s11d. This pro-
cedure is simple but not optimal. It is not difficult to see why.
The inspection of Eq.s15d shows that the reconstructed in-
dexes of refractionmi depend on the visibilitiesv j =Vj /Nj of
the registered interference fringes. This is natural since phase
tomography is a synthesis of many phase measurements, of
which those having higher visibilities are less affected by
noise and thus also lead to a more credible phase estimation.
Similar argument applies to the reference phase measure-
ment. Experimental conditions during the reference phase
measurement are usually more favorable than that during the
sample measurement. Consequently, the phase introduced by
an empty interferometer is known to a greater accuracy than
phase introduced by interferometerand sample. This addi-
tional knowledge can be incorporated into the reconstruction
routine. Let us first rewrite the Gaussian posterior phase dis-
tribution Eq. s6d to a more compact form. Only its phase
dependent part is now of importance,

Lsud ~ expF2V

s2 o
a

na cossu + dadG
= expF2V

s2 Scosuo
a

na cosda − sinuo
a

na sindaDG
= expF2V

s2 sRehRjcosu + ImhRjsinudG
= expF2VuRu

s2 cossu − uDFTdG = expfV2 cossu − uDFTdg.

s16d

In the last step we have used Eq.s8d, and set the unimportant
scaling factorL /s2=1. Denoting nowu=us+ur the total
phase measured with the sample, which is the sum of the
reference phaseur and phaseus introduced by the sample
alone, the posterior distributions ofu andur read

Psud ~ eV2 cossu−uDFTd, s17d

Psurd ~ eVr
2 cossur−ur,DFTd. s18d

These are the standard von Mieses normal distributions de-
fined on a unit circle. As has been mentioned above, given
mean intensities, the widths of the phase distributions are
determined by the corresponding visibilities. InnPCT we are
interested only in phaseus introduced by the sample alone.
The posterior distribution ofus can be readily obtained from
Eq. s17d as a phase difference distribution,

Psusd =E E PsudPsurddsu − ur − usddurdu. s19d

The double integrations can be easily carried out and the
result expressed in terms of the Bessel functionI:

Psusd ~ I0„
ÎV4 + Vr

4 + 2V2Vr
2 cossus − u−,DFTd…, s20d

whereu−,DFT=uDFT−ur,DFT. This means that the phase mea-
surements with the sample and without it, when taken to-
gether, amount to a single phase measurement with a modi-
fied visibility. This new effective visibility governing the
phase resolution of the experiment can be determined from
Eq. s20d. In the limit of large count numbers, when the
asymptotic expression

lim
x→`

I0sxd =
ex

Î2px
s21d

for the Bessel function holds, and assuming thatVr @V as it
is often found in experiments, Eq.s20d reduces to the von
Mieses normal form, and the effective visibilityv8 becomes

v8 <
vvr

Î4 v4 + vr
4
. s22d

Notice thatv8→v asv→0. The error of the reference phase
measurement can be ignored if the measurement with the
sample is very noisy.

The total phaseusj accumulated along thej th projection
can be written, as before, as a sum of the individual contri-
butions from different cells,usj=ocijmi. The posterior distri-
bution Eq.s20d is then to be maximized over thosemi. This
leads to a refinednPCT reconstruction algorithm

mi = mi − sCi − Sidmi , s23d

where

Ci = o
j

Vj
2Vrj

2 I1sxjdcossu−,DFT
j d/xj , s24d

Si = o
j

Vj
2Vrj

2 I1sxjdsinsu−,DFT
j d/xj , s25d

and

xj = ÎVj
4 + Vrj

4 + 2Vj
2Vrj

2 cossu j − u−,DFT
j d. s26d

V. RESULTS

The presented theory has been extensively tested by
means of computer simulations and also experimentally. The
simpler of the two presented reconstruction algorithms Eq.
s15d has been used for data processing since the error of the
reference phase measurement could be ignored in our experi-
ments. Of course, any realnPCT experiment is more com-
plicated than the simple ideal model discussed above, due to
various sources of noise and presence of systematic errors.
The power of the reconstruction method is fully revealed
only in simulations.

Figure 3 shows a simulation of an idealnPCT experiment
under various experimental conditions. The artificial object
shown in panelsad was scanned from 31 different angles
with the horizontal resolution of 81 pixels. Casesdd is the
most interesting one. Here the simulated incident beam had
such a low intensity that its Poissonian fluctuations were
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comparable to the modulation caused by the maximal phase
shifts introduced by the light gray and dark gray cylinders.
Despite the useful phase information is thus nearly lost in the
background noise, all three cylinders nicely show in the re-
construction.

Another example is shown in Fig. 4. Simulated experi-
mental conditions are similar to those of Fig. 3 except for the
maximal phase shifts that are now well in excess of 4p ra-
dians. This prior knowledge could be easily incorporated into
the reconstruction, and as a result, the internal structure of
the object was nicely resolved.

An isotope gauge with a similar geometry has been inves-
tigated at thenPCT setup in the Institute Laue-Langevin in
Grenoblef16g in order to test the method and verify its sen-
sitivity and spatial resolution under realistic conditions. The
test object was an aluminum rod of 7 mm diameter with
three cylinders drilled in, filled with different isotope mix-

tures; see Fig. 5sad. The central cylinder was filled with the
mixture of 78% of elemental sulphur and 22% of aluminum
oxide. The two smaller side holes were filled with two dif-
ferent water mixtures: 96% H2O+4% D2O and
95.6% H2O+4.4% D2O. Notice that both the sulfur iso-
topes and the aluminum are nearly transparent to thermal
neutrons and therefore invisible in conventional transmission
tomography shown in Fig. 5sbd.

In contrast to this, a sensitivity in detecting nuclear den-
sity differences at a 1% level has been confirmed in the
phase analysis, with a spatial resolution of 50mm in the
phase projections.

Tomographic reconstructions from the measured phase
sensitive data are summarized in Fig. 6. Panelsad is a picture
of the top of the sample showing its true geometry. For the
reconstruction, 30 different projections were measured with
the transversal resolution of about 150 pixels per the width
of the aluminum rod. Intensity in the region of interest was
extremely low, typically below 30 counts per pixel. Small
number of projections together with low intensity and small
visibility scaused by scattering effectsd make the data inver-
sion a challenge for any reconstruction technique.

Panelsbd in Fig. 6 shows a typical maximum-likelihood
reconstruction of a single 50mm thick sample slice. Though
the noise in the image is rather large, one can easily distin-

FIG. 3. Simulated phase tomography with a weak neutron sig-
nal. The maximal accumulated phasesu j in the three cylinders mak-
ing up the objectsad are 150°, 50°, and 30° for white, light gray, and
dark gray cylinder, respectively. The simulated data consists of 31
projections, 81 pixels each, with the mean count numbers per pixel
and visibilities as follows:sbd N=450, v=33%; scd N=150, v
=33%; sdd N=30, v=33%.

FIG. 4. Simulated phase tomography with a weak neutron signal,N=150 andv=33%. The maximal accumulated phaseu j in the object
is 4.2p rad.sad The artificial object; the ratio of the indexes of refraction in the white, light gray, dark gray, and black regions is 1:0.8:0.5:0.2.
sbd ML reconstruction from 31 angles and 81 pixels.scd ML reconstruction from 21 angles and 41 pixels.

FIG. 5. Side view of the measured sample:sad schematic pic-
ture; sbd conventional transmission image.
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guish the geometry of the object. Still better results were
obtained by using data averaged over 10 adjacent slices for
the reconstructionswith the corresponding vertical resolution
of 0.5 mmd. In this way, the signal-to-noise ratio was some-
what increased. The resulting reconstruction is shown in Fig.
6scd. Last panel Fig. 6sdd shows the line profile of the recon-
structed scattering density along the direction indicated by
the vertical line in Fig. 6scd. The average scattering density
in the two water isotope mixtures differs only by 10%, well
in accordance with the expected values from the sample
preparation. This relates to a sensitivity of 4310−3 in the
detection of D2O differences in the mass fraction.

Finally, let us stress that we applied our algorithm to raw
measured data without any prior filtering. The appearance of
some artifacts in the reconstructed imagesswhite specks in-
side the water cylindersd is probably caused by not consid-
ering scattering effects. However, given the extreme experi-
mental conditions and the small number of measured
projections, the reconstructions can be considered successful.
Further enhancements can be expected after developing more
accurate physical model of the experiment and applying ap-
propriate filters prior to reconstruction.

VI. CONCLUSION

We have developed a new algorithm for phase-contrast
tomography. Important features of this method are the fol-
lowing: s1d The two subproblems of thenPCT problem—
phase estimation and tomographic imaging—are solved si-
multaneously, not one after the other.s2d All sources of noise
can be incorporated into the model in a natural way. The
method provides optimal treatment of noisy data. We have
demonstrated its robustness in the extreme cases of small
numbers of measured projections, low available intensities,
and large total phase shifts induced by measured objects. In
all cases our method yielded satisfactory results. As future
nPCT applications we consider the analysis of weak absorb-
ing substances and isotope distributions, and the sensitive
detection of residues and corrosion in metals. The methods
can be used in x-ray PCT as well, e.g., in medical imaging,
where the absorbed radiation doses can significantly be re-
duced with the optimized maximum-likelihood routine.
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