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Acad. Sci., 17. listopadu 50, 772 07 Olomouc, Czech Republic

Abstract

Standard deterministic techniques for quantum state reconstruction, as for exam-
ple optical homodyne tomography, photon chopping, unbalanced homodyning etc., are
based on the deterministic inversion of measured data. Since the frequencies obtained
in realistic experiments always differ from probabilities predicted by quantum theory
due to fluctuations, imperfections and realistic restrictions, the algorithm of inversion
cannot guarantee the positive definiteness of the reconstructed density matrix. Hence
the estimation of the noises may appear as doubtful.

Quantum states may be successfully reconstructed within quantum and informa-
tion theories using the maximum likelihood estimation. The question of deterministic
schemes: “ What quantum state is determined by that measurement?” is replaced by
the formulation consistent with quantum theory: “ What quantum state(s) seems to be
most likely for that measurement ?” Nonlinear equation for reconstructed state is formu-
lated. An exact solution may be approached by subsequent iterations. Reconstruction
is formulated as a problem of proper normalization of incompatible (nonorthogonal)
measurements. The results obtained by this novel method may differ significantly from
the standard predictions. Data are fitted better keeping the constraint of positive def-
initeness of reconstructed density matrix. However, this interpretation may enlarge
uncertainty in prediction of quantum state in comparison with deterministic schemes,
since, in general, there is a whole family of states which fit the measured data equally
well. The novel technique is nonlinear and the reinterpretation of existing reconstruc-
tion schemes represents an advanced program.
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INTRODUCTION

Quantum theory brings information about observable events on the most funda-
mental level currently available. The statistical nature of almost all quantum phe-
nomena seems to be its characteristic feature. This intrinsic uncertainty cannot be
considered in accordance with the “classical” experience as a lack of knowledge about
the internal structure of the system, since this does not exhaust the richness of the
quantum world. The intrinsic uncertainty is hidden in the wave function, the origin
of which remains unknown and unexplained by quantum theory. The pragmatic in-
terpretation of quantum theory concentrates on the observable aspects, which may be
successfully addressed within existing techniques. Determination of quantum state on
the basis of the performed measurement may be acknowledged as one of those topical
problems.

Although the history of state reconstruction may be traced back to the early days
of quantum mechanics to Pauli problem 1, only quantum optics opened the new era.
Theoretical prediction of Vogel and Risken 2 was closely followed by the experimental
realization of the suggested algorithm by Smithey et. al. 3. Since that time many
improvements and new techniques have been proposed 4,5 and similar techniques are
currently being used also in atomic physics as quantum endoscopy 6. The potential gain
of this treatment is tremendous. Provided that certain quantum measurement enables
us to determine the wave function of the system, the statistics of any further possible
measurement may be forecast. The quantum state reconstruction plays therefore the
role of a universal measurement. and is considered nowadays as a standard technique .

Nevertheless, there are some potential problems associated with standard treat-
ment. Available realistic measurements are always limited as far as the amount and
accuracy of data is concerned. Consequently, any scheme for posterior estimation is af-
fected by these imperfections. Particularly, the standard techniques based on inversion
of quantum prediction do not preserve the semipositive definiteness of reconstructed
density matrix, a necessary condition of quantum state definition. This may be accom-
plished using the statistical approach. There are several proposals based on various
statistical concepts, including Bayesian approach 8, Maximum Entropy 9 principle or
the Maximum Likelihood estimation (MaxLik). They all release the relation between
the observed data and the quantum state generating them. The MaxLik estimation
will be focused in this contribution. Its formulation follows closely the motivation of
standard treatments.

The technique of MaxLik estimation is widely used in various branches of tech-
nology and science 10. It is usually used as a tool for fitting a few parameters which
maximizes the likelihood under the given constraints. In quantum theory, MaxLik has
already been used for quantum phase estimation 11,12 and recently, it has been adopted
for estimation of more parameters as well 13,14. Nevertheless, in all these applications
additional constraints were crucial for successful application of this method. For exam-
ple, this is done by restrictions put on the dimension of the problem 13, or by additional
assumptions about the nature of the noise 14. Without these conditions the problem of
MaxLik estimation is considered as intractable due to the multidimensional nonlinear
optimization. Nevertheless, quantum theory of MaxLik estimation without any other
additional assumptions is addressed in this contribution. As a result, this complex opti-
mization can be interpreted as quantum prediction for renormalized projectors. Hence,
the procedure of mathematical statistics may be interpreted purely in the language
of quantum theory. This feature indicates another close and fundamental relation be-
tween geometry of Hilbert space and concepts of mathematical statistics 15,16. Various
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issues of this novel treatment are explained in this contribution in the form of a dozen
frequently asked questions concerning quantum tomography.

A DOZEN FREQUENTLY ASKED QUESTIONS

1. WHAT IS THE QUANTUM TOMOGRAPHY ?
Tomography is routinely used in medicine. A picture of body is obtained by a
synthesis of many various X-ray projections of the object. The registration of
rotated quadrature operator x̂θ = (âe−iθ + â†eiθ)/2 using homodyne detection
represents an analogy to the absorption of X–rays in medicine. Complete proba-
bility P (xθ, θ) determines, for example, the Wigner function of quantum state by
the Radon transformation 2

W (αr, αi) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
dx|η|dη

∫ π

0
dθP (x, θ)eiηx−iαr cos θ−iαi sin θ.

Similarly, there are many other experimental techniques in quantum theory. That
enables us to observe “various faces” of a quantum system: homodyne detection
3,17,18, photon chopping 19, quantum state measurement via heterodyne detection
20, unbalanced homodyning 21, direct probing by photon counting 22, quantum
endoscopy 6, etc.

2. WHAT IS THE PRAGMATIC INTERPRETATION OF QUANTUM TOMOG-
RAPHY?
Quantum tomography is nothing else than a theory of conditional measurements.
Already performed experiments condition the future outcomes of different forth-
coming measurements done on the same system.

3. WHAT IS THE COMMON MATHEMATICAL FORMULATION OF STANDARD
APPROACHES?
Standard approaches are based on the formal inversion of quantum prediction

〈yi|ρ̂|yi〉 = fi,

where |yi〉 represent the registered projectors and fi are their counted frequen-
cies. Particularly, in the case of tomography based on homodyne detection, the
probability P (x, θ) is simply replaced by discretized frequencies f(xi, θj).

4. ARE THERE ANY APPARENT FLAWS IN STANDARD APPROACHES?
Yes. The reconstructed object is not a density matrix ρ̂ ≥ 0 in general! Hence,
some probabilities are predicted as negative. Standard approaches do not describe
the statistical nature of quantum observations properly and do not distinguish
sufficiently what can and what cannot be predicted from the given data 7.

5. WHAT IS THE REMEDY AGAINST THE DIFFICULTIES OF STANDARD
APPROACHES?
An approach based on statistical interpretation. The detected data could be
generated by nearly any quantum state, nevertheless, with various likelihoods.
Likelihood is given by the product of probabilities for all independently counted
outcomes (enumerated by index i here)

L =
∏

i

pni
i

provided that data enumerated by index i are registered ni times,
∑

ni = n.
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6. COULD THE NOVEL APPROACH TO QUANTUM TOMOGRAPHY BE DEMON-
STRATED ON A SIMPLE STATISTICAL MODEL?
Yes, on the model of estimation of prior probabilities. Assume that data ni are
generated with some prior probabilities pi,

∑
i pi = 1, which should be found from

the data. The likelihood for associating the data {ni} with some probabilities
{pi} is given by the multinomial distribution

P({pi}|{ni}) = n!
∏

i

1
ni!

pni
i .

The most probable guess is given by frequencies fi = ni/n.

7. IS THE STATISTICAL APPROACH SOMEHOW RELATED TO ENTROPY?
Yes, to the relative entropy (Kullback–Leibler divergence). The logarithm of the
ratio of likelihood functions
P({fi})/P({pi}) yields the Kullback–Leibler divergence

K(fi/pi) = n
∑

i

fi log
fi

pi

.

This equals up to the sign to the relative entropy 23.

8. WHAT IS THE MAXIMUM LIKELIHOOD ESTIMATION?

MaxLik estimation searches for the state which provides the largest likelihood for
the given data. Equivalently, such states minimize the relative entropy for the
given data. In the above mentioned example the MaxLik estimation of probabil-
ities is given by frequencies fi. However, there are some significant differences in
quantum theory:

• The estimated probabilities depend on the same quantum state and are
therefore not independent.

• The probabilities are not normalized to one since projectors need not be
complete.

9. WHAT IS THE MATHEMATICAL FORMULATION OF MAXLIK ESTIMA-
TION?

Probabilities are given in quantum theory as

pi = 〈yi|ρ̂|yi〉.
Maximization of likelihood on the class of possible states (density matrices) cor-
responds to the nonlinear operator equation

R̂(ρ̂)ρ̂ = ρ̂.

Unknown density matrix is assumed in its diagonal form

ρ̂ =
∑

k

rk|φk〉〈φk|,

and operator R̂ is given as

R̂ =
∑

i

fi

ρii

|yi〉〈yi|,
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ρii =
∑

k

rk|〈φk|yi〉|2.

Reconstruction is done in the subspace where operator R̂ equals to the identity
operator 24 .

10. WHAT IS THE PHYSICAL INTERPRETATION OF MAXLIK RECONSTRUC-
TION?
MaxLik estimation may be interpreted as renormalization of incompatible (non-
commuting) observables for which the synthesis of various projections is done.
Assume the rescaling of the projectors as

|yi〉〈yi| → |y′i〉〈y′i| =
fi

ρii

|yi〉〈yi|.
The rescaled projectors satisfy the quantum prediction

〈y′i|ρ̂|y′i〉 = fi.

The operator
∑

i |y′i〉〈y′i| characterizes the overlapping of rays |y′i〉. Hence, the Max-
Lik reconstruction reproduces the quantum prediction for suitable renormalized
projectors. This is achieved on a subspace–field of view–enclosed by condition
R̂ = 1̂.

11. WHAT ARE THE PHYSICAL CONSEQUENCES OF MAXLIK ESTIMATION?
MaxLik approach generalizes the standard treatment. Whenever the latter one
has a solution on the manifold of density matrices, then this is the solution of the
former one as well. Besides this, MaxLik estimation provides a whole family of
extremum states not distinguishable by the given measurement. Averaging over
this family enhances the uncertainty of state prediction. MaxLik reconstruction of
diagonal elements of density matrix has been already done for homodyne detection
with fluctuating phases 25,26.

12. DOES THIS FIELD OF VIEW HAVE ANY SIMPLE INTERPRETATION?

Realistic data can never provide complete information about quantum state in
infinite dimensional Hilbert space. Any prediction should be restricted to certain
field of view. Assume a simple example of reconstruction of diagonal elements
of density matrix via photon counting with ideal detector. Suppose n times
repeated counting, always with zero registered photoelectrons. The “standard”
prediction of quantum state reads ρ̂ = |0〉〈0|, where |0〉 denotes the vacuum
state. Nevertheless this interpretation is not the only one. Assume an additional
classical noise represented by a projector into the strong coherent state N̂ε =
| α√

ε
〉coh〈 α√

ε
| appearing with the negligible probability ε. The state

ρ̂ε = (1− ε)ρ̂ + εN̂ε

cannot be distinguished from the standard one for sufficiently small ε < 1/n. This
may appear as crucial for some observations. For example, the average numbers
of particles differ significantly for both the states. Field of view is specified as
the subspace where operator R̂ reproduces the identity operator. This is evi-
dent in the case of orthogonal measurements but rather nontrivial in the case of
nonorthogonal measurements.
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26. Z. Hradil, R. Myška, acta phys. slov. 48: 199 (1998).

6


