
PACS NUMBERS:03.65.-w

KEY WORDS: quantum estimation,
incompatible observations, quantum state
reconstruction, maximum likelihood

Quantum tomography as normalization of incompatible observations

Z. Hradil,[*] J. Summhammer, H. Rauch
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Synthesis of incompatible observations – a reconstruction of quantum state – is formulated con-
sistently with quantum theory using maximum likelihood estimation. Solving the nonlinear multidi-
mensional equation for the density matrix is equivalent to finding the probability operator measure,
whose expectation values are measured frequencies, and which provides the decomposition of an
identity operator.

Quantum theory handles observable events at the most
fundamental level currently available and predicts the
statistics of quantum phenomena. The randomness is
hidden in the quantum state. Observing various faces of
the same system enables us to reconstruct its quantum
state. Due to the similarities with X-ray tomography,
the state reconstruction is sometimes called quantum
tomography. Although this problem may be traced back
to the early days of quantum mechanics [1], it is
quantum optics that opened a new era [2–4]. Nowadays,
similar techniques are commonly used in various
branches of contemporary physics [5]. An overview can
be found in Ref. [6, 7]. Though these techniques may
give a rough picture of the state, they do not provide its
full quantum description. Since the available
measurement is always limited as far as the amount and
accuracy of data is concerned, problems with positivity
of reconstructed density matrix arise. A proper
statistical approach provides a remedy for these
problems and several approaches have recently been
formulated [8, 9]. A novel formulation relating the
Maximum Likelihood (MaxLik) estimation to
generalized measurements in quantum theory will be
addressed in this paper.

The MaxLik estimation itself represents a standard tool
of statistical analysis [10]. It has already been used even
in quantum theory for quantum phase [11, 12] and
quantum state estimations [13, 14]. However, in all
these applications the MaxLik has been used in
technical sense for optimization of several parameters
restricted by some additional constraints. Without this
simplification the analysis is considered as intractable
due to the nonlinear multidimensional optimization.

In the following, the states |yi〉 will denote general
nonorthogonal states. Let us assume that a quantum
measurement has been done n times yielding the
relative frequencies of the events represented by the
states |yi〉 as fi > 0,

∑
i fi = 1. The states are assumed

to be nonorthogonal. A measurement is sharp provided
that it may be described by a projection into a pure
normalized states |yi〉〈yi|. On the contrary, an unsharp
measurement is represented by a probability operator
measure (POM) [15] representing a superposition in
bins Di of indistinguishable states Π̂i =

∑
j∈Di

|yj〉〈yj |.
The measurement is complete if all the POMs
corresponding to the counted data yield the
decomposition of identity operator. In the case that not
all such values were detected, the measurement is
incomplete. Quantum theory predicts the probability of
the outcomes to be ρii = 〈yi|ρ̂|yi〉. Standard approaches
straightforwards associate the probabilities with
detected frequencies as

ρii = fi. (1)

However, this may appear inconsistent with quantum
theory. Problems of this kind are very often neglected in
the existing literature. A typical result of standard state
reconstruction is a “density matrix” with coefficients
fluctuating within certain errors. Unfortunately, such
an object does not represent any quantum state due to
the necessary condition of semipositive definiteness.
Consequences are crucial as may be illustrated by the
simple but physically valuable example of 1/2 spin
measurement. Consider the “quantum game” proposed
by Massar and Popescu [16]. Here N realizations of the
system prepared in an unknown pure quantum state
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|ϕtrue〉 are measured by some device yielding data
denoted for brevity by a parameter k. The unknown
quantum state is estimated by an estimator |ϕest(k)〉
depending on the measured data. The quality of the
estimate may be evaluated by the scalar product, the
so–called fidelity F = |〈ϕtrue|ϕest〉|2. The total score of
the proposed quantum game is given by the averaging
the fidelity over all possible data k and all the possible
initial quantum states |ϕtrue〉

S =
{
|〈ϕtrue|ϕest(k)〉|2

}

k,ϕtrue

≤ 1. (2)

The higher score, the better quantum state prediction.
As the fundamental consequence of quantum theory, the
score is limited by the upper limit
S = (N + 1)/(N + 2)[16]. Let us now derive the score
corresponding to the standard reconstruction. The
standard measurement of the spin may be regarded as
subsequent Stern–Gerlach projections of an unknown
spin state into the three fixed orthogonal directions
xi, i = 1, 2, 3 on the Poincaré sphere. A general
projection represented by an unity vector x may be
parametrized by means of matrix

|x〉〈 x| = 1
2
(
1 + (xσ)

)
, (3)

where (xσ) denotes the scalar product of a unity vector
and Pauli sigma matrices. Each measurement may be
done separately with Ni particles, N1 + N2 + N3 = N
yielding results ki, respectively. Obviously, the relative
frequencies ki/Ni are estimating the orientation of spin
directions

1
2
(1 + ξi) = ki/Ni. (4)

This is an analogy to the general deterministic relation
(1). The estimates (ξ1, ξ2, ξ3) of the unknown spin state
fluctuates around its true value n. Provided that
|ξ|2 ≤ 1, the estimator is the well defined (mixed) state
ρ̂est = 1/2(1 + (ξσ)). However, for |ξ|2 > 1 the vectors
are outside the Poincaré sphere and do not correspond
to any quantum state. The measured data ki fluctuate
independently according to the binomial distributions

Pi(ki) =
(

Ni

ki

)
pki

i (1− pi)Ni−ki ,

where p ≡ (p1, p2, p3) = (1 + n)/2. Averaging the
fidelity

F (ξ,n) =
1
2
(1 + ξ1n1 + ξ2n2 + ξ3n3) (5)

over the measured data k = (k1, k2, k3) and over the
unknown spin state n regardless of the semipositive
definiteness can be done. The exact result

S =
1
4π

∫
d2Ωn

∑

k1,k2,k3

P1(k1)P2(k2)P3(k3)F (k,n) =

1
4π

∫
d2Ωn

1
2
(1 + |n|2) = 1(6)

is independent of the total number of particles N. Does
this example provide a better state prediction than the
ideal quantum case? No. The standard approach
neglects the quantum noises because the necessary
premise of quantum theory, semipositiveness of the
density matrix, is not fulfilled. The subtle distinction
between the standard and statistical methods is then
just at the level of quantum noise O(1/N). This is a
characteristic feature for any unbiased standard
reconstruction of a pure state. If the estimates are
fluctuating around the true projectors unbiasely, then

{|ϕest(k)〉〈ϕest(k)|}
k
→ |ϕtrue〉〈ϕtrue| (7)

and the score of noisy measurement may reach 1. The
relation (7) is contradictory to quantum theory since
superposition of projectors cannot be a projector again!
Due to the improper manipulation with quantum
noises, the standard approaches describe the state
reconstruction in a classical way. A proper treatment
should exhibit enhanced noise. These conclusions are
obvious in the above example of the spin system,
however, they may seem to be counterintuitive.
Let us formulate more adequate approach. Separate
projections of the spin (4) for i = 1, 2, 3 are well
established Stern–Gerlach measurements. These
observations are incompatible, because the
corresponding projectors do not commute among
themselves. Each of the measurements estimates
components of the spin ξ1, ξ2 and ξ3 separately.
However, since the data are fluctuating, each prediction
is done with different error ∆ξi. Proper method for
state estimation should take these errors into account
giving the higher credit to the more accurate
observations. Unfortunately, errors depend on the
deviations between the true spin state and projections.
This closes the loop of the estimation procedure:
Incompatible measurements of an unknown state
provide certain data. To interpret correctly the
observed data, one should know the state, which was
observed. The sophisticated scheme for state estimation
will be therefore nonlinear and results of incompatible
observations must be normalized among themselves.
Let us formulate righorous treatment. Proper statistical
approach must release the relation (1). For this
purpose, the so–called likelihood functional

L(ρ̂) =
∏

i

〈yi|ρ̂|yi〉nfi (8)

may be constructed as an unnormalized
multidimensional probability. It is given by product of
probability densities predicted by quantum theory
〈yi|ρ̂|yi〉 corresponding to all detected data. In
principle, many quantum states might yield the
detected data. This is the viewpoint of Bayesian
approaches which normalize the likelihood functional
and consider it to be a posterior probability density
conditioned by the detected data. Unfortunately, this is
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intractable due to the enormous problems with
normalization over all density matrices. Considering
only those states, which may yield the given data most
likely, seems to be a reasonable compromise between
the physical content and the mathematical complexity.
Quantum state attributed to the data will be searched
in the form of the density matrix ρ̂ which maximizes the
likelihood functional (8) (MaxLik estimation). As
shown in [17], this problem make sense, because the
likelihood functional is always limited by its upper
bound following from the Gibbs inequality. Let us
assume the diagonal representation of a density matrix
in an orthogonal basis |φk〉

ρ̂ =
∑

k

rk|φk〉〈φk|. (9)

The existence of parameters rk ≥ 0,
∑

k rk = 1 is
guaranteed by quantum theory. Normalized extreme
states satisfy the relation

∂

∂〈φk|
[

1
n

lnL − ΛTr(ρ)
]

= 0,

Λ being a Lagrange multiplier. This multidimensional
nonlinear optimization gives a system of coupled
equations

R̂|φk〉 = |φk〉, (10)

R̂ =
∑

i

fi

ρii
|yi〉〈yi|, ρii =

∑

k

rk|〈φk|yi〉|2.

The normalization condition Trρ̂ = 1 implies Λ = 1.
The relation (10) enables a correct statistical synthesis
of observations in the form of the nonlinear equation for
density matrix

R̂(ρ̂)ρ̂ = ρ̂. (11)

The reconstruction is done in the subspace, where the
operator R̂ represents an identity operator. The
mathematical problem of optimization is tightly related
to the structure of quantum theory. The states in
Hilbert space are given except for the multiplicative
factors. The renormalized POM

|yi〉〈yi| → |y′i〉〈y′i| =
fi

ρii
|yi〉〈yi|

characterizes the synthesis of measurements analogously
to the relation (1)

〈y′i|ρ̂|y′i〉 ≡ fi. (12)

The MaxLik equation (10) may then be interpreted as
the completeness relation in the appropriate subspace

R̂ ≡
∑

i

|y′i〉〈y′i| = 1̂ρ. (13)

Because only the decomposition of identity matters, the
formulation is common for both the sharp and unsharp
observations. This decomposition of identity may be
compared with formally similar one that is spanned by
the linear combinations of all observed rays [18]

∑

i

Ĝ−1/2|yi〉〈yi|Ĝ−1/2 = 1̂,

where Ĝ =
∑

i |yi〉〈yi|. As the significant difference, this
identity encompasses a larger subspace than the
decomposition (13). In general, the given observation is
insufficient for a successful reconstruction here.
The problem of state reconstruction in quantum theory
may be in alternative way reformulated as a problem of
statistical distance. Counted frequencies fi and ideal
probabilities ρii predicted by quantum theory represent
points in multidimensional domain. To reconstruct a
state means to find a probability distribution as close as
possible to the given data. Natural measure on
probability space is given by the Kullback–Leibler
divergence [10]

K(ρ/f) = −
∑

i

fi ln
ρii

fi
≥ 0. (14)

This is nothing else than a normalized log likelihood
function and its minimization reproduces the above
mentioned results. One may consider other distances,
such as the Euclidean distance [7]
KE(ρ/f) =

∑
i(ρii − fi)2 or the Riemannian one [19]

KR(ρ/f) =
∑

i (ρii − fi)2/ρii. In these cases, however,
the intuitive relations (12) and (13) characterizing the
synthesis of incompatible observations as generalized
measurement cannot be obtained any more. The formal
relations linking the MaxLik optimization to quantum
theory represent the key results of this paper. Solving
the nonlinear multidimensional equation (11) for the
density matrix is equivalent to finding the probability
operator measure, whose expectation values are
detected frequencies (12), and which provides the
decomposition of an identity operator (13). This
provides in certain sense a complementary formulation
to the treatment in quantum estimation theory [15].
Usually, the optimal measurement, which minimizes the
average cost, should be found for a given quantum
state. The equation for optimum strategy is then linear.
Our motivation was different: For a given measurement
an optimum state matching the detected data, should
be found. The resulting equation is nonlinear. The
mathematical complexity of the latter formulation is
compensated by the fact, that realistic measurements
may be analyzed according this scheme. Particularly, a
synthesis of any incompatible and incomplete
observations is always complete somewhere.
The key role is played by the operator R̂ concentrating
our knowledge about the results of the measurement.
To find its geometrical interpretation, let us consider
the following simplified optimization associated with
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overlapping of the rays. Assume an orthogonal basis
|xk〉 spanning an orthogonal subspace O. States may be
decomposed as |y′i〉 =

∑
k〈xk|y′i〉|xk〉+ |Zi〉, where |Zi〉

is orthogonal to the subspace O, 〈xk|Zi〉 = 0. The sum
of scalar products Z =

∑
i〈Zi|Zi〉 provides information

about the part of the states outside the orthogonal
subspace O. Now the basis |xk〉 will be chosen in order
to minimize Z under the normalization condition. The
optimum basis in O is spanned by the eigenstates which
diagonalize the operator R̂

[∑

i

|y′i〉〈y′i|
]
|xk〉 = λk|xk〉. (15)

Hence the operator R̂ characterizes the overlapping of
nonorthogonal states and similarly does the operator Ĝ.
Of course, this is not fully equivalent to the above
mentioned MaxLik estimation, where besides the
optimum subspace the quantum state itself is searched.
The MaxLik reconstruction may be accomplished in
such subspace where the operator R̂ become an identity
operator. This is mutually related to finding an
optimum state and optimum probability operator
measure, which decomposes the subspace of
reconstruction. This seems to be satisfactory from the
intuitive viewpoint. Reconstruction techniques are
frequently compared with the X-ray tomography in
medicine, where only a certain field of view scanned by
all the rays may be reconstructed. The same is true in
quantum domain. The field of view corresponds to the
subspace where operator R̂ represents an identity
operator. This part of Hilbert space is common to all
observations.
A solution of the nonlinear eq. (11) represents the key
point of the procedure. Formally it may be found in an
iterative manner provided that the necessary conditions
for convergence are fulfilled. Since for the exact solution
the condition R̂ = 1̂ is true, there is an infinite number
of formulations equivalent to the equation (11). As the

main numerical difficulty, the different forms may
appear as nonequivalent for iterations. This is why the
particular cases of realistic measurements must be
treated separately. This general theory provides a
paradigm for the demanding program of quantum
reinterpretation of nowadays existing standard
reconstruction techniques. Several promising
application are available. Theory considerably simplifies
in the case of commuting observations. A numerical
algorithm for MaxLik reconstruction of the diagonal
elements of a density matrix using the homodyne
detection with random phase [20] has been proposed by
Banaszek [21]. Experimental data has been analysed in
[22]. In general, the solution depends on the starting
point of iterations. Consequently, the MaxLik
estimation provides a family of extremum states not
distinguished by the given measurement. This describes
uncertainty of reconstruction in the space of allowed
states. The MaxLik analysis of phase measurements in
interferometry has been addressed in [23]. The case of
spin estimation will be published in the forthcoming
publication. The MaxLik estimation of the full
homodyne detection is under consideration.
Methods usually used for a deterministic quantum state
reconstruction do not correctly describe the quantum
noises. The MaxLik optimization provides a
formulation, which can be interpreted in the language of
quantum theory. Solving the nonlinear
multidimensional equation for the density matrix is
equivalent to finding the probability operator measure,
whose expectation values are measured frequencies, and
which provides the decomposition of an identity
operator. The MaxLik approach focuses on the most
likely interpretations of reality and its consequences are
relevant to other statistical approaches as well.
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Quantum Semiclass. Opt. 10, 345 (1998).



5

[14] S. M. Tan, Rev. Mod. Opt. 44, 2233 (1997).
[15] C. W. Helstrom, Quantum Detection and Estimation

Theory, Academic Press, New York 1976.
[16] S. Massar, S. Popescu, Phys. Rev. Lett. 74, 1259 (1995).
[17] Z. Hradil, Phys. Rev. A 55, R1561 (1997).
[18] C. M. Caves, private communication.
[19] W. K. Wooters, Phys. Rev. D 23 357 (1981).
[20] M. Munroe, D. Boggavarapu, M. E. Anderson, M. G.

Raymer, Phys. Rev. A 52, R924 (1995).
[21] K. Banaszek, Phys. Rev. A 57, 5013 (1998); K.

Banaszek, acta phys. slov. 48, 185 (1998).
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