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Iterative algorithm for reconstruction of entangled states
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An iterative algorithm for the reconstruction of an unknown quantum state from the results of incompatible
measurements is proposed. It consists of an expectation-maximization step followed by a unitary transforma-
tion of the eigenbasis of the density matrix. The procedure has been applied to the reconstruction of the
entangled pair of photons.
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Predictions of advanced theories are more and more consurements performed on them as accurately as possible. For
plex and more and more accurate. This may be recognized simplicity, we will assume sharp measurements in the sense
the recent progress of quantum theory. In many applicationgf von Neumann. As a result of each measurement, the state
there is a need to determine the quantum state of the syste®f. the input system is projected into a pure state, which is the
For this purpose, the quantum tomography has been develeading of the measuring apparatus. Let us assume, for con-
oped. There is an extended bibliography concerning thigreteness, thavl different outcomes of measurements have
topic covering various fields of possible applicatigii.  been observed. The relative frequendigsf occurrences of
However, all the varied and precise experiments that havéhe observed results
been carried out over many years and that rely on quantum _
physics have not needed the total amount of information {lytyily, i=1...M, @

coded in the quantum state. This fact is reflected in the staq&en comprise the data that the true sjathould be inferred

dard treatment of quantum tomography. When the standar fom. For the sake of simplicity, the measurement performed
guantum tomography is adopted for reconstruction of the . ' ° plicity, P
ill be assumed as complete, i.e.,

state from realistic noisy data, one often runs into unphysica\fv
results. Standard methods are also known to be prone to the

creation of various artifacts in the reconstructed state. All HEZ {lyj(y;l=1.
these flaws are usually paid little or no attention in the sci- !

entific literature. They are simply being regarded as unavoid:-, . - . .
able errors of reconstructions, which fall within the c:orre—ThIS condition will be released later to the case of incom-
sponding “error bars.” Here we would like to stress that theplete measurements.

mentioned drawbacks of the standard tomographic tech- The tpr(;)tl;atl'rl:t'is of occutrrenciast of va(r;pustmi;comelsl are
niques are actually much more serious, especially if the reJenerated by he true quantum stataccording to the wetl-

constructed state is to be of further use. This seems to blénown handy quantum rule

crucial for the potential application in quantum information. pi={yilply;) )
To quantify a fragile effect of entanglement, various entropic bR

principles are use{R]. This feature is sensitive to semiposi- |t the probabilitiesp; of getting a sufficient number of dif-
tive definiteness of the reconstructed state—a necessary Cosrent outcomesy;) were known, it would be possible to
dition of successful reconstruction. determine the true state directly by inverting the linear

_ The purpose of this Rapid Communication is twofold. At rg|ation (2). This is the philosophy behind the “standard”
first a S|.mplc.e iterative algorithm for maX|mu.m-I|keI.|hoqd guantum tomographic techniques. For example, in the rather
(ML) estimation of the quantum state resembling “climbing rjyia| case of a spin one-half particle, the probabilities of
the _h|||_0f the likelihood W|I_I be derlveq. This resu!t may be getting three linearly independent projectors determine the
easily implemented numerically, and interpreted in quantumyninown state uniquely. Here, however, a serious problem
theory as generalized measurement. The algorithm will beises. Since only a finite number of systems can be investi-
illustrated for the example of reconstruction of an entangletbated there is no way how to find out these probabilities.
state, representing an important example in quantum inforThe only data one has at disposal are the relative frequencies

mation processing. o f;, which sample theprincipally unknowable probabilities
Let us illustrate the motivation of quantum tomography . |t is obvious that for a small number of runs the true

considering the repeated measurement. Assume that we gig,p,apilitiesp; and the corresponding detected frequencies
given a finite numbeN of identical samples of the system, ¢ may differ substantially. As a result of this, the modified
each in the same but unknown quantum state described %alistic problem

the density operatop. Given those systems, our task is to
identify the unknownrtrue statep from the results of mea- fi=(y;lply;) (3)

has generally no solution on the space of semipositive defi-
*Email address: rehacek@alpha.inf.upol.cz nite Hermitian operators describing physical states. Tomog-
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raphic methods based on the averaging of pattern functions;
see, e.g.[1], are typical examples of linear methods that pj=2> rihij, p.r,h>0. (6)
suffer from the above mentioned drawbacks. '

Probabilistic interpretation of quantum theory suggestsHerer is the vector describing the “state” of the system. For

'E)hatasort Otf St?t'St('jcal treatmetnt t?]f thihobje{ved_d_a';g T'gl’anmple, the reconstruction of a one-dimensional object
€ more naturat and appropriate than the deterministic eag, ,, the nojiseless detection of its blurred image could be
ment described above. The philosophy of the proposed re-

construction method differs from the philosophy of standarc@ccomp“Shed by inverting the relatid), wherer and p

) . e ould be the normalized intensities of the object and image,
methods. The basic question of the standard methods: Whaandh would describe the blurring mechanism. Again, here

uantum state is determined by the measured data?” is re: . . o

glaced by a more modest one: XWhat quantum state is mo ﬁe presence of noisd; p;) tends to spoil the positivity of
: . the reconstructed intensity

The solution to LP problems in the sense of ML can be

likely in view of the measured data?”; this seems to be in
accordance with the probabilistic interpretation of the quanz q using the expectation-maximizati¢gM) algorithm
[9]. In the case of the discrete one-dimensional problém

tum theory[3,4]. More specifically, instead of trying to in-
vert the linear relatior3), we look for a density operatgr the unknown object is reconstructed by means of the fol-
lowing iterative algorithn{9]:

that generates through E(R) probabilitiesp; that are as

“close” to the observed frequencids as possible. That is,

we look for p. that minimizes some measure of distance hof

d[f,p(p)] between probabilitiep and dataf. rM=yp(-DY 1T @

At first sight it might seem that there is no reason to ' ' T op(r™Y)

prefer one particular metric to another one—different met-

rics leading to different results. This ambiguity can be re-which is initialized with a positive vectar (r;>0Vi).

solved by considering the formal description of the recon- The iterative algorithn{7) for solving the LP problems is

struction process[5]. If the whole measurement and convenient from the point of view of the numerical analysis.

subsequent reconstruction are looked at as a single generétlis certainly much more convenient than the direct multidi-

ized measurement, then thielation between the actually mensional maximization of the corresponding ML functional

performed measurement and resulting probability operatdin £=Z2,f; Inp; [10]. This brings us back to the problem of

measure becomes particularly simple and easy to interprefuantum state reconstruction. It would be nice to have a

for the metric known as the relative entropy or Kullback- similar iterative algorithm for dealing with the proble(8)

Leibler divergencg6]: [or equivalently for maximizing the ML functiondb)]. On

the one hand, it is clear that the problem of quantum state

reconstruction is not a lineand positive problem, since the

guantum rule(2) cannot be rewritten in the form of E(6)

with a known positive kernél. As a consequence of this, the

Adopting the metriq4) is equivalent to finding the maxima EM algorithm cannot be straightforwardly applied here. On

of the likelihood functional the other hand, the reconstruction of the elements of the den-
sity matrix becomes a LP problem if the eigenbasis diago-
nalizing the density matrix is known. In this case, the un-

d[f,p]=—; f,inp;. (4)

— fi
E(P)_H (yilely;'. G Kknown density matrix can be parametrized as follows:
Thus we are led to the maximume-likelihood principle as the _ _
preferred way of doing the quantum state reconstruction. p ; "l did. pldd=rid . ®

ML methods are well known in the field of inverse prob-
lems and they have found many applications in reconstrucwherer; are eigenvalues gf, the only parameters that re-
tions and estimations so f@r]. Unfortunately, except in the main to be determined from the performed measurement.
simplest cases, the maximization of the likelihood functionalUsing the parametrizatio(8), the quantum rulé2) may be
is a challenging problem on its own. A necessary conditioreasily rewritten to the form of the LP problem E®).
for an extreme of the likelihood functionéd) can be derived This hints at splitting the quantum state reconstruction
in the form of the nonlinear operator equation for the densityinto two subsequent steps: the reconstruction of the eigen-
matrix p [3,8] and this equation may be interpreted as thevectors ofp in a fixed basis, which represents the classical
closure relation for a quantum measurement. In the classicglart of the problem, followed by the “rotation” of the basis
signal processing, an important role is played by the so{|#;)} in the “right” direction using the unitary transforma-
called linear and positiveLP) problems[9]. Since these are tion
closely related to the problem of quantum state reconstruc-
tion, it is worthwhile to recall how the positive and linear | i) Drl =U| pi) (i UT. 9
problems can be dealt with using the ML approach.

Let us consider that the probabilitigg of getting out- Its infinitesimal form reads
comesy; are given by the following linear and positive re- _
lation: U=e'C~1+ieG. (10
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Here G is a Hermitian generator of the unitary transforma-tional (5), L(ap;,+(1—a)py)=aLl(p)+(1—a)L(p,), «
tion ande is a positive real number that is small enough to €(0,1), guarantees that the global maximum is always at-
make the second equality in E§.0) approximately satisfied. tained.

Consider now the total change of log likelihood caused by The proposed EMU algorithm naturally leads to the pre-
the change of diagonal elements of the density matrix angiously introduced extremal equation for the density matrix
the rotation of the basis. Keeping the normalization conditior[3,8]. The stationary point of the EMU algorithm is charac-
Trp=1, the first-order contribution to the variation reads terized by the vanishing variation of the log likelihoGHl).
Since the variationsr,,e are arbitrary parameters, this is
equivalent to the Lagrange-Euler equation for density matrix

Rpe= pe- (14)

This nonlinear operator equation has recently been derived
The operatoR appearing here plays an important role in thisysing the variational principle in Reff8] and using inequali-
treatment. It is a semipositively definite Hermitian operatorties [3], and has been applied to the reconstruction of the
comprising results of the measurement state of a two-state systefhl]. The iterative algorithm pre-
sented there, however, relied on a special parametrization
f; and was not suitable for generalization. The EMU algorithm
R=2 E|yj><yj|- (12)  presented here provides us with a different route to(EE4),
b which is perhaps more appealing from the physical point of
view, and suitable for implementation of the numerical algo-
Notice that this operator depends on the old density matrix rithm. Notice, however, that this “parameter estimation”
through Eq.(2). _ may be interpreted as a generalized measurement, Bince
Inspection of Eq(11) reveals a simple strategy on how to — 1" oy the space where the reconstruction has been done.
make the likelihood of the new staté as high as possible  These results should be modified in the case of incom-

[within limits of the validity of the linearization(10), of  pjete detection. Provided tht+ 1, the closure relation may
coursg. In the first step, the first term on the right-hand sidepe gjways recovered in the form

of Eqg. (11) is maximized by estimating the eigenvalues of

the density matrix, keeping its eigenvectdes,) constant. B B

The iterative algorithn(7) described above can be straight- 2 H Yy )y HY2=1. (15
forwardly applied to this LP problem. In the second step, the .

likelihood can further be increased by making the seconGrjs corresponds to the renormalization of the probabilities
term on the right-hand side of E@L1) positive. This is ac- p;=(yjlply;) in the likelihood (5) to the normalized prob-

complished by a suitable choice of the generator of the unizijitiag pj—p;/Sip;. This formulation incorporates the

tary transformatiori10). Remembering the norm induced by ¢4qe of incomplete detection. Notice that the extremal equa-
the scalar product defined on the space of operatd83)(  ion again possesses the form of Ef4) for the renormal-

Sln £=2k S (Rl ) — 1) +ie TH{G[ p,R]}.
(11

T AT
=Tr{A'B}, the generatoc may be chosen as ized quanties R—R'=(H") YR(H') Y2 p.—p.
' =_(H’)1/2ge(H’)1/2, H' == {]y;){y;|}/=;p; . All the conclu-
G=i[p,R]. (13 sions derived for complete measurements may be extended

to this case of incomplete measurement as well. This formu-

Its form guarantees the non-negativity of the contribution tdation coincides with the estimation, provided that an as-
the likelihood and is optimal in the sense of the above introsumption of Poissonian statistics is used. Assume that
duced scalar product. Notice that this derivation holds only ifsamples the mean number of particleg;, wherep; is as
the second-order contribution into Egs.(10) and (11) is  before the prediction of quantum theory for detection of the
negligible. From this an upper bound on the valuesafan  ith channel anah is the unknown mean number of particles.
be derived.e can then be adaptively changed in eatstep ~ The relevant part of the log likelihood corresponding to the
in order to minimize the computing time. Poissonian statistics readsdr-Z;n;In(np)—nZ;p;. The ex-

Now we have at our disposal all ingredients comprisingtremal equation fon may be easily formulated as the con-
the expectation-maximization algorithm followed by a uni- dition n=X;n;/2;p;. Inserting this estimate of unknown
tary transformatiofEMU) quantum state reconstruction al- mean number of Poissonian particles into the log likelihood
gorithm that represents the main result of the present articlgeproduces the renormalized likelihood function.
Starting from some positive initial density matgix this es- The proposed EMU algorithm has been applied to the
timate is improved, first by finding new eigenvalues usingreconstruction of the two-photon entangled state generated
the EM iterative algorithm(7), and then again by finding by the spontaneous downconversion source of Weital.
new eigenvectors by unitarilf)) transforming the old ones [12]. White et al. measured the nominal Bell stateHH)
according to Eqs(9), (10), and (13). These two steps are +|VV))/\2 along 16 distinct directions{|y;)}={|HH),
repeated. Continued repetition of the two steps, each mon¢HV), |[VH), |[VV), |HD), |[HL), |DH), |RH), |DD),
tonically increasing the likelihood of the current estimate,|RD), |RL), |[DR), |DV), |RV), [VD), |VL)}; H,V, D, R,
resembles climbing a hill. Convexity of the likelihood func- andL being horizontal, vertical, diagonal, right circular, and
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TABLE I. Eigenvectors of the reconstructed density matrix.  result of possible slight misalignments of the axes of analysis
systems with respect to the axes of the downconversion

|40) | $2) source. This is, of course, reflected in the reconstructed state
IVV) 0.696-0.027 0.630+0.071 (16), which quantifies such misalignments and might serve
IVH) —0.050-0.020 —0.284+0.174 for hunting down the errors and calibrating the experimental
IHV) —0.040+0.015 —0.150-0.247 setup. For such purposes the error analysis of the presented
|HH) 0.712-0.064 —0.634-0.035 reconstruction technique becomes crucial. The results of nu-

merical simulations suggest that the fidelity of the recon-

structed state corresponding to tens of thousands of detec-

left circular polarization, respectively. Counted numbers oftions (like in [12]) is typically better than 0.99. A detailed

coincidences along these directions can be found 2. estimation of statistical fluctuations will be presented else-
We have used the experimental data together with thevhere.

proposed algorithm to reconstruct ttree state generated by Notice also that the reconstructed density matfig) is

the source of entangled photon pairs. Due to various sourcesemipositive definite. This should be contrasted with the re-

of errors, the true state is expected to differ from the nominabult of standard reconstruction. Direct inversion of E8).

state. Notice that the chosen measurements are not compleigglds the density matrix having the following diagonal rep-

that is,=;|y;)(y;| does not represent the resolution of unity. resentation: r;=1.022, r,=0.068, r;=-0.065, r,=

This has been taken into account. —0.024[13]. The corresponding eigenvectors need not be
Starting from the maximally mixed statgHH)(HH specified here. Apparently, direct inversi@iandard tomog-

[+|VV){VV|+|HV){HV|+|VH)(VHI|)/4, new eigenvalues raphy) leads to an unphysical nonpositive definite result. It is

and eigenvectors of the density matrix are found using Eqsworth noting that the negative eigenvalues are comparable in

(7) and(9). This has been repeated until a stationary point oimagnitude with nondiagonal elements @E’L in the H-V

the iteration process has been attained. The diagonal reprpasis; see Table I. This is a nice example of a situation when

sentation of the reconstructed density matrix reads standard methods fail even though rather high numbers of
ML particles(tens of thousand$ave been registered. ML recon-
pe =0.962h1)( 1| +0.038| o) b5 (16) struction always provides physically sound results. More-

over, it represents genuine quantum measurement of the en-

The other two eigenvalues are zero. The eigenvedidys tangled state

and|¢,) are given in Table I.

The reconstructed density mat(ik6) agrees well with the This work was supported by the TMR Network ERB
gualitative reasoning given if12]. Namely, the recon- FMRXCT 96-0057 “Perfect Crystal Neutron Optics” of the
structed state is almost a pure state—a slightly rotated nomEuropean Union and by projects CEZ J14/98 and
nal Bell state. The apparent incompatibility of the nominalLNOOAO15. The authors thank Professor Jan Perina for his
state with the registered data was interpretedlli?] as the  support; he will be 65 this year.
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