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Iterative algorithm for reconstruction of entangled states

J. Řeháček,* Z. Hradil, and M. Jezˇek
Department of Optics, Palacky´ University, 17. listopadu 50, 772 00 Olomouc, Czech Republic

~Received 27 September 2000; published 19 March 2001!

An iterative algorithm for the reconstruction of an unknown quantum state from the results of incompatible
measurements is proposed. It consists of an expectation-maximization step followed by a unitary transforma-
tion of the eigenbasis of the density matrix. The procedure has been applied to the reconstruction of the
entangled pair of photons.
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Predictions of advanced theories are more and more c
plex and more and more accurate. This may be recognize
the recent progress of quantum theory. In many applicatio
there is a need to determine the quantum state of the sys
For this purpose, the quantum tomography has been de
oped. There is an extended bibliography concerning
topic covering various fields of possible applications@1#.
However, all the varied and precise experiments that h
been carried out over many years and that rely on quan
physics have not needed the total amount of informat
coded in the quantum state. This fact is reflected in the s
dard treatment of quantum tomography. When the stand
quantum tomography is adopted for reconstruction of
state from realistic noisy data, one often runs into unphys
results. Standard methods are also known to be prone to
creation of various artifacts in the reconstructed state.
these flaws are usually paid little or no attention in the s
entific literature. They are simply being regarded as unavo
able errors of reconstructions, which fall within the corr
sponding ‘‘error bars.’’ Here we would like to stress that t
mentioned drawbacks of the standard tomographic te
niques are actually much more serious, especially if the
constructed state is to be of further use. This seems to
crucial for the potential application in quantum informatio
To quantify a fragile effect of entanglement, various entro
principles are used@2#. This feature is sensitive to semipos
tive definiteness of the reconstructed state—a necessary
dition of successful reconstruction.

The purpose of this Rapid Communication is twofold.
first a simple iterative algorithm for maximum-likelihoo
~ML ! estimation of the quantum state resembling ‘‘climbi
the hill of the likelihood’’ will be derived. This result may b
easily implemented numerically, and interpreted in quant
theory as generalized measurement. The algorithm will
illustrated for the example of reconstruction of an entang
state, representing an important example in quantum in
mation processing.

Let us illustrate the motivation of quantum tomograp
considering the repeated measurement. Assume that w
given a finite numberN of identical samples of the system
each in the same but unknown quantum state describe
the density operatorr. Given those systems, our task is
identify the unknowntrue stater from the results of mea
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surements performed on them as accurately as possible
simplicity, we will assume sharp measurements in the se
of von Neumann. As a result of each measurement, the s
of the input system is projected into a pure state, which is
reading of the measuring apparatus. Let us assume, for
creteness, thatM different outcomes of measurements ha
been observed. The relative frequenciesf j of occurrences of
the observed results

$uyj&^yj u%, j 51, . . . ,M , ~1!

then comprise the data that the true stater should be inferred
from. For the sake of simplicity, the measurement perform
will be assumed as complete, i.e.,

H[(
j

$uyj&^yj u%51.

This condition will be released later to the case of inco
plete measurements.

The probabilities of occurrences of various outcomes
generated by the true quantum stater according to the well-
known handy quantum rule

pj5^yj uruyj&. ~2!

If the probabilitiespj of getting a sufficient number of dif-
ferent outcomesuyj& were known, it would be possible to
determine the true stater directly by inverting the linear
relation ~2!. This is the philosophy behind the ‘‘standard
quantum tomographic techniques. For example, in the ra
trivial case of a spin one-half particle, the probabilities
getting three linearly independent projectors determine
unknown state uniquely. Here, however, a serious prob
arises. Since only a finite number of systems can be inve
gated, there is no way how to find out these probabiliti
The only data one has at disposal are the relative frequen
f j , which sample theprincipally unknowable probabilities
pj . It is obvious that for a small number of runs the tru
probabilitiespj and the corresponding detected frequenc
f j may differ substantially. As a result of this, the modifie
realistic problem

f j5^yj uruyj& ~3!

has generally no solution on the space of semipositive d
nite Hermitian operators describing physical states. Tom
©2001 The American Physical Society03-1
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raphic methods based on the averaging of pattern functi
see, e.g.,@1#, are typical examples of linear methods th
suffer from the above mentioned drawbacks.

Probabilistic interpretation of quantum theory sugge
that a sort of statistical treatment of the observed data m
be more natural and appropriate than the deterministic tr
ment described above. The philosophy of the proposed
construction method differs from the philosophy of stand
methods. The basic question of the standard methods: ‘‘W
quantum state is determined by the measured data?’’ is
placed by a more modest one: ‘‘What quantum state is m
likely in view of the measured data?’’; this seems to be
accordance with the probabilistic interpretation of the qu
tum theory@3,4#. More specifically, instead of trying to in
vert the linear relation~3!, we look for a density operatorre
that generates through Eq.~2! probabilities pj that are as
‘‘close’’ to the observed frequenciesf j as possible. That is
we look for re that minimizes some measure of distan
d@ f,p(r)# between probabilitiesp and dataf.

At first sight it might seem that there is no reason
prefer one particular metric to another one—different m
rics leading to different results. This ambiguity can be
solved by considering the formal description of the reco
struction process@5#. If the whole measurement an
subsequent reconstruction are looked at as a single gen
ized measurement, then therelation between the actually
performed measurement and resulting probability oper
measure becomes particularly simple and easy to inter
for the metric known as the relative entropy or Kullbac
Leibler divergence@6#:

d@ f,p#52(
j

f j ln pj . ~4!

Adopting the metric~4! is equivalent to finding the maxim
of the likelihood functional

L~r!5)
j

^yj uruyj&
f j . ~5!

Thus we are led to the maximum-likelihood principle as t
preferred way of doing the quantum state reconstruction

ML methods are well known in the field of inverse pro
lems and they have found many applications in reconst
tions and estimations so far@7#. Unfortunately, except in the
simplest cases, the maximization of the likelihood functio
is a challenging problem on its own. A necessary condit
for an extreme of the likelihood functional~5! can be derived
in the form of the nonlinear operator equation for the dens
matrix r @3,8# and this equation may be interpreted as
closure relation for a quantum measurement. In the class
signal processing, an important role is played by the
called linear and positive~LP! problems@9#. Since these are
closely related to the problem of quantum state reconst
tion, it is worthwhile to recall how the positive and linea
problems can be dealt with using the ML approach.

Let us consider that the probabilitiespj of getting out-
comesyj are given by the following linear and positive re
lation:
04030
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r ihi j , p,r ,h.0. ~6!

Herer is the vector describing the ‘‘state’’ of the system. F
example, the reconstruction of a one-dimensional ob
from the noiseless detection of its blurred image could
accomplished by inverting the relation~6!, where r and p
would be the normalized intensities of the object and ima
and h would describe the blurring mechanism. Again, he
the presence of noise (f jÞpj ) tends to spoil the positivity of
the reconstructed intensityr .

The solution to LP problems in the sense of ML can
found using the expectation-maximization~EM! algorithm
@9#. In the case of the discrete one-dimensional problem~6!,
the unknown objectr is reconstructed by means of the fo
lowing iterative algorithm@9#:

r i
(n)5r i

(n21)(
j

hi j f j

pj~r (n21)!
, ~7!

which is initialized with a positive vectorr (r i.0 ; i ).
The iterative algorithm~7! for solving the LP problems is

convenient from the point of view of the numerical analys
It is certainly much more convenient than the direct multi
mensional maximization of the corresponding ML function
ln L5( j f j ln pj @10#. This brings us back to the problem o
quantum state reconstruction. It would be nice to have
similar iterative algorithm for dealing with the problem~3!
@or equivalently for maximizing the ML functional~5!#. On
the one hand, it is clear that the problem of quantum s
reconstruction is not a linearandpositive problem, since the
quantum rule~2! cannot be rewritten in the form of Eq.~6!
with a known positive kernelh. As a consequence of this, th
EM algorithm cannot be straightforwardly applied here. O
the other hand, the reconstruction of the elements of the d
sity matrix becomes a LP problem if the eigenbasis dia
nalizing the density matrix is known. In this case, the u
known density matrix can be parametrized as follows:

r5(
k

r kufk&^fku, rufk&5r kufk&, ~8!

where r i are eigenvalues ofr, the only parameters that re
main to be determined from the performed measurem
Using the parametrization~8!, the quantum rule~2! may be
easily rewritten to the form of the LP problem Eq.~6!.

This hints at splitting the quantum state reconstruct
into two subsequent steps: the reconstruction of the eig
vectors ofr in a fixed basis, which represents the classi
part of the problem, followed by the ‘‘rotation’’ of the basi
$uf i&% in the ‘‘right’’ direction using the unitary transforma
tion

ufk8&^fk8u5Uufk&^fkuU†. ~9!

Its infinitesimal form reads

U[ei eG'11 i eG. ~10!
3-2
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Here G is a Hermitian generator of the unitary transform
tion ande is a positive real number that is small enough
make the second equality in Eq.~10! approximately satisfied

Consider now the total change of log likelihood caused
the change of diagonal elements of the density matrix
the rotation of the basis. Keeping the normalization condit
Tr r51, the first-order contribution to the variation reads

d ln L5(
k

dr k~^fkuRufk&21!1 i e Tr$G@r,R#%.

~11!

The operatorR appearing here plays an important role in th
treatment. It is a semipositively definite Hermitian opera
comprising results of the measurement

R5(
j

f j

pj
uyj&^yj u. ~12!

Notice that this operator depends on the old density matrr
through Eq.~2!.

Inspection of Eq.~11! reveals a simple strategy on how
make the likelihood of the new stater8 as high as possible
@within limits of the validity of the linearization~10!, of
course#. In the first step, the first term on the right-hand si
of Eq. ~11! is maximized by estimating the eigenvalues
the density matrix, keeping its eigenvectorsufk& constant.
The iterative algorithm~7! described above can be straigh
forwardly applied to this LP problem. In the second step,
likelihood can further be increased by making the seco
term on the right-hand side of Eq.~11! positive. This is ac-
complished by a suitable choice of the generator of the u
tary transformation~10!. Remembering the norm induced b
the scalar product defined on the space of operators, (A,B)
5Tr$A†B%, the generatorG may be chosen as

G5 i @r,R#. ~13!

Its form guarantees the non-negativity of the contribution
the likelihood and is optimal in the sense of the above int
duced scalar product. Notice that this derivation holds onl
the second-order contribution ine to Eqs.~10! and ~11! is
negligible. From this an upper bound on the value ofe can
be derived.e can then be adaptively changed in eachU step
in order to minimize the computing time.

Now we have at our disposal all ingredients compris
the expectation-maximization algorithm followed by a un
tary transformation~EMU! quantum state reconstruction a
gorithm that represents the main result of the present art
Starting from some positive initial density matrixr, this es-
timate is improved, first by finding new eigenvalues usi
the EM iterative algorithm~7!, and then again by finding
new eigenvectors by unitarily~U! transforming the old ones
according to Eqs.~9!, ~10!, and ~13!. These two steps ar
repeated. Continued repetition of the two steps, each mo
tonically increasing the likelihood of the current estima
resembles climbing a hill. Convexity of the likelihood fun
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tional ~5!, L„ar11(12a)r2…>aL(r1)1(12a)L(r2), a
P^0,1&, guarantees that the global maximum is always
tained.

The proposed EMU algorithm naturally leads to the p
viously introduced extremal equation for the density mat
@3,8#. The stationary point of the EMU algorithm is chara
terized by the vanishing variation of the log likelihood~11!.
Since the variationsdr k ,e are arbitrary parameters, this
equivalent to the Lagrange-Euler equation for density ma

Rre5re . ~14!

This nonlinear operator equation has recently been der
using the variational principle in Ref.@8# and using inequali-
ties @3#, and has been applied to the reconstruction of
state of a two-state system@11#. The iterative algorithm pre-
sented there, however, relied on a special parametriza
and was not suitable for generalization. The EMU algorith
presented here provides us with a different route to Eq.~14!,
which is perhaps more appealing from the physical point
view, and suitable for implementation of the numerical alg
rithm. Notice, however, that this ‘‘parameter estimation
may be interpreted as a generalized measurement, sinR
51 on the space where the reconstruction has been don

These results should be modified in the case of inco
plete detection. Provided thatHÞ1, the closure relation may
be always recovered in the form

(
j

H21/2$uyj&^yj u%H21/2[1. ~15!

This corresponds to the renormalization of the probabilit
pj5^yj uruyj& in the likelihood ~5! to the normalized prob-
abilities pj→pj /( i pi . This formulation incorporates the
case of incomplete detection. Notice that the extremal eq
tion again possesses the form of Eq.~14! for the renormal-
ized quantities R→R85(H8)21/2R(H8)21/2, re→re8
5(H8)1/2re(H8)1/2, H85( j$uyj&^yj u%/( j pj . All the conclu-
sions derived for complete measurements may be exten
to this case of incomplete measurement as well. This form
lation coincides with the estimation, provided that an a
sumption of Poissonian statistics is used. Assume thani
samples the mean number of particlesnpi , wherepi is as
before the prediction of quantum theory for detection of t
i th channel andn is the unknown mean number of particle
The relevant part of the log likelihood corresponding to t
Poissonian statistics reads lnL}( ini ln(npi)2n(ipi . The ex-
tremal equation forn may be easily formulated as the co
dition n5( ini /( i pi . Inserting this estimate of unknow
mean number of Poissonian particles into the log likeliho
reproduces the renormalized likelihood function.

The proposed EMU algorithm has been applied to
reconstruction of the two-photon entangled state gener
by the spontaneous downconversion source of Whiteet al.
@12#. White et al. measured the nominal Bell state (uHH&
1uVV&)/A2 along 16 distinct directions:$uyj&%5$uHH&,
uHV&, uVH&, uVV&, uHD&, uHL&, uDH&, uRH&, uDD&,
uRD&, uRL&, uDR&, uDV&, uRV&, uVD&, uVL&%; H, V, D, R,
andL being horizontal, vertical, diagonal, right circular, an
3-3
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left circular polarization, respectively. Counted numbers
coincidences along these directions can be found in@12#.

We have used the experimental data together with
proposed algorithm to reconstruct thetrue state generated b
the source of entangled photon pairs. Due to various sou
of errors, the true state is expected to differ from the nomi
state. Notice that the chosen measurements are not com
that is,( j uyj&^yj u does not represent the resolution of uni
This has been taken into account.

Starting from the maximally mixed state (uHH&^HH
u1uVV&^VVu1uHV&^HVu1uVH&^VHu)/4, new eigenvalues
and eigenvectors of the density matrix are found using E
~7! and~9!. This has been repeated until a stationary poin
the iteration process has been attained. The diagonal re
sentation of the reconstructed density matrix reads

re
ML50.962uf1&^f1u10.038uf2&^f2u. ~16!

The other two eigenvalues are zero. The eigenvectorsuf1&
and uf2& are given in Table I.

The reconstructed density matrix~16! agrees well with the
qualitative reasoning given in@12#. Namely, the recon-
structed state is almost a pure state—a slightly rotated no
nal Bell state. The apparent incompatibility of the nomin
state with the registered data was interpreted in@12# as the

TABLE I. Eigenvectors of the reconstructed density matrix.

uf1& uf2&

uVV& 0.69620.027i 0.63010.071i
uVH& 20.05020.020i 20.28410.174i
uHV& 20.04010.015i 20.15020.247i
uHH& 0.71220.062i 20.63420.035i
.

e
.
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result of possible slight misalignments of the axes of analy
systems with respect to the axes of the downconvers
source. This is, of course, reflected in the reconstructed s
~16!, which quantifies such misalignments and might se
for hunting down the errors and calibrating the experimen
setup. For such purposes the error analysis of the prese
reconstruction technique becomes crucial. The results of
merical simulations suggest that the fidelity of the reco
structed state corresponding to tens of thousands of de
tions ~like in @12#! is typically better than 0.99. A detaile
estimation of statistical fluctuations will be presented el
where.

Notice also that the reconstructed density matrix~16! is
semipositive definite. This should be contrasted with the
sult of standard reconstruction. Direct inversion of Eq.~3!
yields the density matrix having the following diagonal re
resentation: r 151.022, r 250.068, r 3520.065, r 45
20.024 @13#. The corresponding eigenvectors need not
specified here. Apparently, direct inversion~standard tomog-
raphy! leads to an unphysical nonpositive definite result. It
worth noting that the negative eigenvalues are comparab
magnitude with nondiagonal elements ofre

ML in the H-V
basis; see Table I. This is a nice example of a situation w
standard methods fail even though rather high numbers
particles~tens of thousands! have been registered. ML recon
struction always provides physically sound results. Mo
over, it represents genuine quantum measurement of the
tangled state.

This work was supported by the TMR Network ER
FMRXCT 96-0057 ‘‘Perfect Crystal Neutron Optics’’ of th
European Union and by projects CEZ J14/98 a
LN00A015. The authors thank Professor Jan Perina for
support; he will be 65 this year.
st.

.

ys.

at,

iat
@1# U. Leonhardt,Measuring of the Quantum State of Light~Cam-
bridge Press, Cambridge, 1997!; D.– G. Welsch, W. Vogel,
and T. Opatrny´, in Progress in Optics, edited by E. Wolf
~Elsevier, Amsterdam, 1999!, Vol. 39, p. 63.

@2# V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys
Rev. Lett.78, 2275~1997!.

@3# Z. Hradil, Phys. Rev. A55, R1561~1997!.
@4# K. R. W. Jones, Ann. Phys.~N.Y.! 207, 140~1991!; V. Bužek,
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