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Entropy of phase measurement: Quantum phase via quadrature measurement
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The content of phase information of an arbitrary phase-sensitive measurement is evaluated using the maxi-
mum likelihood estimation. The phase distribution is characterized by the relative entropy—a nonlinear func-
tional of input quantum state. As an explicit example, the multiple measurement of the quadrature operator is
interpreted as quantum phase detection achieving the ultimate resolution predicted by the Fisher information.
@S1050-2947~96!06705-4#
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I. INTRODUCTION

There are many approaches addressing the problem of
quantum phase measurement nowadays. Besides the purely
theoretical phase concepts anticipating the existence of quan-
tum phase as an observable conjugated canonically to the
number ~or difference number! operator, there are several
operational treatments addressing the problem of phase shift
measurement within the quantum mechanics. Particularly,
there are several methods for deriving the phase information
from the phase-sensitive measurement of rotated quadrature
operator

X̂~u!5
1

A2
@ âe2 iu1â†eiu#. ~1!

The rotated quadrature eigenstates~variablex) appear with
the probability depending on the actual phase of the local
oscillatoru

p~x,u!5 z^cux&uz2. ~2!

Denoting the controlled phase of the local oscillator asu, an
ordinary balanced homodyne-detection scheme measures the
quadrature componentP̂(u)[X̂(u1p/2)—the electric field
strength@1#. The following phase interpretations of this mea-
surement have already been proposed.

~i! So called ‘‘phase ~measurement! without phase
~states!’’ was formulated by Vogel and Schleich~VS! @2#.
The method is motivated by the geometrical comparison of
quadrature and ideal phase measurements in phase space.
The quadrature components rotated by an angle are used to
define a phase distribution of a single mode of the radiation

field. The probability of finding zero electric field plotted
versus the local oscillator phaseu,

PVS~u!5 z^cux50&u1p/2z2,

constitutes the proposed phase distribution on the interval
@0,p). Particularly for coherent input field with the complex
amplitudea5uaueiw the proposed phase distribution reads

PVS~u!}exp@22uau2sin2~w2u!#. ~3!

~ii ! The phase-sensitive data~2! resulting from the homo-
dyne detection have been interpreted in a different way by
Beck, Smithey, and Raymer@3#. Using the optical homodyne
tomography method@4#, the density matrix may be recon-
structed and represented in the phase space. Particularly, the
authors used the representation by Wigner functionW(x,p)
and linked the phase distribution to the marginal distribution
of Wigner function

PW~f!5E
0

`

rdrW~x5rcosf,p5rsinf!. ~4!

The resulting phase distribution is then periodic on the inter-
val @0,2p). Nevertheless, such an approach suffers from a
formal flaw. Since the ‘‘probability distribution’’~4! yields
negative values for superposition of coherent states~so called
‘‘Schrödinger-cat-like states‘‘! @5#, the corresponding opera-
tor measure is not positively defined. The procedure cannot
therefore be interpreted as any generalized measurement@6#.
To get a physically reasonable interpretation, another distri-
bution function, such as, for example, theQ function, should
be used.

~iii ! This formulation is very close to the treatment sug-
gested by Noh, Fouge`res, and Mandel~NFM! @7#. In their
Scheme 1 two fields are mixed on the beam splitter. The
signals detected on the outputs serve for determination of
sin and cos functions of phase difference. Provided that the
signal is mixed with the strong field of the local oscillator,
this measurement corresponds to the simultaneous measure-
ment of X̂(u) and P̂(u) operators. In this limit the phase
distribution coincides with the Shapiro-Wagner~SW! phase
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concept@8# tending to the marginal distribution of theQ
function. Assuming the coherent input, the conditional phase
distribution of inferredf whenu is true reads

PSW~f!5
1

pE0
`

rdrexp$2 zr2uauei ~f2u8!z2%, ~5!

where u85w2u. Hence the given measurement admits
many possible interpretations. This ambiguity demonstrates
that in addition to the detection scheme, its statistical evalu-
ation should also be optimized.

The purpose of this contribution is to infer the phase in-
formation included in arbitrary phase-sensitive data using the
maximum likelihood~ML ! estimation@6,9#. The phase dis-
tribution then yields the ultimate resolution corresponding to
the Fisher information if it exists. The proposed method
therefore deals with the observed data in the most optimum
way. As an explicit example, the quadrature measurement
anticipated in all the examples above will be interpreted as
quantum phase estimation.

II. PHASE ESTIMATION

Let us formulate the problem for an arbitrary multiple
measurement of a discrete phase-sensitive observable@10#.
The case of a quantum observable with continuous spectrum
will be obtained by a straightforward limiting procedure. As-
sume the quantum measurement of quantum variableŶ
yielding discrete spectrumuyk& enumerated for brevity by an
index k. The purpose of phase detection is to determine the
nonrandomc-number displacement parameteru in the given
interval entering the phase displacement transformation@6#

of the quantum state asuc(u)&5e2 iuN̂uc&, N̂ being a Her-
mitian operator. The variableu represents thetrue valueof
the phase shift. The estimation on the intervaluP@0,2p)
will be considered for concreteness. The probability of find-
ing the complex amplitudeyk by performing the measure-
ment in transformed quantum stateuc(u)& is given by quan-
tum mechanics as

p~yk ,u!5 z^cueiuN̂uyk& z2.

Knowing how all these probabilities depend on the induced
phase shift, an unknown phase shift may be inferred on the
basis of multiple output datay1 ,y2 , . . . ,yn . The phase esti-
mation corresponding to the registered data is given as the
phase maximizing the likelihood function

L~f!5p~y1 ,f!p~y2 ,f!•••p~yn ,f!.

The common envelope of all the phase histograms obtained
by repeating the multiple measurement may be expressed as
the conditional phase distribution of inferred phase shiftf
whenu is true @10#,

PML~fuu!5
1

Cn~u! H)k @pk~f!#pk~u!J n, ~6!

pk(u)[p(yk ,u). The normalization is Cn(u)
5*0

2pdf$)k@pk(f)#
pk(u)%n and indexk exhausts all the pos-

sible values appearing with nonzero probability. The number

of samplesn is assumed to be sufficiently large in order to
get statistically significant sampling. The distribution may be
expressed using the relative entropy

S~fuu!52(
k

pk~u!lnpk~f! ~7!

asPML(fuu)}e2nS(fuu). The case of phase-sensitive observ-
ables with continuous spectrumy may be easily incorporated
in this step, defining the relative entropy as

S~fuu!52E dyp~y,u!lnp~y,f!. ~8!

The preferred phase shift is given by the true valueu, since
the relative entropy has a minimum atS(f5uuu) due to the
Gibbs inequality@11# S(fuu)>S(f5uuu). The estimation
may be sometimes well approximated by the Gaussian dis-
tribution @12# with the variance predicted by the Fisher in-
formation. Using the Taylor decomposition of lnpk(f) at the
point f5u the relative entropy~7! reads

S~fuu!'2(
k

S pk~u!lnpk~u!

2
1

2

@pk8~u!#2

pk~u!
@f2u#21••• D .

The prime denotes the derivativepk8(u)5dpk(f)/dfuf5u .
The first term represents the Shannon entropy
S(u)52(kpk(u)lnpk(u), whereas the second one is the
Fisher information

I ~u!5(
k

@pk8~u!#2/pk~u!.

The variance of phase distribution in this approximation is
simply Df51/AnI(u). Provided that the Gaussian approxi-
mation cannot be used, the phase resolution may always be
evaluated using dispersion

D~u!5A12u^eif&u2

corresponding for sharp measurements to the ordinary notion
of varianceD'Df restricted to the finite interval@6,13#.

As an explicit example assume now the quantum mea-
surement of phase-sensitive quadrature component~1! per-
formed for concreteness in the coherent state with the com-
plex amplitudea5uaueiw. The phase shift of the single-
mode field is generated by the photon-number operator
N̂5â†â. The probability of finding the valuex of rotated
quadrature operator~1! may be specified for the given signal
state as

p~x,u8!5
1

Ap
exp$2@x2A2uaucosu8#2%, ~9!

whereu85w2u is thephase differencebetween local oscil-
lator and signal fields. The quantum estimation problem is
the following: The distribution~9! is explicitly known as a
function of quadrature phase differenceu8 and quadrature
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componentx, since these dependencies are always experi-
mentally measurable. The particular choice of Gaussian dis-
tribution represents an easy example consistent with the as-
sumptions of Refs.@2,3,7#. Using this knowledge, ana priori
unknown fixed phase difference should be inferred as accu-
rately as possible on the basis of the limited number of mea-
sured datax1 ,x2 , . . . ,xn . The corresponding likelihood
function may be found as

L~f!}exp$2n@ x̄2A2uaucosf#2%, ~10!

where x̄5( i51
n xi /n. The phase estimation is given as

cosfML5 x̄/A2uau. Repeating this measurement and estima-
tion, the determined phase shift fluctuates in accordance with
the prediction~6!. The straightforward application of the
theory yields the relative entropy as

S~fuu8!5
1

2
lnp1E

2`

`

dxp~x,u8!@x2A2uaucosf#2

5
1

2
lnp1

1

2
12uau2@cosf2cosu8#2,

wheref is the estimated~inferred! phase difference. The
phase distribution inferred aftern trials then reads

PML
X ~fuu8!}exp$22nuau2@cosf2cosu8#2%. ~11!

This expression is crucial for further considerations and
will be detailed in the following. The inferred phase distri-
bution is not shift invariant, i.e., dependent on the difference
f2u8. Since the phase distribution~11! depends on cosf
function only, it exhibits the mirror symmetry
PML(fuu8)5PML(2p2fuu8). Hence the distribution yields
twofold ambiguity on the (0,2p) interval and this is the im-
manent part of the method. Nevertheless, this ambiguity does
not cause any serious problems and there are several ways to
treat it. One mayrestrict the estimation on the half-width
phase interval@0,p#, which effectively tends to the ‘‘phase
without phase’’ treatment@2# addressed in the following sub-
section. Alternatively, the quadrature distribution may be re-
corded forvariousphase angles. These phase-sensitive data
may serve for quantum state tomography, or, provided that
only quadrature measurements atu and u1p/2 are avail-
able, for evaluation corresponding to the NFM scheme@7#
addressed in the next subsection. This method estimates the
phase shift on the full interval of the length@0,2p).

A. ‘‘Phase without phase’’

Provided that statistics of quadrature operator~1! is reg-
istered at an unknown phase shiftu8 only, the inferred phase
distribution is given as~11!. The phase measurement yields
the one-peak distribution on the interval@0,2p) only if
u850 or u85p. These two possibilities are of course dis-
tinguishable by the sign of the measured quadrature compo-
nentsxi , as the probability distribution~9! indicates. Unfor-
tunately, the phase measurement near the pointsu850 or
u85p yields rather bad resolution, as will be seen in the
following. In all the other cases of phase differencesu8 the
inferred phase distribution~11! does not distinguish between

the valuesu8 and 2p2u8. This ambiguity may be avoided
by estimating the phase difference on the half-width interval
@0,p# only. The inferred phase distribution dependent on the
true phase shiftu is plotted in Fig. 1 for the input coherent
field with the real amplitude (w50). The estimated phase
shift is always localized around the true value, but in general
the phase estimation is biased. Assuming sufficiently high
energy, the bias may be neglected, but significantly, the ac-
curacy of the estimation depends strongly on the true phase
shift. The phase information is sharpest near the point
u85p/2, yielding the limit of coherent state interferometry
Dfuu85p/2}1/Anuau. This statistical analysis corresponds
well to the semiclassical~linear! approximation, when the
phase resolution is predicted by the intrinsic fluctuations of
the signal asDu}1/uauusinu8u. It represents good estimation
in the regime of the best resolution, nevertheless it fails at
the points close tou850. Here also the Fisher information
tends to zero, since the quadratic term in the relative entropy
disappears. The necessary assumptions concerning the exist-
ence of the Fisher information are not fulfilled and, for ex-
ample, the Crame´r-Rao bound is not valid@14#. Neverthe-
less, the maximum likelihood estimation does not fail@15#.
The distribution~11! yields the phase resolution

Dfuu850}ADfuu85p/2

only, which is considerably worse than the resolution at the
optimum point. The block diagram of the phase detection
based on the maximum likelihood estimation is sketched in
Fig. 2. The balanced homodyne detection measures the sta-
tistics of the quadrature operatorP̂(u). Similarly to the pre-
vious case of theX̂(u) component, the phase difference may
be estimated with the conditional phase distribution

PML
P ~fuu8!}exp$22nuau2@sinf2sinu8#2%. ~12!

The predicted phase resolution is as in Fig. 1, but shifted by
the valuep/2 in both the true and inferred phases. The best
resolution is then achieved ifu850. Assuming further the
total energy needed for such a realization of multiple mea-

FIG. 1. Phase distribution as function of inferred phase shiftf
dependent on the true phase shiftu for coherent input with total
energynuau25100.
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surement asnuau2, the maximum likelihood estimation co-
incides with the proposal of Vogel and Schleich@2#. Estima-
tion theory therefore naturally extends the ‘‘phase without
phase’’ concept.

B. Phase estimation in the NFM scheme

Maximum likelihood estimation tends also to the very
natural interpretation of the phase-sensitive measurement of
Noh, Fouge`res, and Mandel mentioned as example~iii ! for
motivation. The measurement according to Scheme 1@7# for
quantum signal and strong~classical! field of the local oscil-
lator may be interpreted as simultaneous registration of
quadrature operatorsX̂ at anglesu and u1p/2. Hence the
phase distribution inferred after multiple measurement is
given as the product of the distributions inferred from the
measurement ofX̂, and those inferred from detection of the
P̂ operator. The former is given by relation~11! whereas the
latter is given by~12!. The resulting phase distribution is
then given by the normal distribution on the circle~von
Mises! @13#,

PML~fuu8!5
1

2pI 0~k!
exp@kcos~f2u8!#, ~13!

where k54nuau2. Significantly, this measurement is un-
biased, centered atu8, and characterized by the dispersion

D2512@ I 1~k!/I 0~k!#2,

I 0(k),I 1(k) being the modified Bessel functions. The reso-
lution is no longer phase shift dependent since the phase
fluctuations inferred from the quadrature componentsX̂ and
P̂ are complementary. This interpretation may be compared
with the standard quantum mechanical treatment represented
by the Shapiro-Wagner phase concept~5!, where the phase
shift is inferred after each measurement separately without
any accumulation of information. The phase distribution may
be approximated by the normal distribution for sufficiently
high energy only. The difference between ML and standard
quantum mechanical~SW! estimations may be simply dem-
onstrated on the evaluation of multiple data
(x1 ,p1), . . . ,(xn ,pn). The likelihood function may be found
analogously to the relation~10! as

L~f!}exp$kcos~f2fML !%,

where

eifML5~ x̄1 i p̄ !/Ax̄21 p̄2,

x 5̄( j51
n xj /n, and p̄5( j51

n pj /n. On the other hand, each
detected pair (xj ,pj ) may be immediately interpreted as reg-
istration of phase shift

eifSW5~xj1 ip j !/Axj21pj
2

for any j51, . . . ,n. The common envelopes of histograms
of the valuesf ML andfSW are given as the predictions~13!
and~5!, respectively. Analogously, the ML analysis might be
applied to the estimation of phase using the phase-sensitive
data resulting from the quadrature measurements at phase
shifts u81D i , D i being controlled~known! values of phase
shift of the local oscillator. The ML analysis of these mul-
tiple data, which may also serve for quantum state tomogra-
phy, is beyond the scope of this contribution.

There is still another interpretational point that should be
mentioned. The phase distribution discussed in this contribu-
tion is the conditional distribution describing how the esti-
mated phase is spread around the true value. This might be
contrasted to the genuine phase distribution of the phaseper
se resulting from some ideal phase concepts. The viewpoint
advocated here is motivated by pragmatic interpretation. As-
suming quantum theory as theory of measurement, observ-
able quantities only are of interest. Since both the quantum
state and detection method are inseparable in affecting the
result, it does not seem to be reasonable to distinguish be-
tween the effect~phase itself! and its quantum ‘‘measure-
ment.’’ Any ideal phase concept represents from this view-
point some special choice of estimation procedure only.
Hence there is no discrepancy between quantum mechanics
and mathematical statistics. This was explicitly demonstrated
using the example of simultaneous measurement of quadra-
ture operators: The evaluation of phase just after the regis-
tration of unnormalized sinf and cosf is in accordance with
the standard approaches used in quantum mechanics. On the
other hand, the optimum strategy based on ML estimation
averages the values of trigonometric fuctions and then evalu-
ates the phase shift.

III. CONCLUSION

We demonstrated that any phase-sensitive measurement
may serve for statistical prediction of phase shift. The con-
tent of phase information may be evaluated using the relative
entropy of the phase depending on the observable probabili-
ties only. The resolution predicted by the Fisher information
is then achieved if it exists. The proposed method based on
the maximum likelihood estimation uses the information ac-
cumulated in the process of multiple measurement in the
optimum way. This treatment suits the experimental condi-
tions better than sophisticated phase concepts. Particularly,
the phase distribution inferred on the basis of a given mea-
surement should be rather associated with nonlinear func-
tionals~likelihood functional, relative entropy! than with the
linear ones such as the distribution functions on the phase

FIG. 2. Scheme of homodyne detection used for phase differ-
ence estimation, LO denoting local oscillator.
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space are~Wigner function,Q function!. In realistic experi-
ments the detailed statistical analysis free of anya priori
restricting assumptions is always necessary, since standard
mathematical assumptions need not always be fulfilled. This
was demonstrated here using the specific example of the co-
herent state, where the Gaussian distribution provides zero
Fisher measure. Even if the relation between quadrature op-
erator and phase is detailed here, it does not mean that the

registration of the quadrature operator is the best way to
determine the phase shift. As is well known, interferometers
better serve this purpose, but this topic will be addressed
elsewhere.
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