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An algorithm for quantum-state estimation based on the maximum-likelihood estimation is proposed. Ex-
isting techniques for state reconstruction based on the inversion of measured data are shown to be overesti-
mated since they do not guarantee the positive definiteness of the reconstructed density matrix.
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State reconstruction belongs to the topical problems
contemporary quantum theory. This sophisticated techni
is trying to determine the maximum amount of informati
about the system—its quantum state. Even though the his
of the problem may be traced back to the early days of qu
tum mechanics, quantum optics opened a new era for s
reconstruction. A theoretical prediction of Vogel and Risk
@1# was closely followed by the experimental realization
the suggested algorithm by Smitheyet al. @2#. Since that
time, many improvements and new techniques have b
proposed@3–12#, to cite without requirements for complete
ness at least some titles from the existing literature@13#.
Even if the method comes from optics, similar metho
such as quantum endoscopy, are currently being used al
atomic physics@14#. Homodyne detection of quadrature o
erators with varying phases of local oscillators (xf ,f) was
used as the measurement technique in the original prop
@1,2#. The algorithm served to determine the Wigner functi
W(x,p) and also other quasiprobabilities representing
density matrix. Measurement of rotated quadrature opera
may also be used for direct evaluation of the coefficient o
density matrix in the number-state representationrm,n @4#
and for the analysis of multimode fields@7#. Simultaneous
measurement of the pair of quadrature operators (x,p) using
double homodyne or heterodyne detection directly yields
Q functionQ(a) @8#. A surprisingly easy technique was su
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gested by Wallentowitz and Vogel@9# and by Banaszek and
Wodkiewicz @10#. Mixing of the signal and coherent field
with controlled amplitude on the beam splitter may serve
reconstruction of the Wigner function and other distributi
functions using the photon counting only. Techniques sim
to the quantum-state reconstruction have been suggeste
indirect observations of particle number; see, for examp
Ref. @15#. Though the techniques are different as far as pr
tical realization is concerned, they all may be comfortab
represented by the formalism of generalized measurem
@16#. As is well known, any measurement may be describ

using the probability operator measure~POM!, P̂(j) being
any positively defined resolution of the identity operat

P̂(j)>0, *djP̂(j)51̂. The probability distribution of the
outcome predicted by quantum theory is

wr~j!5Tr@ r̂P̂~j!#, ~1!

where r̂ is the density matrix of the state. The measur
variable j represents formally the registered data being
general a multidimensional vector with the components
longing to both the discrete and continuous spectrum,
shown in the above-mentioned examples. The key poin
the existing reconstruction techniques—inversion of the
lation ~1!—represents a nontrivial problem. The solutio
may be formally written as an analytical identity,

Wr~a!5E djK~a,j!wr~j!, ~2!
R1561 © 1997 The American Physical Society
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R1562 55Z. HRADIL
Wr(a) being a representation of a density matrix. In order
find the representationW(a) of a density matrix correspond
ing to an unknown signal, the existing reconstruction te
niques apply the relation~2! on the actually detected statis
tics w(j).

Apart from how ingeniously the individual inversion
have been done, some problems are caused by applicati
this treatment in quantum theory. In particular, the algorit
may give a density matrix only for such measured proba
ity distributions, which are givenexactlyby the relation~1!.
Deviations between actually detectedw(j) and the true sta-
tisticswr(j) spoil the positivity of the reconstructed densi
matrix. There are at least the following imperfections of t
detected statisticsw(j), which should always be taken int
account:~i! the sampling error caused by the limited numb
of available scanned positions of continuous variable
which the measurement was done;~ii ! the counting error
caused by the limited set of available data counted at e
position. For example, in Ref.@2# the former one is cause
by the division of the quadraturexf into 64 bins and the
phase into 27 values, whereas the latter one is caused b
detection of the quadraturexf at each bin. Other errors, suc
as imperfections of detectors or external noises, may ap
in practice as well. In the quantum case, the algorithm ba
on the inversion provides a result, but does not guarantee
positive definiteness of the reconstructed density matrix@17#.
In the example of Ref.@2#, the positive definiteness of th
reconstructed matrix has not been checked explicitly, but
be judged according to the papers@4,5,18#. Here the negative
part of the photocount distribution indicates the spoiling
positive-definiteness. Even if there were a connection
tween the dimension of Hilbert space where this happens
the number of phases@18#, a rigorous way to treat the pos
tive definiteness within reconstruction has not yet been s
gested. The goal of the existing techniques is the estima
of the error bars of the coefficients parametrizing an
known density matrix@19# involving also the possible non
positive parts. Ordinary reconstruction techniques, theref
determine the coefficients of a particular representation
the density matrix as a fluctuating variable rather than
positive-definite density matrix itself. As pointed out b
Jones@20# in his Ref.@12#, the failure of similar methods is
the rule rather than the exception in the case where the m
sured data underdetermine the solution. Instead of inver
of the detected data, a technique motivated by quantum
formation theory@16,21# and by phase-shift estimation@22#
will be suggested in this paper. Previous reconstruction te
niques will be embedded into the common scheme base
the maximum-likelihood estimation.

Many parameters characterizing the quantum state sh
be estimated in state reconstruction. As pointed out by H
strom@16#, this may be done by restricting the dimension
Hilbert space, and accepting some residual uncertainty. S
larly, Jones@20# investigated the fundamental limitations
quantum-state measurement using Bayesian methodo
On the contrary, realistic measurements, such as those i
existing techniques, will be anticipated here. Assuming
repeated~or multiple! measurement performed on then cop-
ies of the system, the output of the observation may be
rametrized by the set of states~projectors! formally denoted
as uy1&, . . . ,uyn&, repetition of a particular outcome bein
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allowed. Pure states represent here the case of sharp
surement, whereas unsharp measurement involving the fi
resolution should be represented by an appropriate PO
Since formal considerations are valid for both these ca
the notation of sharp measurement will be kept in the follo
ing for the sake of simplicity. Maximum-likelihood estima
tion ascribes to such a measurement the stater̂ maximizing
the likelihood functional

L~ r̂ !5)
i

n

^yi ur̂uyi&. ~3!

The aim of this contribution is to find this state and to clar
the fluctuations of such a prediction. As the mathemati
tool, the inequality between the geometric and arithmetic
erages of non-negative numbersqi will be used,
() i

nqi)
1/n< (1/n) ( i

nqi . The equality is achieved if and
only if all the numbersqi are equal. The variables will be
formally replaced byqi5xi /ai , where xi>0 are positive
and ai.0 are auxiliary positive nonzero numbers. In th
following the n-dimensional vectors will be denoted, i
boldface, bya, x, y, etc. Assume now that the numbersqi are
chosen from the given set of values so that the valueqi
appearski times in the collection ofn data. Henceki repre-
sents the frequency,f i5ki /n being the relative frequency
( i8 f i51. Parametrization explicitly revealing the frequen
will be denoted by an upper prime in sums and produc
indicating that the index runs over a spectrum of differe
values. Without loss of generality the variablex may be in-
terpreted as probability( i8xi51, since the normalization
may always be involved in auxiliary variablesa. The rela-
tion, known as Jensen’s inequality@23#, then reads

) i
8 F xiai G

f i

<( i
8 f i

xi
ai
. ~4!

In this form it represents a remarkably powerful relati
since the equality sign may be achieved for an arbitrary pr
ability x5a. For example, the Gibbs inequality@21# follows
as a special case choosing the parametersai5 f i , since the
inequality~4! may be rewritten as2( i8 f i ln( f i / xi)<0. These
formal manipulations are tightly connected to the maximiz
tion of the likelihood function. Using the definition

xi5^yi ur̂uyi&, ~5!

ai being a subject of further consideration, the likeliho
functional may be simply estimated as

„L~ r̂ !…1/n5) i
8 ~^yi ur̂uyi&! f i<) j

8 aj
f jTr$r̂R̂~y,a!%.

~6!

The operatorR̂ is given, in general, by nonorthogonal d
composition as

R̂~y,a!5( i
8 f i
ai

uyi&^yi u. ~7!

Relation~6! simply follows from the definition~3! and from
the inequality~4!. Further treatment is distinguished by th
following specifications of auxiliary parametersa.
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55 R1563QUANTUM-STATE ESTIMATION
Reconstructions of the wave function. Condition ai5 f i
tends to considerable simplifications. Since the measurem
need not be complete,R̂(y,a5f)<1̂, the right-hand side of
the relation~6! reads

~6!5) j
8 f j

f jTrH r̂( i
8 uyi&^yi uJ <) j

8 f j
f j . ~8!

This represents a state-independent upper bound. The n
sary condition for the equality sign in Eq.~6! is given by the
conditions^yi ur̂uyi&/ai5const for anyi , whereas the equal
ity sign appears in relation~8! for complete measurement
These relations, together with the normalization of relat
frequencies, tend to the necessary condition for searc
stater̂,

^yi ur̂uyi&5 f i . ~9!

This is merely the experimental counterpart of the relat
~1! and hence the starting point of reconstruction based
inversion. The relation~9! may be simply inverted in the
case of orthogonal measurements, which may be consid
as complete on the given subspace, tending to the solut

r̂ f5( i
8 f i uyi&^yi u. ~10!

Unfortunately, such measurements do not reveal informa
about the full density matrix since the nondiagonal eleme
are lost, as, for example, in the case of particle number m
surement. Techniques dealing with orthogonal measurem
are therefore not suitable for full state reconstruction, wh
should be based on the usage of nonorthogonal states. O
other hand, in these cases the completeness and the exis
of a solution of Eq.~9! cannot be guaranteed. Quantum an
ogy of the Gibbs inequality corresponds to an overestima
upper bound and tends to the conditions imposed by rec
struction techniques.

Maximum-likelihood estimation. The problems with the
existence of a state achieving the upper bound descend
viously from the fixing of the auxiliary parametersa. The
remedy is to keep them free as a subject of further opti
zation. For any positively defined operatorR̂5( il i ur i&^r i u,
l i>0, and any density operatorr̂, the simple lemma holds

Tr~ r̂R̂!<maxil i . ~11!

The inequality sign is achieved for the density matrix cor
sponding to the spectral projector of operatorR̂ with maxi-
mal eigenvalue. Using this lemma, the estimation of
right-hand side of the inequality~6! then reads

~6!<l~y,a!) i
8 ai

f i , ~12!

wherel(y,a) denotes formally the maximal eigenvalue
the operatorR̂(y,a) with the corresponding eigenvecto
uc(y,a)&. Equality signs in the chain of inequalities a
achieved simultaneously if and only if

z^yi uc~y,a!& z2

ai
5const, ~13!
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independently on the indexi . Finally, the maximum-
likelihood estimation determines the desired state
uc(y,a)&, where vectora is given by the solution of the se
of nonlinear equations~13!. The uncertainty of such a
quantum-state estimation may be, according to the Baye
formulation @20#, characterized by the likelihood functiona
~3!. Since the interpretation of the probability distribution o
the space of states is rather complicated, the uncertaint
the prediction may be involved in an alternative way. T
measured data are fluctuating according to the distribu
function P(y) depending on the true state of the syste
Fluctuations of quantum-state estimates may be represe
by the sum of independent contributions

r̂MLE5^uc~y!&^c~y!u&y5E dyP~y!uc~y!&^c~y!u. ~14!

This density matrix shows how closely the maximum like
hood method allows us to estimate an unknown state hid
in the measured statisticsP(y). Unfortunately, the proposed
method is rather complicated and examples of reconst
tions specified above should be solved separately, cas
case. Considerable technical difficulties may be caused,
example, by possible degeneracy of operatorR̂ reflecting the
structure of performed quantum measurement. This part
lar question is beyond the scope of this contribution a
represents an advanced program for further reinterpreta
of existing reconstruction techniques.

A developed technique may be illustrated on simple
theoretically worthwhile examples. Quantum-state rec
struction after the measurement of a Hermitian operator w
an orthogonal spectrum is the simplest problem. The solu
corresponds to the application of the Gibbs inequality, sin
the relation~9! may be solved in this case. The quantum st
is then reconstructed after each measurement by the de
matrix ~10!. This is a consequence of the possible deg
eracy of the operatorR̂ mentioned above. The treatme
based on the Gibbs inequality is overestimated in gene
Provided that Eq.~9! is fulfilled in some special cases, the
the solution should coincide with the prediction of th
maximum-likelihood estimation.

The cases of strongly underdetermined data are
simple, when the state is estimated after single detec
n51. Assume for concreteness the standard ‘‘measurem
of Q function’’ corresponding to the detection of cohere
statesuy&5eyâ

†2y* âu0&. If the valuey is detected, the sys
tem is with the highest likelihood just in the stateuy&. Pro-
vided that systemwas in a coherent stateua&, the output
fluctuates asz^auy& z2/p. Estimation after single detectio
then yields the density matrix of superposition of coher
signala and the thermal noise@24# with the mean number o
particles equal to 1,

r̂MLE5
1

p E d2ye2uy2au2uy&^yu.

The difference between the true state and its estimatio
negligible in the case of classical fields, but considerable
the quantum domain.

Estimating the quantum state after multiple detection
coherent states, the matrixR̂ should be diagonalized. Usin
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the assumption for eigenstates asuw&5( i8Vi uyi&, linear
equations for desired coefficientsVi and eigenvaluesl fol-
low as

f k
ak

( i
8 ViCki5lVk , ~15!

where Cki5Cik*5^ykuyi&,Cii51. This solution determines
the coefficients a according to the relation~13! as
u( i8ViCkiu2/ak5const for any indexk. Let us illustrate this
strategy in the case of double detectionn52 yielding the
valuesy1 andy2 . Parameters are given asf 15 f 251/2 and
without loss of generalitya151, a1 /a25x. The secular
equation for the maximal eigenvaluel reads
l22(11x)l1x2xuC12u250, yielding easily solutions for
the maximal eigenvalue and its eigenvector. Equations~13!
impose the single condition asuC12ul5Ax(l211uC12u2).
This nonlinear system of equations may be easily sol
yielding an expected solution, such asl511uC12u, x51.
The projector is given by the normalized Schro¨dinger-cat-
like state,

uw&5
1

A2~11uC12u!
~eiargC12uy1&1uy2&).

The density matrix ‘‘reconstructing’’ the coherent state
then given as

r̂MLE5
1

p2 E d2y1d
2y2e

2uy12au22uy22au2uw&^wu.

The proposed method describes easily the cases in whic
data seem to be underdetermined. There is also a stron
s

s.
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f
Th
V

d

the
ef-

fort to apply the developed technique to the case of la
data sets estimating properly the quantum state in the c
of realistic measurements.

Even if the problem of positive definiteness used for m
tivation may seem trivial, it has far-reaching consequenc
Since a quantum state comprises the maximum possible
formation about the system, its proper description is of fu
damental interest. The method based on maximum likelih
addresses the state reconstruction in close analogy to th
dinary methods, completing rather than denying them in
following way: For measured data, whenever the ordin
reconstruction schemes provide a positive matrix, the so
tion coincides with the maximum-likelihood estimation. Th
predictions will differ only if the ordinary scheme yields
matrix that is not positively defined.

Unfortunately, the proposed technique is nonlinear a
the evaluation of realistic data for existing state reconstr
tions represents a nontrivial problem. Since the algorit
never admits the existence of ‘‘negative probabilities,’’ t
conjecture concerning accuracy may be formulated as
following statement:Enforcing positiveness will enhance th
uncertainty of state estimation, in comparison to the ordinary
techniques. These and other questions deserve further a
tion, since an information-theoretic approach allows us
analyze the state reconstruction free of any additional
sumptions.
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Bužek, G. Adam, and G. Drobny´, Phys. Rev. A54, 804
~1996!.
.

in-

a
is
.

@14# S. Wallentowitz and W. Vogel, Phys. Rev. Lett.75, 2932
~1996!.

@15# M. Munroe, D. Boggavarapu, M. E. Anderson, and M. G
Raymer, Phys. Rev. A52, R924~1995!.

@16# C. W. Helstrom,Quantum Detection and Estimation Theo
~Academic Press, New York, 1976!.

@17# Positive definiteness ofr̂, i.e., the propertŷxur̂ux&>0 for any
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