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An algorithm for quantum-state estimation based on the maximum-likelihood estimation is proposed. Ex-
isting techniques for state reconstruction based on the inversion of measured data are shown to be overesti-
mated since they do not guarantee the positive definiteness of the reconstructed density matrix.
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State reconstruction belongs to the topical problems ofested by Wallentowitz and Vogg®] and by Banaszek and
contemporary quantum theory. This sophisticated techniqu#/odkiewicz[10]. Mixing of the signal and coherent fields
is trying to determine the maximum amount of information with controlled amplitude on the beam splitter may serve for
about the system—its quantum state. Even though the histofigconstruction of the Wigner function and other distribution
of the problem may be traced back to the early days of quarfunctions using the photon counting only. Techniques similar
tum mechanics, quantum optics opened a new era for stat@ the quantum-state reconstruction have been suggested for
reconstruction. A theoretical prediction of Vogel and Riskenindirect observations of particle number; see, for example,
[1] was closely followed by the experimental realization of Ref.[15]. Though the techniques are different as far as prac-
the suggested algorithm by Smithey al. [2]. Since that tical realization is concerned, they all may be comfortably
time, many improvements and new techniques have be I presented by the formalism of generalized measurement
proposed 3—-12], to cite without requirements for complete- 6l As is well known, any measurement may be described
ness at least some titles from the existing literatik8].  using the probability operator measufROM), I1(£) being
Even if the method comes from optics, similar methodsany positively defined resolution of the identity operator

such as quantum endoscopy, are currently being used alson(¢)=0, [déI1(€)=1. The probability distribution of the

atomic physic§14]. Homodyne detection of quadrature op- outcome predicted by quantum theory is

erators with varying phases of local oscillatoss, (¢) was

used as the measurement techmque in the orlgmal proposal w,(&)=TrpIl(&)], 1)

[1,2]. The algorithm served to determine the Wigner function

W(x,p) and also other quasiprobabilities representing the R

density matrix. Measurement of rotated quadrature operatorshere p is the density matrix of the state. The measured

may also be used for direct evaluation of the coefficient of avariable £ represents formally the registered data being in

density matrix in the number-state representatign, [4]  general a multidimensional vector with the components be-

and for the analysis of multimode fieldg]. Simultaneous longing to both the discrete and continuous spectrum, as

measurement of the pair of quadrature operateyp)(using  shown in the above-mentioned examples. The key point of

double homodyne or heterodyne detection directly yields th¢he existing reconstruction techniqgues—inversion of the re-

Q functionQ(«) [8]. A surprisingly easy technique was sug- lation (1)—represents a nontrivial problem. The solution
may be formally written as an analytical identity,
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W, () being a representation of a density matrix. In order toallowed. Pure states represent here the case of sharp mea-
find the representatiow/(«) of a density matrix correspond- Surement, whereas unsharp measurement involving the finite
ing to an unknown signal, the existing reconstruction techfesolution should be represented by an appropriate POM.

niques apply the relatiof2) on the actually detected statis- Since formal considerations are valid for both these cases,
tics w(&). the notation of sharp measurement will be kept in the follow-

Apart from how ingeniously the individual inversions ing for the sake of simplicity. Maximum-likAeIihood estima-
have been done, some problems are caused by application ##n ascribes to such a measurement the gtateaximizing
this treatment in quantum theory. In particular, the algorithmthe likelihood functional
may give a density matrix only for such measured probabil- n
ity d.ist.ributions, which are giveexactlyby the relation(1). g(;,):H (yilplyi). (3)
Deviations between actually detectedé) and the true sta- i
tisticsw,(£€) spoil the positivity of the reconstructed density ) ) - _ ) _
matrix. There are at least the following imperfections of theThe aim of this contribution is to find this state and to clarify
detected statisticw/(&), which should always be taken into the fluctuations of such a prediction. As the mathematical
accounti(i) the sampling error caused by the limited numbertool, the inequality between the geometric and arithmetic av-
of available scanned positions of continuous variable afrages of non-negative numbers; will be used,
which the measurement was dor@) the counting error  (II'q;) "< (1/n) £;"g;. The equality is achieved if and
caused by the limited set of available data counted at eachnly if all the numbersy; are equal. The variables will be
position. For example, in Ref2] the former one is caused formally replaced byqg=x;/a;, wherex;=0 are positive
by the division of the quadrature, into 64 bins and the and a;>0 are auxiliary positive nonzero numbers. In the
phase into 27 values, whereas the latter one is caused by tfglowing the n-dimensional vectors will be denoted, in
detection of the quadraturey at each bin. Other errors, such boldface, bya, X, y, etc. Assume now that the numbegsare
as imperfections of detectors or external noises, may appeahosen from the given set of values so that the vajue
in practice as well. In the quantum case, the algorithm basedppears; times in the collection ofi data. Hence; repre-
on the inversion provides a result, but does not guarantee treents the frequencyf;=k;/n being the relative frequency
positive definiteness of the reconstructed density matitx X/ f;=1. Parametrization explicitly revealing the frequency
In the example of Ref[2], the positive definiteness of the will be denoted by an upper prime in sums and products,
reconstructed matrix has not been checked explicitly, but caindicating that the index runs over a spectrum of different
be judged according to the papé4s5,18. Here the negative values. Without loss of generality the variablenay be in-
part of the photocount distribution indicates the spoiling ofterpreted as probabilitys/x;=1, since the normalization
positive-definiteness. Even if there were a connection bemay always be involved in auxiliary variables The rela-
tween the dimension of Hilbert space where this happens angbn, known as Jensen’s inequalit®3], then reads
the number of phasd48], a rigorous way to treat the posi-
tive definiteness within reconstruction has not yet been sug- H-’
gested. The goal of the existing techniques is the estimation !
of the error bars of the coefficients parametrizing an un-
known density matri§19] involving also the possible non- In this form it represents a remarkably powerful relation
positive parts. Ordinary reconstruction techniques, thereforesince the equality sign may be achieved for an arbitrary prob-
determine the coefficients of a particular representation ofibility x=a. For example, the Gibbs inequalifg1] follows
the density matrix as a fluctuating variable rather than &@s a special case choosing the paramedgrsf;, since the
positive-definite density matrix itself. As pointed out by inequality(4) may be rewritten as- =/ f;In(f;/ x;)<0. These
Joneq 20] in his Ref.[12], the failure of similar methods is formal manipulations are tightly connected to the maximiza-
the rule rather than the exception in the case where the meéion of the likelihood function. Using the definition
sured data underdetermine the solution. Instead of inversion -
of the detected data, a technique motivated by quantum in- Xi=(yilelyi), ®
formation theory{16,21] and by phase-shift estimatid@2]
will be suggested in this paper. Previous reconstruction tec
niques will be embedded into the common scheme based
the maximum-likelihood estimation. ~ s , . ‘ bt A

Many parameters characterizing the quantum state should (£(p)) =TI «yilplyinfi<II]; a'Tr{pR(y,a)}.
be estimated in state reconstruction. As pointed out by Hel- (6)
strom[16], this may be done by restricting the dimension of
Hilbert space, and acc_epting some residual unge(tainty. Simirpe operatorR is given, in general, by nonorthogonal de-
larly, Joned 20] investigated the f_undamentgl limitations of composition as
guantum-state measurement using Bayesian methodology. ¢
On the contrary, realistic measurements, such as those in the 2 N0
existing techniques, will be anticipated here. Assuming the R(y,a)—Zi a, [y vil. ™
repeatedor multiple) measurement performed on theop-
ies of the system, the output of the observation may be paRelation(6) simply follows from the definition(3) and from
rametrized by the set of stat@srojectors formally denoted the inequality(4). Further treatment is distinguished by the
as|yy), . ..,|yn), repetition of a particular outcome being following specifications of auxiliary parameteas

Xif

a;

i X
<> g (4)

q; being a subject of further consideration, the likelihood
antional may be simply estimated as
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Reconstructions of the wave functioBondition a;= f; independently on the index. Finally, the maximum-
tends to considerable simplifications. Since the measuremelikelihood estimation determines the desired state as

need not be complet®(y,a=f)<1, the right-hand side of |#(y,d)), where vectorm is given by the solution of the set

the relation(6) reads of nonlinear equationg13). The uncertainty of such a
gquantum-state estimation may be, according to the Bayesian
6 =TT’ f.fJTr{A "y /y. ]S D fi 8 formulation[20], characterized by the likelihood functional
(6) HJ J P2 Yy HJ J @® (3). Since the interpretation of the probability distribution on

the space of states is rather complicated, the uncertainty of
This represents a state-independent upper bound. The necege prediction may be involved in an alternative way. The
sary condition for the equality sign in E(f) is given by the  measured data are fluctuating according to the distribution
conditions(y;|p|y;)/a;=const for anyi, whereas the equal- function P(y) depending on the true state of the system.
ity sign appears in relatiofB) for complete measurements. Fluctuations of quantum-state estimates may be represented
These relations, together with the normalization of relativeby the sum of independent contributions
frequencies, tend to the necessary condition for searched

statep, pLe={ | FNWH(Y)|)y= f dyP(W)[g(y)((y)]. (14

(yilplyi)="fi. C)
This density matrix shows how closely the maximum likeli-
This is merely the experimental counterpart of the relatiorhood method allows us to estimate an unknown state hidden
(1) and hence the starting point of reconstruction based oin the measured statisti¢¥(y). Unfortunately, the proposed
inversion. The relation9) may be simply inverted in the method is rather complicated and examples of reconstruc-
case of orthogonal measurements, which may be consider¢idns specified above should be solved separately, case by
as complete on the given subspace, tending to the solutioncase. Considerable technical difficulties may be caused, for

. , example, by possible degeneracy of oper&aeflecting the
szzi filyi)(yil- (10)  structure of performed quantum measurement. This particu-
lar question is beyond the scope of this contribution and

Unfortunately, such measurements do not reveal informatiofEPresents an advanced program for further reinterpretation

about the full density matrix since the nondiagonal elementSf €Xisting reconstruction techniques. .
are lost, as, for example, in the case of particle number mea- A developed technique may be illustrated on simple but

surement. Techniques dealing with orthogonal measurementgeoretically worthwhile examples. Quantum-state recon-

are therefore not suitable for full state reconstruction, whicrstruction after the measurement of a Hermitian operator with
should be based on the usage of nonorthogonal states. On tAB ©rthogonal spectrum is the simplest problem. The solution

other hand, in these cases the completeness and the existe§j@&reSPonds to the application of the Gibbs inequality, since
of a solution of Eq(9) cannot be guaranteed. Quantum anal-the relation(9) may be solved in this case. The quantum state

ogy of the Gibbs inequality corresponds to an overestimatelf tNen reconstructed after each measurement by the density
upper bound and tends to the conditions imposed by recod@lrix (10). This is a consequence of the possible degen-
struction techniques. eracy of the operatoR mentioned above. The treatment
Maximum-likelihood estimatioriThe problems with the based on the Gibbs inequality is overestimated in general.
existence of a state achieving the upper bound descend oBrovided that Eq(9) is fulfilled in some special cases, then
viously from the fixing of the auxiliary parametess The the solution should coincide with the prediction of the
remedy is to keep them free as a subject of further optimimaximum-likelihood estimation. _
zation. For any positively defined operae=S;\i|r;)(ril, The cases of strongly underdetermined data are also

\.=0. and densit tor the simole | hold simple, when the state is estimated after single detection
i= Y, and any density operatpy the Simpie lemma holds 1 -~ Assume for concreteness the standard “measurement

Tr(pR)<max\; . 1y ofQ functiorl’T’ cgtresponding to the detection of coherent
statesly)=e¥ 7Y 2 0). If the valuey is detected, the sys-
The inequality sign is achieved for the density matrix corre-tem is with the highest likelihood just in the stage. Pro-
sponding to the spectral projector of operafomwith maxi-  vided that systenwas in a coherent statgr), the output
mal eigenvalue. Using this lemma, the estimation of thefluctuates as(a|y)|?/ 7. Estimation after single detection

right-hand side of the inequalit{6) then reads then yields the density matrix of superposition of coherent
signala and the thermal noig®4] with the mean number of
@)=yl aifi ' (12)  particles equal to 1,
s L[ qayely-a?
where \(y,a) denotes formally the maximal eigenvalue of PMLE™ J dye )yl

the operatorR(y,a) with the corresponding eigenvector . ) .
|(y,a)). Equality signs in the chain of inequalities are 1he difference between the true state and its estimation is

achieved simultaneously if and only if negligible in the case of classical fields, but considerable in
5 the quantum domain.
[Kyil@(y,a)] — const (13 Estimating the quantum state after multiple detection of

a coherent states, the matrix should be diagonalized. Using
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the assumption for eigenstates hs)=3/V,|y;), linear fort to apply the developed technique to the case of large

equations for desired coefficients and eigenvaluea fol-  data sets estimating properly the quantum state in the cases
low as of realistic measurements.
f Even if the problem of positive definiteness used for mo-
_k 24’ ViCri=A\Vy, (15  tivation may seem trivial, it has far-reaching consequences.
a ! Since a quantum state comprises the maximum possible in-

. . . . formation about the system, its proper description is of fun-
where Cy;=C{ =(y\ly).Cii=1. This solution determines gamental interest. The method based on maximum likelihood
the coefficients a according to the relation(13) as addresses the state reconstruction in close analogy to the or-
|=V;Cyi|?/ax=const for any index. Let us illustrate this  dinary methods, completing rather than denying them in the
strategy in the case of double detectior2 yielding the  following way: For measured data, whenever the ordinary
valuesy,; andy,. Parameters are given &g=f,=1/2 and reconstruction schemes provide a positive matrix, the solu-
without loss of generalitya;=1, a;/a,=x. The secular tion coincides with the maximume-likelihood estimation. The
equation for the maximal eigenvalueh reads predictions will differ only if the ordinary scheme vyields a
A2—(1+x)\+x—x|Cy5%=0, yielding easily solutions for matrix that is not positively defined.
the maximal eigenvalue and its eigenvector. Equatidr3s Unfortunately, the proposed technique is nonlinear and
impose the single condition d€,/A=VX(A—1+|C;5?).  the evaluation of realistic data for existing state reconstruc-
This nonlinear system of equations may be easily solvedions represents a nontrivial problem. Since the algorithm
yielding an expected solution, such as=1+|C;5,x=1.  never admits the existence of “negative probabilities,” the
The projector is given by the normalized Scatimger-cat- conjecture concerning accuracy may be formulated as the
like state, following statementEnforcing positiveness will enhance the

1 uncertainty of state estimatipin comparison to the ordinary
lp)= —— (el@C1gy,) +|y,)). techniques. These and other questions deserve further atten-
V2(1+|Cqq) tion, since an information-theoretic approach allows us to

) ] ) _analyze the state reconstruction free of any additional as-
The density matrix “reconstructing” the coherent state isgymptions.
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