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Uncertainty relations on the slit and Fisher information
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Diffraction on the slit can be interpreted in accordance with the Heisenberg uncertainty principle.
This elementary example hints at the importance of the information theory for the quantum physics.
The role played by one particularly interesting measure of information — the Fisher information —
in quantum measurements is further discussed in the context of quantum interferometry.

Quantum mechanics became a standard tool not only
of physicists, but almost any scientist is familiar with
at least some of its concepts. Traditionally it has pro-
voked and attracted attention of broader community due
to sometimes paradoxical implications on the fundamen-
tal and philosophical issues of the Nature. That is why
teaching of quantum mechanics is a rewarding but not
an easy task. There is perhaps no other field of physics
encumbered by so many misconceptions and misinterpre-
tations as quantum theory is. Every student realizes very
quickly that depending on the degree of profundity there
are no simple questions and answers here. Recently there
was a live discussion concerning the teaching of quantum
mechanics1 followed by a comment2 addressing a misun-
derstanding appearing in many elementary textbooks of
quantum theory, namely the exposition of the Heisen-
berg uncertainty relation on the slit. We do not want to
speculate whether it is better on the introductory level
to suppress the complexity of the problem and present a
simple but physically inadequate explanation, or to built
a consistent but terse theory from the very beginning.
This is certainly a deep problem, solution of which de-
pends on the teacher. The purpose of this contribution is
however different. The analysis of the diffraction of the
wave (particle) on the slit will be used as a link between
the quantum mechanics and mathematical statistics. We
will provide a physical motivation for the concept of the
Fisher information and will reconsider the problem of un-
certainty relations related to the quantum interpretation
of the interference pattern in wave theory. In our opinion,
both these issues deserve attention: Fisher information
comes from the mathematical statistics and as such it
seems to do very little with quantum theory. That is
perhaps why this topic is missing in standard textbooks.
This may change in the future since now the crucial role
of information physics is widely recognized, and there
exist serious attempts to derive and explain the physical
laws of nature and quantum theory itself from the theory
of information3,4,5.

The second goal of our approach is to formulate alter-
native inequalities for complementary observables moti-
vated by the Fisher information and apply them to par-
ticles passing through the slit. This intuitively clear and
illustrative example will demonstrate the incompatibil-
ity of the position and impulse observables in quantum
theory. It is intriguing to note that this approach is also
relevant for such up to date problems as quantum inter-

ferometry and quantum lithography6,7,8.

I. DIFFRACTION ON THE SLIT

Let us consider the standard setup and standard argu-
mentation used in the elementary textbooks of quantum
mechanics for the exposition of Heisenberg uncertainty
relations9. For simplicity assume 1D geometry of a sin-
gle slit sketched in Fig. 1. The particle goes through the
slit impinging on the position sensitive screen behind the
slit. According to the de Brogli hypothesis it will effec-
tively behave as a wave with the de Brogli wave length
λ = h/p, p being the impulse of the particle. Using a sim-
ple geometrical argumentation, each detection event on
the screen may be used for inferring the direction of the
incoming particle. Hence this scheme could be consid-
ered as a measuring device for determining the impulse.
Invoking the effect of diffraction, the quantum nature
of particles will be manifested by a diffraction pattern
registered on the screen. This effect will enhance the
uncertainty of the inferred impulse. This qualitative rea-
soning can easily be accompanied by the corresponding
wave picture that describes each detected single event.
Assuming the illumination by a plane wave, the state
describing the particle behind the slit reads

ψ(x) =

{

exp(ikxx)/
√
a, |x| ≤ a/2,

0, |x| > a/2.
(1)

Here kx = k sin θ is the component of the wave vector
k = 2π/λ orthogonal to the optical axes, and λ is the
wavelength of the particle. Denoting the detected posi-
tion of the particle on the screen by ξ, the probability of
the detection of the particle in the far reach zone is given
by the square of its Fourier transformed wave function,

p(µ) =
1

π
sinc2(µ− ν). (2)

Here the dimensionless quantities used are µ = ak
2d ξ and

ν = a/2kx. Naturally, such a detection visualizes the
transversal momentum of the particle kx impinging on
the slit. The probability manifests one distinct peak at
µ = ν. The standard interpretation relies on a geomet-
rical argumentation. Taking the first minimum of the
function (2) for defining its “spatial extent,” the half-
width of the probability distribution is then determined
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as ∆kx = 2π
a . Considering further that in the plane of

the slit the location of the particle is known to be within
the half-width of ∆x = a/2, the expected uncertainty
relation reads

∆px∆x ≈ h/2, (3)

where p = h̄k. This is often considered as a painless,
quick and intuitive way how to formulate the uncertainty
relation, more so, because the relation (3) resembles the
famous uncertainty relation of quantum theory ascribed
to Heisenberg

∆px∆x ≥ h̄/2, (4)

though its exact derivation in the present form has been
done by Kennard10. One must however realize that con-
trary to the relation (3), the uncertainties in (4) are
strictly defined as the root-mean-square variances of ob-
servables. Due to the formal similarity between both the
relations one may be tempted to interpret the relation (3)
as an approximation of the rigorous uncertainty principle
(4). Unfortunately, this would not be correct, since, the
whole derivation of (3) stands on the shaky ground. The
error measures appearing it (3) have nothing to do with
standard variances. This becomes crucial in the case of
the probability distribution (2) whose variance is infinite
due to its heavy tails. This problem is well known11, and
usually ascribed to the discontinuity of the wave function
after the passage of the particle through the slit, and in
fact, it disqualifies the example of the slit from all ex-
act considerations. Obviously, as the uncertainty of the
momentum is infinitely large, inequality (4) is trivially
satisfied, in this case. There are several ways how to
circumvent this obstacle, for example by alternative def-
initions of the proper resolution measure, or by invoking
entropic uncertainty relations12.

In the following exposition we will keep the example of
the diffraction on a slit as a toy example and employ it
for introducing the Fisher information. This information
defines the ultimate limitations of measurements, and as
such it can be used to describe the uncertainty relations
in the generalized sense. As an interesting byproduct, the
resolution of the current quantum interferometric tech-
niques will be evaluated.

II. FISHER INFORMATION

The interference pattern registered behind the slit may
be interpreted within a different framework. The build-
up of an interference pattern is governed by a proba-
bilistic law, where the intensity (2) plays the role of a
probability distribution. Instead of a single-particle de-
tection discussed in the previous section, let us consider
the information accumulated in the detection of the full
interferometric pattern created by altogether n particles.
It does not matter whether they arrived in a single shot
or one by one in the course of a subsequently repeated

experiment. The identity of detected particles is disre-
garded and this is the only additional assumption with
respect to the previous case. Let us develop the statis-
tical description capable of handling a generic statistical
model, which will afterwards be applied to the problem
of the diffraction on the slit.

Assume that generic data denoted by x are registered
with the frequency of occurrence of nx, and let us denote
the total number of particles by n. For the concreteness,
the variable x is considered to take discrete values. More-
over, we assume that the values x occur with the proba-
bility px(θ̄), where θ̄ represents an unknown true value of
a certain parameter. The purpose of the whole treatment
is to infer the true value of this parameter as faithfully as
possible from the registered data x. This is the general
estimation scheme, which of course, might be adopted
to the case of particles impinging on a screen as well. In
particular, provided that the detection of each single par-
ticle is evaluated separately, n = 1, this scheme reduces
to the above mentioned measurement of the impulse. Let
us denote by θ a function of the registered data, which
will be used for the estimation of the true value of the
parameter of interest θ̄. This function is called estima-
tor in the mathematical statistics and there are many
nonequivalent ways how to construct it. Let us describe
the maximum likelihood (ML) estimator adopted to the
evaluation of the the accumulated data set nx. Since reg-
istrations of individual particles are independent events,
the likelihood that the actual value of the parameter was
θ conditioned upon the registered data is proportional to
the product of individual probabilities,

P(θ|{nx}) ∝ exp
{

∑

x

nx ln px(θ)
}

. (5)

ML estimator is given by such a value of θ which maxi-
mizes this function. Let us estimate its uncertainty. Pro-
vided that the total number n of registered particles is
large, the registered data can be replaced by the expected
number of detected particles, nx = npx(θ̄). The likeli-
hood (5) can then be expanded in a power series in the
neighborhood of this true value,

P ∝ exp
{

n
∑

x

px(θ̄) ln px(θ)
}

(6)

≈ exp

{

n
∑

x

px(θ̄) ln px(θ̄)

−n
2

∑

x

p′2x (θ̄)

px(θ̄)
(θ − θ̄)2 + . . .

}

.

Its meaning is obvious. For sufficiently large number of
particles the ML estimator fluctuates around the true
value of the parameter within the error 1/F ,

Fµ =
∑

x

p′2x (θ̄)

px(θ̄)
. (7)

F is the Fisher information, which characterizes the root
mean square error of the inferred value of the parameter
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from its true value. Significantly, the Fisher informa-
tion represents the ultimate limit for the resolution of
any unbiased estimator. This relation is known as the
Cramer-Rao lower bound13,14. For its importance we re-
peat its derivation here15. Noticing that the mean value
of any unbiased estimator equals the true value,

∑

x

θ px(θ̄) = θ̄, (8)

and using the normalization condition

∑

x

px(θ̄) = 1, (9)

this inequality can be derived by differentiating Eqs. (8)
and (9) with respect to θ̄, multiplying the latter result
by θ̄, and subtracting it from the former, which gives

∑

x

(θ − θ̄)p′x = 1. (10)

The expression on the left-hand side is bounded from
above by the Cauchy-Schwarz inequality,

1 ≤
[

∑

x

(θ − θ̄)2px

][

∑

x

(p′x)2

px

]

= (∆θ)2F, (11)

so finally, we get

(∆θ)2 ≥ 1/F, (12)

which is the Cramer-Rao lower bound on the variance of
an unbiased estimator. Of course, to achieve this resolu-
tion it is necessary to register a large number of particles
n. As follows from the expansion of the likelihood, the
performance of a ML estimator improves with increas-
ing number of particles as 1/(nF ). Hence the Fisher in-
formation gives the ultimate resolution corresponding to
a single ”average” particle from the bunch of registered
events16.

III. FISHER INFORMATION OF

INTERFERENCE PATTERNS

Let us apply the theory to the interference pattern be-
hind the slit. It is easy task to calculate all the respective
quantities

(∆µ)2 = (
a

2h̄
)2(∆px)2, (13)

F =
4

π

∫

dµ(
d

dµ
sincµ)2 =

4

3
, (14)

(∆x)2 =
a2

12
. (15)

What is really intriguing, the Cramer-Rao inequality (12)
reproduces exactly the expected Heisenberg uncertainty
relations for impulse and position of the particle going

through the slit. Indeed, plugging the uncertainties (13),
(14), and (15) into Eq. (12) the resulting uncertainty re-
lation reads

∆px∆x ≥ h̄

2
. (16)

Remarkably, the state of particle behind the slit meets
the equality sign here being the minimum uncertainty
state. The price paid for this interpretation is the rein-
terpretation of the measurement of the impulse. On the
contrary to the single detection case, here the identity of
separate particles is disregarded. What we observe is the
impulse of the ”center of mass” of the bunch of particles
rather than the impulse of each particle separately.

But there are still some other remarkable differences
in interpretation. Provided that accuracy is related to n-
particle signal (for example, assuming n-particle absorp-
tion process), the accuracy improves according to the dis-
tribution (6) n times and the same effect appears in the
Cramer-Rao inequalities (12). According to the standard
interpretation, this improvement is viewed as the effect of
a rescaling of the de Brogli wavelength due to the n times
greater mass of interfering “quasi” particles6,7,8. The im-
proved accuracy is consequently referred to as a measure-
ment beyond the Heisenberg limit, which of course seems
to be problematic in the view of the above mentioned ar-
guments.

Another point is also intriguing: The standard expo-
sition of the Heisenberg uncertainty relations relies on
the notion of measurable quantities. Students are taught
that such observables correspond to hermitian operators
and that the accuracy of such observations can be de-
scribed by variances. Since both the variances of position
and impulse appear in the standard Heisenberg uncer-
tainty relations, it may seem at the first glance that that
uncertainty relations limit the simultaneous (inaccurate)
measurement of non-commuting observables. This is cer-
tainly not true. Heisenberg uncertainty relations express
merely a necessary condition obeyed by any wave func-
tion.

The problem of simultaneous measurement of non-
commuting observables is a more involved problem and
is therefore beyond the exposition in the undergraduate
course. It was first discussed by Arthurs and Kelly17

for position and impulse observables, and the answer re-
lies upon the notion of generalized measurements. They
showed that in the case of a simultaneous measurement
of position and momentum, the product of the uncer-
tainties becomes two times larger compared to the stan-
dard Heisenberg uncertainty relation. It is interesting to
note that there is no danger of similar misinterpretation
within the information theory. Particularly, the Cramer-
Rao inequality for the estimation of a single variable (12)
involves a single variance only. Hence the formulation an-
ticipates the measurement of single parameter only (im-
pulse). The variance of the position was introduced in
order to establish the link to the standard Heisenberg
uncertainty principle. Notice, however, that Cramer-Rao
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inequalities may be easily extended to higher dimensions,
and particularly, the Cramer-Rao inequality for simulta-
neous detection of impulse and position will reveal two
times higher right-hand side17.

There is a simple relationship between the Fisher
information and variances of complementary variables.
Therefore, the Cramer-Rao inequalities imply the stan-
dard uncertainty relation18. Considering the momentum
representation,

∂

∂p
ψ(p) = 〈p| X̂

ih̄
|ψ〉, (17)

∂

∂p
ψ(p)∗ = −〈ψ| X̂

ih̄
|p〉, (18)

ψ(p) = 〈p|ψ〉, ψ(p)∗ = 〈ψ|p〉, (19)

the Fisher information may be rewritten to the form

Fp =

∫

dµ
[ψ(µ)∗′ψ(µ) + ψ(µ)′ψ(µ)∗]2

ψ(µ)ψ∗(µ)
(20)

=

∫

dµ
1

ψ(µ)ψ∗(µ)

〈

µ
∣

∣

[∆X̂

ih̄
, |ψ〉〈ψ|

]∣

∣µ
〉2
. (21)

Using the identity

|〈ÂB̂〉|2 =
1

4
|〈[Â, B̂]〉|2 +

1

4
|〈{Â, B̂}〉|2,

we get

Fp =
4

h̄2 〈ψ|(∆X)2|ψ〉 (22)

−
∫

dµψ(µ)ψ∗(µ)

[

∂

∂µ
arg(ψ(µ)) +

1

h̄
X̄

]2

,

where X̄ = 〈ψ|X̂ |ψ〉. That is why the Cramer-Rao in-
equality is stronger than the Heisenberg uncertainty re-
lation, since always

(∆p)2 ≥ 1

Fp
≥ h̄2

4(∆x)2
. (23)

They will coincide whenever the phase of the wave func-
tion is related to the mean value of position by the rela-
tion

∂

∂µ
arg(ψ(µ)) = − 1

h̄
X̄, (24)

which means that the phase of the wave function of min-
imum uncertainty states in p-representation exhibits a
linear dependence on the momentum, argψ(µ) = α+βµ,
and, in particular, it must be constant if X̄ = 0. This
condition gives a wide class of minimum uncertainty
states for the informatic uncertainty relation on the slit.

IV. QUANTUM INTERFEROMETRY

The analysis of the diffraction on the slit from the in-
formation point of view may serve not merely as an alter-
native interpretation of this experiment but it could also

be used for the evaluation of the performance of interfer-
ometric techniques. The variance of the detected signal
is crucial for the maximal attainable resolution. This can
be seen from the following simple linearized theory, fre-
quently used in various considerations. Let us assume
the measurement of a generic operator A. This measure-
ment should reveal the value of an unknown parameter
θ̄ appearing in a unitary transformation U(θ̄) applied to
a quantum state |ψ〉: |ψ(θ̄)〉 = U(θ̄)|ψ〉. Provided that
the average value of the θ̄- dependent signal 〈A(θ̄)〉 is
detected, the desired value of the parameter may be in-
ferred by means of an estimator θ. The estimated value
is usually uncertain since the signal itself fluctuates with
the variance given by (∆A)2 = (〈A2〉 − 〈A〉2. Symbol
(∆)2 will be reserved for variances, whereas symbol δ
will denote an error obtained by means of a linearized
theory,

δθ ≈ ∆A

〈A(θ̄)〉′ , (25)

where prime denotes a derivative with respect to the pa-
rameter. For its simplicity, the latter measure of error is
frequently used in interferometry19. However, one should
keep in mind that in some cases the two quantities can
be significantly different. Let us evaluate a simple real-
istic model of the phase detection by means of a Mach-
Zehnder interferometer, see Fig. 2. Formally, this device
can be described by Lie algebra SU(2), the correspon-
dence being provided by the Schwinger representation of
the angular momentum operators,

J1 =
1

2
(a†1a2 + a†2a1), (26)

J2 =
1

2i
(a†1a2 − a†2a1),

J3 =
1

2
(a†1a1 − a†2a2).

All these operators commute with the total number of

particles N = a†1a1 + a†2a2 and satisfy commutation rela-
tions of angular momentum observables [Ji, Jj ] = iǫijkJk.
Provided that a difference of particle numbers on the
output ports will be registered, the measurement is rep-
resented by J3 operator. Before reaching the detectors,
the input signal undergoes subsequent transformations
on two beam-splitters and phase shifter. Considering a
symmetrical beam splitter and merger, both introduce
the phase shift of π/2 for the reflected signal, their ac-
tion on the input state of light is described by the unitary
operator e−iπJ1 . Phase shifter transforms the state ac-
cording to the unitary transformation e−i(φ2−φ1)J3 . Con-
sequently, the quantum state at the output carries the
information about phase shift φ = φ2 − φ1. The total
transformation induced by the Mach-Zehnder interfer-
ometer then reads,

U(φ) = eiπ/2J1e−iφJ3e−iπ/2J1 = e−iφJ2 , (27)

|out〉 = U(φ)|in〉, (28)

U †(φ)J3U(φ) = − sinφJ1 + cosφJ3. (29)
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Assume now that the input ports are fed by n1 and n2

particles, respectively. Adopting the standard notation
of eigenstates |j,m〉 of the operators J2 and J3, the input
state simply reads |in〉 = |j,m〉, where j = (n1 + n2)/2
and m = (n1 − n2)/2. The output of the measurement
can either be characterized by phase dependent moments

〈J3〉 = m cosφ, (30)

〈J2
3 〉 = m2 cos2 φ+ 1/2[j(j + 1) −m2] sin2 φ, (31)

or, more completely, by phase dependent output statis-
tics,

pk(φ) = |〈j, k|U(φ)|j,m〉|2, (32)

sampled by the measurement. Such a measurement is ob-
viously complete

∑

k pk(φ) = 1. In the following, the de-
scription will further be simplified considering only phase
shifts near the working point φ = 0, where the ultimate
limit of the accuracy of the phase-shift measurement can
be evaluated most easily. The Fisher information associ-
ated with the phase estimation in this case reads,

F0 =
∑

k

[p′k(0)]2

pk(0)
, (33)

Notice that all probabilities pk(φ) = |〈j, k|e−iφJ2 |j,m〉|2,
evaluated at φ = 0 vanish except when k = m. In the
former case, this leads to an indefinite expression of the
type 0/0 under the summation sign in Eq. (33). Evaluat-
ing them with the help of the L’Hospital rule we obtain,

F0 =
∑

k 6=m

2p′kp
′′
k

p′k
= 2

∑

k 6=m

p′′k = −2p′′m, (34)

since
∑

pk = 1. Consequently, for the input state |j,m〉
and true phase φ = 0, we found the Fisher information
to be

F0 = 4〈j,m|J2
2 |j,m〉 = 2[j(j + 1) −m2]. (35)

At the same time the phase error could be estimated by
means of the simple linearized theory as

(δφ)2 =
(∆J3)

2

(J3(φ)′)2
=
j(j + 1) −m2

2m2
. (36)

Now assume two cases of special interest related to the
classical and quantum regimes. Provided that the inter-
ferometer is operated in the usual (classical) manner with
the light entering one input port only, |in =〉|j = N

2 ,m =
N
2 〉, the phase error given by the linearized theory reads

δφ = 1/
√
N . Significantly, the ultimate variance pre-

dicted by the Cramer-Rao inequalities gives the same
value of ∆φ = 1/F0 = 1/

√
N. This regime is usually

referred to as the standard limit of phase measurements.
Intriguing situation appears when both the input ports

of the interferometer are fed by the signal with an equal

number of particles N/2. In this case we have state
|j = N

2 ,m = 0〉 at the input and the situation becomes
diametrically different. Here, the simple linearized the-
ory fails to provide an error estimate because δφ = 0/0.
However, the information approach can still be used and
the Fisher information predicts the ultimate phase reso-
lution of

∆φ =
√

2/N. (37)

This regime is referred to as the quantum limit of phase
measurements20

Let us clarify some experimental aspects of this quan-
tum resolution regime21. The probability distribution of
the detected signal can be approximated for large values
of j by

P(φ|m) = pm(φ) ≈ J2
m(φj), (38)

where Jm denotes the Bessel function. According to the
Bayes principle this expression also provides the poste-
rior phase distribution conditioned on the detected pho-
ton number difference m. Obviously, the most accurate
detection of the phase shift is expected for a carefully bal-
anced interferometer (φ = 0) when input state is trans-
mitted without any change m = 0. However, an experi-
mentalist is facing an inverse problem. Provided that the
value m = 0 was registered, one cannot be sure whether
the true value of the phase shift had really been set to
zero. Of course,m = 0 could be detected with some prob-
ability for other phase shifts as well. There is always some
uncertainty about the estimated parameter. As a proper
measure of performance, the width of the respective pos-
terior phase distribution can be adopted. Accepting the
same heuristic argumentation as in the case of the diffrac-
tion on the slit, the first minimum of the Bessel function
could be used to define the width. Indeed, the resolu-
tion obtained in this way is of the order of (δφ)2 ≈ 1/j2;
N = 2j which resembles the quantum phase resolution
beating the standard noise limit of phase22. However,
neither in the case of diffraction, nor here the distance
from the center to the first minimum of the probability
distribution is a plausible measure of error in quantum
theory. One should realize that distribution (38) is not
even square integrable in the limit of j → ∞. Its variance
can be evaluated assuming the phase window π:

(∆φ)2 = (
1

j
)2

∫ jπ/2

0 dxJ2
0 (x)x2

∫ jπ/2

0
dxJ2

0 (x)
∝ 1/ ln j. (39)

Here the Bessel function was approximated by its asymp-
totic expansion in the last step, since the heavy tails of
the distribution yield a dominant contribution. What
does this mathematical expression mean? Provided that
the true phase is estimated from the result of a single shot
measurement, the result is rather uncertain23. In partic-
ular, such measurement is much worse compared to the
interferometer operated in the usual manner (with single
illuminated input port). However, our scheme still posses
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some potential for an improvement. Let us imagine that
our single-shot measurement is repeated. Provided the
most optimistic result m = 0 is detected again, the pos-
terior distribution will now become

P (φ|m = 0;m = 0) ≈ J4
0 (φj), (40)

where {m = 0;m = 0} represents accumulated phase-
sensitive data. The procedure of data accumulation can
be repeated until the optimal resolution is reached21. As
can be shown, the accuracy predicted by the Fisher in-
formation is achieved provided that the single shot de-
tections are repeated n times, n ≥ 4. For instance, in
the most optimistic case when {m = 0;m = 0;m =
0; . . .m = 0}n was detected, the variance of the posterior
phase distribution is (∆φ)2 = 1/(nj2). Since the total
number of particles used in the experiment is Ntot = Nn,
the phase resolution scales with the total energy used as

(∆φ)2 = 4n/N2
tot, n ≥ 4. (41)

As can be seen the optimum regime is that with n = 4
repetitions. Notice however, that although the quantum
phase resolution ∝ 1/N2 has been recovered, the op-
timal variance is still by a constant factor larger than
the ultimate limit (37) predicted by the Fisher informa-
tion. Indeed, the data accumulation that is needed to
find the tiny sharp central peak of the phase distribu-
tion always tends to move the resolution from the quan-
tum toward the classical regime; in the extreme case of
n = Ntot/2 when the particles are injected into the inter-
ferometer in pairs we only get the classical resolution of
(∆φ)2 = 2/Ntot. The fact that the ultimate Fisher limit
cannot be attained is in accordance with the theory, since
this ultimate limit need not be achieved by measurement.
This analysis illustrates the application of the concept of
Fisher information in practice.

The setup of quantum interference similar to quan-
tum interferometry with equal number of particles beams
has recently been proposed for beating the Rayleigh res-
olution limit in lithography7. The goal of the quan-
tum lithography is to overcome the well-known limita-
tion of classical optics and create a pattern in one and
two dimensions whose resolution is below the diffraction
limit. As any finite aperture cuts off the spatial fre-
quencies higher than the inverse Rayleigh distance, the
information about small details beyond this diffraction
limit is inevitably lost. This may appear as detrimental,
for instance, in nanotechnology. The proposal of quan-
tum lithography is motivated by the same setup used
in quantum interferometry. As has been demonstrated
above, the quantum interference pattern can be created

by means of non-classical interference. The phase shift
is induced by the differences of optical phases inside the
interferometer. The argument of Bessel function depends
on the energy of photon number correlated beams. The
shape of pattern can be compressed beyond the stan-
dard diffraction limit, provided that the substrate is sen-
sitive to N-photon absorption. This technological obsta-
cle makes this technique rather tricky and speculative, at
least, from the technological point of view. However, the
argumentation based on Fisher information raises other
questions.

The width of the distribution in the sense of the dis-
tance to the first minimum (Rayleigh criterion) can cer-
tainly be decreased. However, as the price, only a small
portion of the whole probability (or energy) concentrates
there. The remaining portion of the signal is spread out
and contributes to the overall noise. This undesirable ef-
fect will obviously influence the possibility to shape the
desired pattern due to the unavoidable fluctuations. For
applications in lithography one needs the possibility to
create and transmit high frequencies as well as the capa-
bility to point to a target.

V. CONCLUSIONS

We have formulated several arguments in favor of
Fisher information and its applications to quantum prob-
lems. Fisher information provides the ultimate limitation
for quantum measurements and as such also provides a
nontrivial link between the theory of statistics and quan-
tum theory. Since quantum theory is more ”operational”
than perhaps any other physical theory, this may yield
new interesting insights into its fundamentals. From the
pedagogical point of view, it is especially interesting to
apply the Fisher information to simple thought experi-
ments frequently discussed in elementary textbooks on
quantum mechanics. Particularly, we have shown that
the example of the diffraction on the slit can be inter-
preted as the uncertainty principle for the impulse and
position of particles creating the diffraction pattern. Sim-
ilar argumentation can be used for the description of the
phase resolution of quantum interferometry.
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FIG. 1: Geometry of the diffraction on the slit.
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