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Quantum measurement and information

Z. Hradil∗ and J. Řeháček
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The operationally defined invariant information introduced by Brukner and Zeilinger is related to the problem
of estimation of quantum states. It quantifies how the estimated states differ in average from the true states
in the sense of Hilbert–Schmidt norm. This information evaluates the quality of the measurement and data
treatment adopted. Its ultimate limitation is given by the trace of inverse of Fisher information matrix.

1 Introduction

Information is turning out to be the key issue of our civilization. Though its undisputed significance the term
information is used in a rather ambiguous way. The first attempts to quantify the content of information
are related to the concept of entropy in thermodynamics. Mathematical basis for rigorous approach comes
from Shannon, who introduced Shannon entropy and mutual information. These concepts appeared to be
very useful in communication and information science triggering also a new direction in quantum theory-
quantum information. However, information is not solely related to the Shannon information. Recently
a project has been undertaken to build up the kinematics of the quantum theory from the information-
theoretical principles [1–4]. As a part of the project a new measure of the classical information gained from
a measurement on a quantum system was introduced. This quantity summed over a complete set of mutually
complementary observables (MCO) exhibits invariance with respect to unitary transformations applied to
the state of the system and/or to the measured set of MCO. Moreover, when properly normalized, it also
quantifies the (maximum) information content, and therefore evaluates the processing power of physical
systems.

A nice feature of the invariant information of Brukner and Zeilinger is that its definition is operational. It
is obtained by synthesizing the errors of a specially chosen set of measurements performed on the system. In
this contribution, we analyze the invariant information from a different perspective. If certain observations
are made on the system the obtained results can be in a natural way put together to form our estimate of the
quantum state of the system. This hints on the existence of a tight link between the information gained from
a particular set of measurements and the error of the reconstruction based on the obtained results. Being
motivated by the estimation theory we will show how to synthesize information gained from individual
measurements in more general situations, namely, when (i) a complete set of MCO is not available, and
when (ii) the observables measured are not necessarily mutually complementary (still non-commutative but
not “maximally” non-commutative). Special attention will be paid to the invariance properties of the total
information gained from a measurement. We will also show an alternative interpretation of the invariant
information and will discuss the role that MCO play in the state estimation.
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Let us consider a measurement of an observable A =
∑p

j=1 ajΠj having a non-degenerate spectrum
acting in the Hilbert space of dimension p. Each outcome j is detected with the probability pj = Trρ̄Πj ,
where ρ̄ describes the ensemble of particles arriving at the apparatus. Brukner and Zeilinger’s lack of
information associated with such a measurement done on N particles is defined as a sum of variances of
individual outcomes per particle, EA =

∑
j σ2

j /N [2]. The total lack of information about the system is
then obtained as a sum of those measures over a complete set of MCO,

E =
∑
αj

σ2
αj/N =

∑
αj

pαj(1 − pαj), (1)

where α = 1 . . . p+1 and j = 1 . . . p label complementary observables and their eigenvectors, respectively.
The invariant information is nothing else than a properly normalized complement of the total lack of
information E [2]. Assume that a complete set of MCO exists for the given dimension p, which means
there are p(p + 1) projectors Παj satisfying [5, 6]

Tr{ΠαjΠβk} = δαβδjk + (1 − δαβ)/p. (2)

One easily finds that the total error has already the desired invariance under the choice of the complete set of
mutually complementary measurements, and under unitary transformation of the true state ρ̄ of the system:

E = p − Trρ̄2. (3)

The main argument for just summing up the errors of complementary observations is that MCO are in-
dependent in the sense that a measurement of one of them gives no information about the rest [7]. If a
particular observable α is measured, the Bayesian posterior distributions associated with the observables
β �= α complementary to it are flat. For this reason, MCO are sometimes called “unbiased observables”
[8]. As will be shown in the following such a classical interpretation of MCO variables should be modified.

2 Quantum estimation theory

There is a close link between the total error E and the error of the standard quantum tomography. Instead
of discussing the errors of measured projections separately, one can make a synthesis of all the results by
forming an estimate of the unknown quantum state, and then evaluate the average error. Let us apply this
strategy to the detection of a complete set of MCO. A generic quantum state may be decomposed in the
basis of MCO as follows

ρ̄ =
∑
αj

w̄αjΠαj , (4)

whereΠαj are projectors on the eigenspaces of a complete set of MCO, the coefficients w̄αj being determined
by the true probabilities pαj = Tr{ρ̄Παj} as follows [5, 10],

w̄αj = pαj − 1
p + 1

, (5)

Suppose now that the complementary observations are done with N particles each. Due to fluctuations,
the registered relative frequencies fαj will generally differ from the true probabilities pαj and so the
estimated state

ρ =
∑
αj

wαjΠαj . (6)
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Fig. 1 The lack of information as the mean distance between the true and estimated states.

Let us see how much. Perhaps the most simple estimation strategy is the direct inversion based on the above
mentioned independence of MCO,

wαj = fαj − 1
p + 1

. (7)

The error will be quantified by evaluating the Hilbert–Schmidt distance between the true and the estimated
state

d = Tr{(ρ − ρ̄)2}. (8)

The geometrical meaning is sketched in Fig. 1. The mean distance (error) is then given by averaging d over
many repetitions of the estimation procedure, each yielding slightly different estimates of w̄αj ,

Eest = 〈d〉. (9)

Using Eqs. (4)–(8) and the definition of complementarity (2) in Eq. (9) we get,

〈d〉 =
∑
αj

〈(∆wαj)2〉 =
1
N

∑
αj

pαj(1 − pαj). (10)

Notice that for the given number of input particles the mean distance of the estimated state from the true
state is proportional to the total error (1), which depends on ρ̄ only through Trρ̄2. This shows an alternative
interpretation of the total error E and the invariant information [9]: The total lack of the information as
defined by Brukner and Zeilinger determines the mean error of the standard reconstruction based on the
measurement of a complete set of MCO.

3 Fisher information

Given the same data, the accuracy of our estimate based on them strongly depends on the chosen reconstruc-
tion procedure. Direct inversion (7) is simple and straightforward because it implicitly uses the apparent
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statistical independence of MCO. But this is not the only possibility there. Keeping in mind that we want
to characterize the information gained through the measurement one should use the best reconstruction
method available. To evaluate the error of the optimal estimation procedure it is more convenient to decom-
pose the true density matrix in a basis of orthogonal observables rather than MCO, ρ̄ = 1/p +

∑
k ākΓk,

where the p2 − 1 unknown parameters āk provide a minimal representation of the state ρ̄, and Γj are
orthonormal: Tr{ΓjΓk} = δjk. When the measurement is over, an estimate ρ of the true state is formed,
ρ = 1/p +

∑
k ak(fk)Γk. The parameters ak specifying the estimated state depend on the registered

frequencies according to the given reconstruction procedure. Now we calculate the mean distance between
the estimated and true states. Trivial calculation shows that it is given by a sum of the variances of the
estimated parameters,

〈d〉 =
∑

k

〈(∆ak)2〉. (11)

To proceed, the variances appearing in (11) must somehow be determined. This may be a nontrivial problem
because, generally, the estimated parameters ak might depend on the measured frequencies fk in a very
complicated way. However, for our purpose, it is enough to evaluate the performance of the optimum
estimation. It is known that the variances of estimated parameters cannot be less than the Cramer-Rao
lower bound [11]. Further, it is known that maximum-likelihood estimators attain the bound asymptotically
(for large N ) [12]. In our case the Cramer-Rao bound reads:

〈(∆ak)2〉 ≥ [F−1]kk, (12)

where F is the Fisher information matrix defined as [13, 14]

Fkl =
〈

∂

∂ak
log P (n|a)

∂

∂al
log P(n|a)

〉
. (13)

Here P (n|a) denotes the probability of registering data n provided the true state is a, and the averaging
is done over the registered data. Bound (12) may overestimate actual errors in some cases because we
ignore the positivity constraint which the estimated ρ must obey. However, for large N , the probability of
getting an unphysical estimate ρ from the measured data gets very small, and inequality (12) becomes a
good error estimate. For large N , one is allowed to replace the multinomial distribution P by its Gaussian
approximation. Keeping the notation of MCO registrations we have,

log P (n|a) ≈ −N2
∑
αj

(fαj − pαj)2

σ2
αj

, (14)

where σ2
αj = Npαj(1 − pαj) as before. Under this approximation the Fisher matrix becomes,

Fkl = N2
∑
αj

Tr{ΓkΠαj}Tr{ΓlΠαj}
σ2

αj

. (15)

Consequently, the optimized operational information is given by the trace of the inverse of the Fisher
matrix [9]

〈d〉opt = TrF−1. (16)

It does not depend on a particular choice of operators {Γj} quantifying the maximum amount of information
about an unknown state gained by the measurement performed.

It is interesting to notice that the definition (16) is similar to the definition of the reciprocal “intrinsic
accuracy” of a multi-parameter estimation [14], which reads e = 1/TrF. Although the two definitions look
similar, their motivation and physical assumptions leading to them are different. In particular, the approach
in [14] hinges upon the assumption of the independence of data, meaning that F is diagonal, which usually
does not hold in quantum tomography. This is why F−1 rather than F itself plays fundamental role in our
considerations.
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4 Comparison

Based on this operational definition of information, the performances of various schemes may be easily
compared. Now, we will go back to the measurement of a complete set of MCO. It is not difficult to see that
the invariance of the error (10) of the direct inversion (7) stems from the fact that the projectors measured
are considered as statistically independent observables. Each parameter ak in the decomposition (6) is
determined by measuring only one projector – the rest contributes nothing. As will be shown below, such
data treatment cannot be optimal. This leads us to the following important question: Will the invariance of
the estimation error survive if the direct inversion is replaced by the optimum data treatment? It turns out
that the answer depends on the dimension p of the Hilbert space. In the simplest non trivial case of p = 2
the answer is in the affirmative. However for p ≥ 3 a deviation appears. Let us have a look at the behavior
of 〈d〉opt for p = 3. Straightforward, but rather lengthy calculation of TrF−1 in this case yields:

〈d〉opt =
1

N2

∑
αj

σ2
αj − 1

N2

∑
α

σ4
α1 + σ4

α2 + σ4
α3

σ2
α1 + σ2

α2 + σ2
α3

. (17)

Notice that the first expression on the right-hand side is exactly the invariant total error (10). The
second term then quantifies the improvement of the optimum estimation upon the simple linear inversion
(7). One can easily check that this term is not an invariant quantity. So it turns out that the error of the
optimum estimation from the measurement of a complete set of MCO is not invariant with respect to unitary
transformations. This means that the maximum amount of information about the true state that can be gained
from such measurements might differ even for true states of the same degree of purity! One pays for the
optimality of the reconstruction procedure by loosing its invariant character (universality). Or conversely,
one can have an invariant reconstruction at the expense of loosing precision. This behavior is plotted in
Fig. 2 for several mixed quantum states generated randomly. The invariant result (3) represents the worst
resolution corresponding to the upper edge of the plotted region.

Let us now address the broader aspects of optimal information processing discussed above. It seems
that the non-invariant character of 〈d〉opt originates from the “inhomogeneity” of the measured quorum
of MCO. Two projectors drawn from the quorum can be either “complementary”, Tr{Π1Π2} = 1/p, or
orthogonal, Tr{Π1Π2} = 0, to each other. Consequently, the mesh established by MCO is not as regular as
it might have seemed at the beginning. Provided that this is ignored, the observations may be regarded as
“independent” on average, but such treatment is obviously not optimal. Some additional information can
be gained provided those observations are treated as noise dependent observations [16].

For the sake of comparison let us evaluate resolution of several schemes which may be adopted for
quantum state estimation. Optimal measurement would consist in measuring the “unknown” quantum state

Fig. 2 The optimal estimation error for p = 3 as a
function of purity.
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along its eigenvectors, ρ̄Πj = λjΠj , representing mutually exclusive outcomes due to their orthogonality
– maximum likelihood estimation would always coincide with the deterministic data inversion. This gives
the minimal achievable value of the average error: NEopt =

∑
j λj(1−λj) = 1−Trρ̄2. It should be clear

that in the case of a generic quantum state whose diagonalizing basis is unknown and should be estimated
together with {λj}, the optimal information can only be attained asymptotically as N goes to infinity. This
optimal quantum reconstruction scheme provides invariant estimation errors.

This may be compared with the performance of MCO scheme. Realizing that total number of particles
in the relation (3) is (p + 1) times larger than for single observable, the average error reads

NE = p(p + 1) − (p + 1)Trρ̄2. (18)

For comparison let us consider simple measurement which is complete in the sense of completeness
relation but not informationally complete [17]. Using the closure relation

p∑
i

|ei〉〈ei| = 1̂p, (19)

the diagonal elements of density matrix only could be inferred. Here the kets |ei〉 represent an orthonormal
basis on the p-dimensional Hilbert space. Straightforward calculation gives the average error

NE = N
∑
i �=j

|ρij |2 + 1 −
∑

i

ρ̄2
ii, (20)

which is nearly independent of the number of particles used for the measurement. This is due to the fact
that nondiagonal elements are not registered. An informationally complete measurement will be obtained
by considering also all the pairs (i, j) in the closure relations

1
2 (|ei〉 + |ej〉)(〈ei| + 〈ej |) + 1

2 (|ei〉 − |ej〉)(〈ei| − 〈ej |) = 1̂ij (21)
1
2 (|ei〉 + i|ej〉)(〈ei| − i〈ej |) + 1

2 (|ei〉 − i|ej〉)(〈ei| + i〈ej |) = 1̂ij , (22)

where i �= j. These relations determine the real and imaginary parts of nondiagonal elements ρij , respec-
tively. Consider now the following scheme for the detection: The diagonal elements are sampled according
to the relation (19) with m particles, and the closure relations (21) and (22) are sampled with mij particles.
The total number of particles used is N = m+

∑
ij 2mij . Straightforward calculation yields the following

formula for the average error

d =
1
m

σ2 +
∑
i �=j

1
mij

σ2
ij , (23)

σ2 = 1 −
∑

i

ρ̄2
ii, σ2

ij = 1
2 (ρ̄ii + ρ̄jj) − 1

4 (ρ̄ii + ρ̄jj)2 − 1
2 |ρ̄ij |2. (24)

The error optimized with respect to the parameters m, mij reads

NE =


σ +

√
2

∑
i �=j

σij




2

. (25)

Rough numerical estimations show that the average error is worse comparing to MCO (18). Further
improvement may be achieved, since information about diagonal elements of density matrix may be inferred
also from the measurements (21) and (22).
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5 Conclusion

The invariant information introduced by Brukner and Zeilinger is related to the problem of the estimation
of a quantum state. It quantifies how an estimated state differs on average from the true state in the sense of
the Hilbert–Schmidt norm. It depends on the quality of the measurement and on the data treatment adopted.
Provided that data are treated in optimal way, the amount of extracted information may achieve the ultimate
limit given by Fisher information. This scheme my be used for the evaluation of the performance of the
measurement.
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