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The invariant information, introduced by Č. Brukner and A. Zeilinger [Phys. Rev. Lett. 83, 3354
(1999)], is reconsidered from the point of view of quantum state estimation. We show that this quantity is
directly related to the mean error of the standard reconstruction from the measurement of a complete set
of mutually complementary observables. We give its generalization in terms of the Fisher information.
Provided that the optimum reconstruction is adopted, the information loses its invariant character.
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Invariants are important concepts of physics, because
referring to them, physicists build up theoretical models
making it possible to explain consistently their obser-
vations. Recently a project has been undertaken to
build up the kinematics of the quantum theory from the
information-theoretical principles [1–4]. As a part of the
project a new measure of the classical information gained
from a measurement on a quantum system was introduced.
This quantity summed over a complete set of mutually
complementary observables (MCO) exhibits invariance
with respect to unitary transformations applied to the
state of the system and/or to the measured set of MCO.
Moreover, when properly normalized, it also quantifies the
(maximum) information content, and therefore evaluates
the processing power of physical systems.

A nice feature of the invariant information of Brukner
and Zeilinger [2] is that its definition is operational. It
is obtained by synthesizing the errors of a specially cho-
sen set of measurements performed on the system. In this
contribution, we analyze the invariant information from a
different perspective. If certain observations are made on
the system, the obtained results can be in a natural way
put together to form our estimate of the quantum state of
the system. This hints on the existence of a tight link be-
tween the information gained from a particular set of mea-
surements and the error of the reconstruction based on the
obtained results. Being motivated by the estimation the-
ory we will show how to synthesize information gained
from individual measurements in more general situations,
namely, when (i) a complete set of MCO is not available,
and when (ii) the observables measured are not necessar-
ily mutually complementary (still noncommutative but not
“maximally” noncommutative). Special attention will be
paid to the invariance properties of the total information
gained from a measurement. We will also show an alter-
native interpretation of the invariant information and will
discuss the role that MCO play in the state estimation.

Let us consider a measurement of an observable A �Pp
j�1 ajPj having a nondegenerate spectrum acting in the

Hilbert space of dimension p. Each outcome j is detected
with the probability pj � Trr̄Pj , where r̄ describes the
ensemble of particles arriving at the apparatus. Brukner
and Zeilinger’s lack of information associated with such
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a measurement done on N particles is defined as a sum
of variances of individual outcomes per particle, EA �P

j s
2
j �N [2]. The total lack of information about the

system is then obtained as a sum of those measures over a
complete set of MCO,

E �
X
aj

s2
aj�N �

X
aj

paj�1 2 paj� , (1)

where a � 1, . . . , p 1 1 and j � 1, . . . , p label comple-
mentary observables and their eigenvectors, respectively.
The invariant information is nothing other than a properly
normalized complement of the total lack of information E
[2]. Assume that a complete set of MCO exists for the
given dimension p, which means there are p�p 1 1� pro-
jectors Paj satisfying [5,6]

Tr�PajPbk� � dabdjk 1 �1 2 dab��p . (2)

One easily finds that the total error has already the desired
invariance under the choice of the complete set of mutually
complementary measurements, and under unitary transfor-
mation of the true state r̄ of the system:

E � p 2 Trr̄2. (3)

The main argument for just summing up the errors of com-
plementary observations is that MCO are independent in
the sense that a measurement of one of them gives no in-
formation about the rest [7]. If a particular observable a

is measured, the Bayesian posterior distributions associ-
ated with the observables b fi a complementary to it are
flat. For this reason, MCO are sometimes called “unbi-
ased observables” [8]. As will be shown in the following,
such a classical interpretation of MCO variables should be
modified.

There is a close link between the total error E and the
error of the standard quantum tomography. Instead of
discussing the errors of measured projections separately,
one can make a synthesis of all the results by forming an
estimate of the unknown quantum state, and then evaluate
the average error. Let us apply this strategy to the detection
of a complete set of MCO. A generic quantum state may
be decomposed in the basis of MCO as follows:

r̄ �
X
aj

w̄ajPaj , (4)
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where Paj are projectors on the eigenspaces of a complete
set of MCO, the coefficients w̄aj being determined by the
true probabilities paj � Tr�r̄Paj� as follows [5,9]:

w̄aj � paj 2
1

p 1 1
. (5)

Now suppose that the complementary observations are
done with N particles each. Because of fluctuations, the
registered relative frequencies faj will generally differ
from the true probabilities paj and so the estimated state

r �
X
aj

wajPaj . (6)

Let us see how much. Perhaps the simplest estimation
strategy is the direct inversion based on the above-
mentioned independence of MCO,

waj � faj 2
1

p 1 1
. (7)

The error will be quantified by evaluating the Hilbert-
Schmidt distance between the true and the estimated
states [10]

d � Tr��r 2 r̄�2� . (8)

The mean distance (error) is then given by averaging d
over many repetitions of the estimation procedure, each
yielding slightly different estimates of w̄aj,

Eest � �d� . (9)

Using Eqs. (4)–(8) and the definition of complementarity
(2) in Eq. (9) we get

�d� �
X
aj

��Dwaj�2� �
1
N

X
aj

paj�1 2 paj� . (10)

Notice that for the given number of input particles the
mean distance of the estimated state from the true state
is proportional to the total error (1), which depends on r̄

only through Trr̄2. This is one of the key results of this
contribution. It shows an alternative interpretation of the
total error E and the invariant information: The total lack
of the information as defined by Brukner and Zeilinger
determines the mean error of the standard reconstruction
based on the measurement of a complete set of MCO.

Given the same data, the accuracy of our estimate based
on them strongly depends on the chosen reconstruction
procedure. Direct inversion (7) is simple and straight-
forward because it implicitly uses the apparent statistical
independence of MCO. But this is not the only possibility
there. Keeping in mind that we want to characterize the
information gained through the measurement, we should
use the best reconstruction method available. To evaluate
the error of the optimal estimation procedure it is more
convenient to decompose the true density matrix in a
basis of orthogonal observables rather than MCO, r̄ �
1�p 1

P
k ākGk , where the p2 2 1 unknown parame-

ters āk provide a minimal representation of the state r̄,
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and Gj are orthonormal: Tr�GjGk� � djk. When the mea-
surement is over, an estimate r of the true state is formed,
r � 1�p 1

P
k ak� fk�Gk . The parameters ak specifying

the estimated state depend on the registered frequencies
according to the given reconstruction procedure. Now we
calculate the mean distance between the estimated and
true states. Trivial calculation shows that it is given by a
sum of the variances of the estimated parameters,

�d� �
X
k

��Dak�2� . (11)

To proceed, the variances appearing in (11) must somehow
be determined. This may be a nontrivial problem because,
generally, the estimated parameters ak might depend on
the measured frequencies fk in a very complicated way.
However, for our purpose, it is enough to evaluate the per-
formance of the optimum estimation. It is known that the
variances of estimated parameters cannot be less than the
Cramer-Rao lower bound [11]. Further, it is known that
maximum-likelihood estimators attain the bound asymp-
totically (for large N ) [12]. In our case the Cramer-Rao
bound reads [13]

��Dak�2� $ �F21	kk , (12)

where F is the Fisher information matrix defined as [14,15]

Fkl �

ø
≠

≠ak
logP�n ja�

≠

≠al
logP�n ja�

¿
. (13)

Here P�n ja� denotes the probability of registering data n
provided the true state is a, and the averaging is done over
the registered data. For large N , one is allowed to replace
the multinomial distribution P by its Gaussian approxima-
tion. Keeping the notation of MCO registrations we have

logP�n ja� 
 2N2
X
aj

� faj 2 paj�2

s
2
aj

, (14)

where s
2
aj � Npaj�1 2 paj� as before. Under this ap-

proximation the Fisher matrix becomes

Fkl � N2
X
aj

Tr�GkPaj� Tr�GlPaj�
s

2
aj

. (15)

The main formal result of the paper is obtained from
Eqs. (11) and (12): Operational information defined as
the mean error of the optimal estimation from the mea-
surement of the chosen set of observables is given by the
trace of the inverse of the Fisher matrix [16],

�d�opt � TrF21. (16)

It quantifies the maximum amount of information about
an unknown state gained by the measurement performed.
Based on this information, one can easily compare the
performances of various tomographic schemes. It is in-
teresting to notice that the definition (16) is similar to
the definition of the reciprocal “intrinsic accuracy” of a
multiparameter estimation [15], which reads e � 1�TrF.
Although the two definitions look similar, their motivation
130401-2
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and physical assumptions leading to them are different. In
particular, the approach in [15] hinges upon the assumption
of the independence of data, meaning that F is diagonal,
which usually does not hold in quantum tomography. This
is why F21 rather than F itself plays a fundamental role in
our considerations.

Equation (16) has the following simple geometrical in-
terpretation: On registering counts n, the probability
P�n ja� characterizes the likelihood L of various states
a. In terms of the Fisher matrix it reads

logL � logP�n ja� 
 2
X
kl

�ak 2 ãk� �al 2 ãl�Fkl ,

(17)

where ã specifies the maximum-likelihood solution. Let
us define the error volume as the set of density matrices
whose likelihoods do not drop below a certain threshold,
L $ const. According to (17) the error volume is an el-
lipsoid, the lengths of its axes being inversely proportional
to the eigenvalues of the Fisher matrix. The optimal es-
timation error �d�opt can thus be interpreted as the sum
of half-axes of the error ellipsoid which corresponds to
the chosen set of measurement. From this point of view,
the synthesis of all the quantum observations is equiva-
lent to the registration of the orthogonal observables G0

defining those axes. In this new representation the Fisher
matrix attains the diagonal form, which means that the
estimates of the transformed quantum-state “coordinates”
ā0

k � Tr�r̄G0� fluctuate independently. Their statistical in-
dependence justifies adding their variances as it appears in
Eq. (16).

This geometrical construction also shows that the struc-
ture of uncertainties related to the quantum tomography is
richer than what a single number (16) might indicate. The
chosen measurement might provide different resolutions in
different directions, depending on the shape and orienta-
tion of the noise ellipsoid. Let us mention in passing that
the resolution optimized over all measurements has been
shown to provide a natural statistical distance between two
quantum states [17].

Now, we will go back to the measurement of a complete
set of MCO. It is not difficult to see that the invariance
of the error (10) of the direct inversion (7) stems from the
fact that the projectors measured are considered as statis-
tically independent observables. Each parameter ak in the
decomposition (6) is determined by measuring only one
projector — the rest contributes nothing. As will be shown
below, such data treatment cannot be optimal. This leads
us to the following important question: Will the invari-
ance of the estimation error survive if the direct inversion
is replaced by the optimum data treatment? It turns out
that the answer depends on the dimension p of the Hilbert
space. In the simplest nontrivial case of p � 2 the an-
swer is in the affirmative. However, for p $ 3 a deviation
appears. Let us have a look at the behavior of �d�opt for
p � 3. Straightforward, but rather lengthy calculation of
130401-3
TrF21 in this case yields

�d�opt �
1

N2

X
aj

s2
aj 2

1
N2

X
a

s
4
a1 1 s

4
a2 1 s

4
a3

s
2
a1 1 s

2
a2 1 s

2
a3

.

(18)

Notice that the first expression on the right-hand side is
exactly the invariant total error (10). The second term
then quantifies the improvement of the optimum estima-
tion upon the simple linear inversion (7). One can easily
check that this term is not an invariant quantity. So it turns
out that the error of the optimum estimation from the mea-
surement of a complete set of MCO is not invariant with
respect to unitary transformations. This means that the
maximum amount of information about the true state that
can be gained from such measurements might differ even
for true states of the same degree of purity. One pays for
the optimality of the reconstruction procedure by losing its
invariant character (universality). Or conversely, one can
have an invariant reconstruction at the expense of losing
precision.

Let us now address the broader aspects of optimal in-
formation processing discussed above. It seems that the
noninvariant character of �d�opt originates from the “in-
homogeneity” of the measured quorum of MCO. Two
projectors drawn from the quorum can be either “comple-
mentary,” Tr�P1P2� � 1�p, or orthogonal, Tr�P1P2� �
0, to each other. Consequently, the mesh established by
MCO is not as regular as it might have seemed at the be-
ginning. Provided that this is ignored, the observations
may be regarded as “independent” on average, but such
treatment is obviously not optimal. Some additional in-
formation can be gained provided those observations are
treated as noise dependent observations [18].

The invariance of the optimum estimation error can
be restored provided a more “homogeneous” quorum of
observables is measured. This can be illustrated on the
thought measurement of the following observables:

Pj �
1
2

1

p
2

2
Gj , j � 1, . . . , p2 2 1 , (19)

where the normalization and the factor of 1�2 ensure that
0 # Pj # 1, so that Pj are actually elements of posi-
tive operator-valued measure which can be associated
probabilities

pj �
1
2

1

p
2

2
āj , (20)

and āj specify the true state as before. Because we now
have Tr�PjGk� � djk, the Fisher matrix (15) assumes
the diagonal form. Tracing its inverse we get an expres-
sion resembling the invariant total error (1), �d�opt �
2

P
j s

2
j �N2. In terms of density matrices the mean error of

the optimal estimation from orthogonal observations reads

N�d�ortho �
p2 2 1

2
1

1
p

2 Trr̄2. (21)
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This is, obviously, an invariant quantity. However, one
pays for the invariance by having much larger uncertainty
about the state of the quantum system; even the simple di-
rect inversion from MCO measurements is better if p . 2;
see Eq. (3)— indeed, measurements (19) are rather noisy
if p . 2.

Finally, let us mention that optimal quantum recon-
struction schemes provide invariant estimation errors.
Such an optimal measurement would consist in measuring
the “unknown” quantum state along its eigenvectors,
r̄Pj � ljPj, representing mutually exclusive outcomes
due to their orthogonality—maximum likelihood estima-
tion would always coincide with the deterministic data
inversion. This gives the minimal achievable value of
the average error: NEopt �

P
j lj�1 2 lj� � 1 2 Trr̄2.

It should be clear that in the case of a generic quantum
state whose diagonalizing basis is unknown and should be
estimated together with �lj�, the optimal information can
be attained only asymptotically as N goes to infinity.

To conclude, we have shown that the invariant informa-
tion introduced by Brukner and Zeilinger is related to the
problem of the estimation of a quantum state. It quantifies
how the estimated state differs on average from the true
state in the sense of the Hilbert-Schmidt norm. It depends
on the quality of the measurement and on the data treat-
ment adopted. Usually, the measurement of a complete
set of mutually complementary observables is assumed. In
this case, the measured state can be easily found via a linear
inversion. The average distance between the estimated and
true state is given directly by the invariant information.

The amount of extracted information may be increased
provided that data are used in an optimal way achieving the
ultimate limit given by (the inverse of) the Fisher informa-
tion. When doing this, the unitary invariance is sacrificed
in favor of the accuracy of estimation. Consequently, some
“directions” can be identified easier than another. This
seems to be just an example of the interplay between the
universality and effectiveness of a particular method.

Finally, we touched the concept of mutually comple-
mentary observables. One advantage of such observations
is that the data can be more easily processed to get in-
formation about the signal via the direct inversion. This
is possible, unitary invariant but not efficient —one can
do something better. The inefficiency of such an approach
can be recognized in the structure of the Brukner-Zeilinger
information where the variances of the measured projec-
tors are simply added regardless of their commutativity
or noncommutativity. This is not optimal. In the light
of this, the often discussed issue of the existence or non-
existence of a complete set of mutually complementary ob-
servables in some dimensions seems to be just an academic
130401-4
question without essential consequences for the problem
of the state determination and information in the above-
mentioned sense.
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[4] Č. Brukner, M. Zukowski, and A. Zeilinger, e-print

arXiv:quant-ph/0106119.
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