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We study a general teleportation scheme with an arbitrary state of the pair of particles (2 and 3) shared by
Alice and Bob, and arbitrary measurements on the input particle 1 and one of the méMmdrthe pair on
Alice’s side. We find an efficient iterative algorithm for identifying optimum operations on Bob’s side. In
particular, we find that simple unitary transformations on his side are not always optimal even if particles 2 and
3 are perfectly entangled. We describe the most interesting protocols in the language of extremal completely
positive maps.
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Of many potential applications of quantum information | et us consider the teleportation of an unknown state
processing, the quantum teleportation is probably the mos§f particle 1 between two parties called Alice and Bob. Let
appealing example. Several experimgishave been done us assume that before the teleportation starts they share two
since the first proposal in[2], confirming thus that particles in an arbitrary states. Alice then performs a mea-
teleportation—a  popular  subject of science-fictionsurement on particles 1 and 2 and sends the outcome by a
literature—is indeed feasible, at least if one deals withclassical channel to Bob. Based on the classical communica-
simple quantum objects. tion he receives, he performs a transformation on particle 3.

Ideal teleportation requires a source of maximally en-The optimum transformation is such that the final state of

tangled particles and a very delicate measurement on thgyrticle 3 gets as close to the input stageas possible on the
sender’s side. These are not always easy to do with realistigyerage.

experimental devices. For example, it has been shoW8lin  The measurement performed by Alice will be described

that a never-failing Bell-state measurement is |mp033|blq)y a positive operator-valued measuf@OVM) {IT}.}

with linear elements and detectors only. More severe limita i _ i o

tions might arise if the teleported object gets more com Ii-zjnlz_l' ts elt_aments generate probab|l|t|_es of all pc_>53|t_)le
9 P ject g Pl"outcomes of Alice’s measurement. Consider the situation

cated. where one such particular outcome, gaya, has been reg-

quy(_aver, even W'th restricted resources there IS ‘.St'”.th%stered with probabilityp,. The state of the third particle
possibility to optimize the teleporting scheme. Opt'm'zat'onconditioned on this result reads

over the joint measurement on particles 1 andril the

operation on the particle 3 for the given state of the shared 1 o 1 -

pair (particles 2 and Bhas been done i¥]. Here we put a p3=—Trid p1723l15,t =—Tr{p, 033}, 1)
more severe restriction on the resources and ask the follow- Pa Pa

ing question: What is the optimum operation on particle 3 hereO.=Tr a1 Now Bob apblies ad dependent
(output of teleportationfor the given resources of the shared W 15~ Traf 72ql 15} Now pplies a4 dep 0

. : transformation on this state. The most general transformation
entangled pairs of particle® and 3, and of the measure- 9

ments performed jointly on particle 2 and the input particle:c(sjr; t[r8a]ce preserving completely positiver) map of the

17? Several attempts have been done in this directiop5]in

the authors analyzed a teleportation with realistic linear ele-

ments and maximally entangled shared state. Optimization of D=2 ALpIAL, D AAL=1. 2
protocols with arbitrary shared entangled states has been pur- : .

sued in[6] and[7], but the optimization was done over uni-
tary transformations only.

The main goal of this paper is to consider the most gen
eral case. For the given resources of the sefiypee of the
measurement on particles 1 and @&xd resources on the

uantum channel shared by two partitee state of particles , )
g and 3, we will optimize thi telegortation protoco? by find- Sume that the input states are p{@¢ In that case the fidel-
ing the optimum operation that should be applied by thelty of teleportation can be defined &s=Tr{pzps}, wherep;
receiver on particle 3. In contrast to the naive picture sugis the input state in the Hilbert space of particle 3 ands
gesting that every interaction of a quantum system with enthe teleported state. Using Ed4) and(2) the average fidel-
vironment leads to a “loss of information,” we here find that ity becomes
such an interaction on receiver’s side might enhance the fi-
delity of teleportation even if the pair of particles constitut- _ — a ~a paf
ing the quantum channel are perfectly entangled. (F) ; Tris <p3p1>2k AiaO1ia| - ®

The optimality of the given set of transformations will be
judged by the fidelity of the corresponding teleported state
averaged over all possible outconzeand over a distribution

of input statesp,; the averaging over input states will be
denoted(- - - ). To simplify further considerations let us as-
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This expression is to be maximized over the set of all posThe iterative algorithm for finding optimum CP maps based
sible operations applied to particle 3. on Egs.(7) and(9) is the main formal result of the present
Although the following optimization can be carried out article. Starting from some “unbiased” CP map, for example,

for arbitrary dimensional Hilbert spaces, we will illustrate X=0 (means that particle 3 is always brought to the maxi-
the idea on the simple example of spin-1/2 particles. Thenally mixed statg the equations can be successively iterated

generalization to more dimensions is straightforward. ~ yntil the stationary point is attained. In this way we get the
First one has to choose an appropriate distribution of ing o ra10rs¢ corresponding to the optimum transformation of
put states. Obviously, the choice depends on the prior know"article 3.
edge one ha; about the state to be teleported. We V.Vi" assyrﬁe Notice that the average fidelity of teleportation bears a
a complete ignorance of Alice and Bob about the incomin . . -
state, which is the usual situation described by the isotropi ery simple form when expressed in termsXof
distribution of input states. More general situations can be 1 1
handled analogously, see the reference after(#qFurther, (Fy= > + o E Tr{)?"’\ 58}_ (10)
the input density matrix will be decomposed in some basis of a
Hermitian generators. In the case of spin 1/2, the convenient . ] ] L
choice is the basis of Pauli spin matrices. After substitutingNotice also thatF) is a linear functional oi. This means
the decomposition into Eq(3), and integrating over the that all its maxima lie on the boundary of the set of physi-
whole surface of Poincare sphere, we get cally allowed operatorX that is determined by the constraint
of complete positiveness of the corresponding transforma-
1 1 - R tions. So there is a clear connection between optimum tele-
(F)= §+ 12 g Ek Tr{U'AEOaAET}’ 4) portation protocols and extremal CP maps. The topology of
CP maps is a well studied field related to many problems in
quantum information processing. We will use some of the
cently derived results on CP maps for the discussion of
ome cases of special interest.

where O=Tr,{0,0%3}, o=(0y,0y,0,), and where we
have now dropped the unnecessary subscript of particle

[10]'. . . . : But before we come to this point let us first demonstrate
Since CP maps corresponding to different registratns . . S .
. . : the usefulness of our iterative optimizing algorithm on an
are independent, each term on the right-hand side of4&q. . . . : . .
interesting example involving spin-1/2 systems. We will con-

can be maximized independently. Omitting therefore nota-_. LR )
: . . ¥ . sider the realistic situation with a perfect source of shared
tion a and using the constraidt, A A=1, the expression to

b imized particles but with an imperfect measurement. The imperfect
€ maximized 1 measurement will be drawn from this one-parametric family

of POVMs,
; Tr{oAOA] — A, AAL} = maximum. (5) it L
H12:T|__><__|+ §|¢ 7
Variation of this expression with respectkﬁ gives the ex-
tremal equation in the form |¢*)=cosb|+—)—|—+),
Shdy 1
2 TAOI=AA, () 3= —5—++)(+ +]+516°)(4"
I
| $°)=cosb|—+)+[+-), (1D

whereA is the (Hermitian Lagrange operator. It can be de-
termined from Eq(6) as follows: i sire 1
o o= | ) =1+ 516N
A=(X-0+0-X)/2, (7)

. |¢°)=cosf| = —)+[++),
where we have introduced Hermitian operatops
=3,AlcA, that provide another representation of the CP
map{A,}. Equation(6) can be brought to the form suitable
to iterations. Multiplying it byAlaj from the left and sum-
ming overk we obtain

) 1
Hfz:T|—+><—+|+§|¢d><¢d|
|p%=cosh|++)—|——).

Here|+) and|—) are two orthogonal states, for example,
states spin up and spin down in thledirection and 6

. . . L . . e€[0,m/2]. One boundary poinf=0 corresponds to the per-
a formula suitable to iterative solving is obtained by add'ngfect Bell measurement. Alice gets no information about the

XA=0-i|Xx0O|, (8)

0=X—X to the left-hand side of Eq8) and rearranging incoming state, but the teleportation with fidelity one is pos-
o L sible. The other boundary poifd= /2 corresponds to a
X=X+0—(i|[XXO|+XA+H.c). 9 projective measurement on the first particle and no measure-
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1 T T T input state with fidelity 2/3 on the basis of the outcomes of
Alice’s measurementwhich is here optimal state estima-
tion), thus attaining the classical limit.

The most interesting situations correspond to Alice’s mea-
surements that allow nonclassical teleportation only if fol-
lowed by anonunitary operation on Bob’s particle. In our
= case this happens for<Ocosé<\2—1 (see later and the
0.6 - optimum CP map turns out to be a kind of decoherence pro-
) - cess[11].
|~ , [ . i Let us emphasize again that the above example of tele-
0 0.5 1 porting spin 1/2 system has been chosen for the sake of sim-
plicity only. If needed, our iterative algorithm could be
straightforwardly generalized to larger Hilbert spaces. The

FIG. 1. Fidelities of optimum CP maps for Alice’s measure- generalization consists of replacing Pauli spin matrices by
ments (11). Solid line shows the performances of optimum CP the appropriate basis of Hermitian operators in that space and
maps; dashed line shows the performances of optimum unitary ogeplacing the integration over the surface of the Poincare
erations. Dotted horizontal line shows the boundary between classphere by the integration over the surface of generalized
sical and quantum teleportation protocols. N-dimensional sphere. Nevertheless, the relative simplicity

of the set of CP maps operating on a 2-dimensional space
ment on the second one. In this cd$8=11¢ andII°=11°,  allows one to get further insight into the optimum teleporta-
and we have only two distinct outcome$l®+1I¢  tion protocols and obtain analytical results. We will therefore
:|_><_|1®12 and TIP+ =]+ )+|® 12_ Alice gets stick to the teleportation of spin 1/2 particles in the follow-
maximum amount of information about the input state, buting.
the “teleported” state bears no relation to the input state— First let us express the operation acting on Bob's particle

08 -

(F)

cos O

the quantum resources are wasted. using operatoré?,
For intermediate values &, less information is extracted
about the input state and an imperfect quantum teleportation O(1/2+w-o/2)=1/12+(t+Tw) - a/2 (14)

is possible. As we have mentioned above, we will take the

particles 2 and 3 in a maximally entangled state, for in-wheret andT are defined as followsX=To+t, andw is
stance, let them be in the singlet statg=3(1—01,02  the Bloch vector defining the state of the Bob’s particle be-
— 01,0y~ 01,07,). Accordingly, the operatoréa have the fore he applies the operatioh. To each operation on the

form, Bob’s particle there corresponds a simple transformation of
. L the Poincare sphere: The unit sphere is mapped onto an el-
O2=4Ro+4r, (12)  lipsoid, the lengths of its axes being the eigenvalued,of
which is translated by from the origin. Of course the ellip-
cos¢ 0 0 0 soid has to lie within the unit Poincare sphépmsitivity).
R=| O cos§ O . or= 0 . (13 However, not all such ellipsoids defirmmpletelypositive
0 0 cop _sirg maps that are the most general maps in quantum mechanics.

Recently, it has been shoyh2] how to parameterize the set
of extremalCP maps comprising the boundary of the convex
set of all CP maps. This set contains all Bob’s optimum
transformations. Matrixl can be always brought to the di-
Sgonal form by a unitary transformation. When in diagonal
form, extremal CP maps can be parametrized by two angles
andv,

The operatorsﬁ generated by the remaining three POVM
elementd1®, T1¢, andII¢ differ from Eq.(13) only in signs
of its elements, and hence, their contribution to the averag
fidelity (10) is the same.

Fidelities (10) of the optimum Bob’s transformations that
were found by our iterative algorithr(i7) and (9) for the
above Alice’s measurements are shown in Figsdlid line).

. o : cosu O 0 0
As could have been anticipated, the fidelity continuously R
changes from the classical limif)=2/3 to the maximum  T=| 0  cos 0 , t= 0 :
value of(F)=1. Itis interesting to note that the optimum CP 0 0  cosucosy sinu sinv

maps for co$=1/2 are actually unitary operations. How-

ever, for co¥<1/2 unitary operations are not optimum, seewith ue[0,27), v €[0,7). Now let us show how the above
Fig. 1 (dashed ling This becomes a trivial statement if example can be elegantly solved using this trigonometric pa-
cosf=0. In that case Alice performs no measurement orrametrization of extremal CP maps. Due to the form of ma-
particle 2, and therefore the state of particle 3 remains &ix R[Eq.(13)] it can be shown that the optimum CP map is
complete mixture for any outcome a she obtains. So the fidegenerated)j=27—v, so there is only one free parameter
delity of the “teleported” state is 1/2 if one is allowed to left.

perform unitary transformations only. In contrast, if one Substituting the trigonometric parametrization with
adopts more general transformations, Bob can construct the27—v and the POVM elemen¢13) into Eqg. (10) and
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maximizing the fidelity with respect to, one easily finds the applied by Bob. The teleportation protocdl becomes per-

analytical expression for the optimum fidelity: fect if the two maps make up the identity map:
cos'd—4 cog6+2 1 — — —
, cosf e O,—) Qp)=2 PP V3p))]=ps, VY p;. (16
3-6cogh 2 a
(Fopy = (15 Obviously, the most interesting protocols are protocols where
(co26+2 cosh+3)/6, cosde E 1 both parts¥? and @ are extremal CP maps, because they
27 contain optimal maps, see discussion after @§), and be-

) o ) ) cause all remaining protocols are just convex combinations
In contrast to this, the fidelity of the optimum unitary opera- o gych “extreme” protocols. Among the protocols consist-
tion is given by the bottom expression for all angle®ind g of two extremal maps, one can find the standard telepor-
thus coincides with the optimum value if c851/2. We note  tation, both maps here being unitary operations, but this is
that the optimum unitary operation is the identity map giso the case of our examplil). This is immediately seen
=v =0 (Bob leaves particle 3 alopéor all 6. The analytical sing another equivalent representation of olr [13];
solution confirms the results obtained numerically with the‘I’(Pl)=Tr1{;1rX13}. wherey,s= 013’ andT is partial trans-

help of our iterative algorithm shown in Fig. 1. The most e ;
; ; A ; ; . position with respect to system 1. For POVMs from our
interesting Alice’s measuremeftLl) is that for which opti example(11) and shared singlets, we have that the operator

mum unitary operation just gives the classical linf) } . i
=2/3~0.667, but enables nonclassical teleportation using %téss?; rg)z?érrnaarl}k 2 operator and hence the riayt gener

nonunitary CP map. This happens for eosy2—1, opti- The trigonometric parametrization of optimum CP maps

mu_w] fidelir':y being“:om;:(3"'8\/5)/'21“0'68165 .__hints on a possible generalization of the situation discussed
e enhancement of quantum teleportation by nonunitary, 111) one could think of a protocol where the first CP map
process has: recently been discussed by_ Bgaztial. [11] in . W would not be degenerated with respect to anglesdv

a slightly different context. They considered teleportatlon[unlike in (13)]. Such nondegenerated Alice’s POVMs would

protocols with a perfect Bell analyzer but with imperfect not, however, lead to substantially new physics, since also in

preparation of the shared pair of particles, and found out thaﬁwis case the optimum Bob's operation would be a kind of a
teleportation protocols could sometimes be enhanced by th&:

) ; . . . . amping channel.12].

Interaction of the teleportation device W't.h environment -, conclusion, we have derived an iterative algorithm for
(damping. The mpst pronounced example yielded Improve'finding optimum CP maps for quantum teleportation and
ment corresponding to our cés: V2-1 case. In fact, the e identified situations where a unitary transformation on
choice of our POVMg11) that are Bell states being subject e thirg particle is not optimal and should be replaced by a
to a kind of decohering process has been inspired by thejk,, e general completely positive map.

result. Now we can use the language of extremal CP maps to

explain why the result of Badzipet al. is so exceptional. A This work was supported by Grant No. LNOOAO015 of the

general teleportation protocol is, in fact, a CP map compose@zech Ministry of Education and by the program “Quantum

of two different maps: The first on® being the Alice's Measurement Theory and Quantum Information” of ESI in

transformation of the input state to the output state sent t&¥ienna. CB. acknowledges the support by the QIPC pro-
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