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Quantum Zeno tomography
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We show that the resolution ‘‘per absorbed particle’’ of standard absorption tomography can be outper-
formed by a simple interferometric setup, provided that the different levels of ‘‘gray’’ in the sample are not
uniformly distributed. The technique hinges upon the quantum Zeno effect and has been tested in numerical
simulations. The scheme we propose could be implemented in experiments with uv light, neutrons, or x rays.
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I. INTRODUCTION

Absorption tomography is an important experimen
technique revealing the internal structure of material bod
By measuring the attenuation of a beam of particles pas
through a sample one infers the absorption coefficient~den-
sity! of the sample in the beam section. The possibility
distinguishing two slightly different densities of the mater
is often of vital importance. Under otherwise ideal conditio
the shot noise associated with the discrete character o
illuminating beam sets an upper limit to the resolution
absorption tomography: for instance, the shadow cast b
brain tumor might become totally lost in the noisy data. O
possibility to overcome the fluctuations is to increase
intensity of the beam. However, in many situations, as
medicine for example, the intensity of the illuminating bea
cannot be made arbitrarily high due to the damage provo
by the absorbed radiation.

A significant step toward an ‘‘absorption-free tomogr
phy’’ came from quantum theory. It was demonstrated, b
theoretically@1,2# and experimentally@3#, that totally trans-
mitting and absorbing bodies can be distinguished with
absorbing any particles, by using an interferometric se
This idea is in fact a clever implementation of the quant
Zeno effect@4# and hinges upon the notion of ‘‘interaction
free’’ measurement@5#. A classical measuring apparatu
~here the black sample!, placed in one arm of the interferom
eter, projects the illuminating particle into the other ar
destroying interference, freezing the evolution, and forc
the particle to exit through a different channel from that
would have chosen had both arms been transparent~white
sample!.

In practical applications, however, samples are norm
neither black nor white: they are gray. In this paper we
deavor to understand whether application of the quan
Zeno effect, which turns out to be ideal for discriminatin
black and white, might be advantageous also for the m
practical task of discriminating two gray bodies with diffe
ent transmission coefficients. More specifically, we ask: I
possible by quantum Zeno effect to reduce the numbe
absorbed particles while preserving the resolution? We s
that this is indeed possible. Closely related questions h
recently been investigated by other authors@6,7#. Our con-
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clusions are somewhat optimistic: we show that standard
sorption tomography can be outperformed by a Zeno se
provided that the frequency of occurrences of the differ
levels of ‘‘gray’’ in the sample is not uniform. In addition
the Zeno setup, unlike the standard one, is endowed with
detection channels: as we shall see, this feature, if prop
exploited, leads to even better performances in the Z
case.

II. QUANTUM ZENO EFFECT IN A MACH-ZEHNDER
INTERFEROMETER

We introduce the notation and sketch the fundamental
tures of the quantum Zeno effect. We consider the Ma
Zehnder interferometric~MZI ! scheme with feedback dis
played in Fig. 1~a!. A semitransparent object, whos
transmission amplitude ist ~assumed real for simplicity! is
placed in the lower arm of the interferometer. The particle
initially injected from the left, crosses the interferometerL
times, and is finally detected by one of two detectors. T
two semitransparent mirrorsM are identical and their ampli
tude transmission and reflection coefficients are

c[cosuL , s[sinuL ~uL5p/4L !, ~1!

respectively. Notice that both coefficients depend onL, the
number of ‘‘loops’’ in the MZI.

The incoming state of the particle~coming from the
source at initial time! is

FIG. 1. ~a! Scheme of the Zeno interferometric setup.~b! Stan-
dard transmission experiment.S, source;M , semitransparent mir-
ror; o, orthogonal channel;z, Zeno channel;D, detector.
©2002 The American Physical Society10-1
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u in&5S 1

0D ~2!

and we call the extraordinary (0
1) and ordinary (0

1) channels
of the MZI the ‘‘Zeno’’ and ‘‘orthogonal’’ channels, respec
tively. The total effect of the interferometer is

Vt5BAtB, B5S c 2s

s c D , At5S 1 0

0 t D . ~3!

In general,

B5exp~2 iuLs2!, BB†5B†B51, ~4!

wheres2 is the second Pauli matrix, whileAt is not unitary
~if t,1 there is a probability loss!. The final state, after the
particle has gone throughL loops, reads

uout&5Vt
Lu in&5~BAtB!Lu in&. ~5!

A. White sample

The choice of the angleuL in Eq. ~1! is motivated by our
requirement that, ift51 ~‘‘white’’ sample, i.e., no semitrans
parent object in the MZI!, the particle ends up in the ‘‘or
thogonal’’ channel:

Vt51
L 5B2L5e2 i2LuLs25e2 ips2/252 is2 , ~6!

so that

uout&5Vt51
L u in&5S 0

1D . ~7!

This is easy to understand: Each loop ‘‘rotates’’ the particl
state by 2uL5p/2L and afterL loops the final state is ‘‘or-
thogonal’’ to the initial one~2!.

B. Black sample

Let us now look at the caset50, corresponding to a
completely opaque~‘‘black’’ ! object in the MZI. We obtain

Vt50
L 5B~A0B2!LB215B cosL2uLS 1 2tan 2uL

0 0 DB21

→
L→`S 1 0

0 0D[Vt50 . ~8!

This yields the quantum Zeno effect~QZE!:

uout&5Vt50u in&5u in&5S 1

0D . ~9!

In the infinite L limit the initial state is ‘‘frozen’’ and the
particle ends up in the Zeno channel.
01211
s

C. Gray sample

What happens if 0,t,1? We easily get

Vt5S ~11t!c22t 2sc~11t!

sc~11t! t2~11t!s2D . ~10!

The computation ofVt
L is straightforward but lengthy and

yields a final expression which is elementary but comp
cated. However, we are mainly interested in the largeL
limit, which for

t,tL
Z[~12sinp/2L !/~11sinp/2L ! ~11!

reads1

Vt
L5S 12

p2

8L

11t

12t
O~L21!

O~L21! tL@11O~L21!#
D 1O~L22!.

~12!

This is an interesting result: Indeed,

Vt[ lim
L→`

Vt
L5S 1 0

0 0D , 0<t,1, ~13!

analogously to Eq.~8!. This shows that even for a semitran
parent object, with transmission coefficienttÞ1, abona fide
QZE takes place and the particle ends up in the Zeno cha
with probability 1:

uout&5Vtu in&5u in&, tÞ1. ~14!

III. DISTINGUISHING DIFFERENT SHADES OF GRAY

A question arises@7#: Is it possible to distinguish differen
values oft ~different ‘‘shades’’ or ‘‘levels’’ of gray! by the
technique outlined above? This is not a simple task, for a
a large number of loopsL the particle ends up in the orthogo
nal channel only ift51 @see Eq.~7!#; by contrast, for any
value oftÞ1, the particle ends up in the Zeno channel@see
Eq. ~14!# irrespectiveof the particular value oft. However,
the asymptotic correction in the (1,1) element ofVt

L in Eq.
~12! is t dependent: the details of the convergence to
limit ~13!–~14! depend on the grayness of the sample.
exploiting this feature, we shall now show that it is inde
possible to resolve different gray levels by the QZE, within
given statistical accuracy.

We start by observing that if one performs a stand
transmission experiment, by shining a particle beam o

1It is worth stressing that whent.tL
Z the asymptotic expansion

has a completely different form and tends to2 is2 when L→`.
Upon crossing the thresholdt5tL

Z , the apparatus starts operating
the Zeno regime. We also note thattL

Z in Eq. ~11! is bounded from
below according to the simple expressiontL

Z.12p/L. Alterna-
tively, one can rephrase these conditions in terms ofL: the
asymptotic expansion~12! is then valid forL.Lt

Z5p/2 arcsin@(1
2t)/(11t)#.
0-2
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QUANTUM ZENO TOMOGRAPHY PHYSICAL REVIEW A66, 012110 ~2002!
semitransparent object in order to measure the transmis
coefficient t @see Fig. 1~b!#, the detection and absorptio
probabilities read

pd8~t!5t2, pa8~t!512t2. ~15!

The statistics is binomial.
On the other hand, if one uses the Zeno configurat

sketched in Fig. 1~a!, the final state of the particle afterL
loops in the MZI is, from Eq.~12!,

Vt
LS 1

0D 5S uz

uo
D 5S 12

p2

8L

11t

12t
1O~L22!

O~L21!
D , ~16!

whereuz anduo are the amplitudes in the Zeno and orthog
nal channels, respectively. Both these quantities are real
(0<t,1)

pz~t!5uz
2512

p2

4L

11t

12t
1O~L22!,

po~t!5uo
25O~L22!, ~17!

pa~t!512pz~t!2po~t!5
p2

4L

11t

12t
1O~L22!

be the probabilities that the particle is detected in the Zen
orthogonal channel or is absorbed by the semitranspa
object, respectively. We assume that a fixed number of
ticles N is sent into the MZI during an experimental run.
this situation the distribution of particles in the Zeno, o
thogonal, or absorption channels follows atrinomial statis-
tics with probabilities~17!.

It seems natural to think that, since by increasing
number of loopsL, po vanishes much faster thanpa , for
large L the distribution is essentially binomial withpa1pz
'1.2 However, as we shall see, the presence of a small
nomial componentpo will play an important role, enabling
the Zeno method to perform much better than the stand
one.

IV. AN INTRINSIC LIMIT FOR BINOMIAL STATISTICS:
THE CRAMÉ R-RAO BOUND

We are now ready to discuss the possibility of a ‘‘Ze
tomography.’’ The goal is to get information about the dist
bution of the absorption coefficient in the sample, absorb
as few particles as possible. We will accomplish this in t
steps. First, using estimation theory, we show thatif one
limits one’s attention to binomial statistics, the Zeno estima-
tion of any level of gray of one pixel~i.e., t continuously
distributed between 0 and 1! cannotperform better than the
standard method. At best, both methods are equivalent.
is bad news. However, the very proof of the abov

2More so; sincepa is also small in this limit, the detection statis
tics is almost Poissonian.
01211
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mentioned statement will show that there are two ways o
First, we will see that Zeno performs better when one wa
to distinguish two levels of gray that are not equally pop
lated in the sample~this requires some prior knowledg
about the distribution of grays in the sample!. This is good
news, for it enables one to find a method that in some ca
works better than the standard one. Second, one is le
think that the introduction and exploitation of a trinomi
statistics can enable the Zeno method to perform better.

Let us start from the estimation ofany level of gray. In
this case one tries to estimatet2 from the counted number o
particles, absorbing as few particles as possible for the
quested precision. To perform this task in an optimal w
one should find optimal estimators for each scheme. A low
bound on the variance of an unbiased estimatorT̂ of the
parameterT ~here T5t2) is the Crame´r-Rao lower bound
~CRLB! @8#,

~DT̂!2>
1

F
[ K F ]

]T
ln p~nuT!G2L 21

, ~18!

whereF is the Fisher information,p(nuT) is the probability
of observingn particles conditioned by the valueT of the
unknown parameter, and^•••& denotes the ensemble avera
with respect ton. The probabilityp is binomially distributed
in both the standard case and the Zeno case, which yiel

~DT̂st!
2>

t2~12t2!

N
,

~DT̂Ze!
2>

4t2~12t!3~11t!L

p2N
~19!

for standard and Zeno tomography, respectively,N being the
~fixed! number of input particles in both cases. Express
the above inequalities~19! in terms of the number ofab-
sorbedparticlesNa

(st)5Npa8 and Na
(Ze)5Npa , they both re-

duce to the same bound

DT̂st,Ze
opt >

t~12t2!

ANa
(st),(Ze)

, ~20!

showing that the CRLB’s for standard and Zeno tomograp
are the same,given the number of absorbed particles. Fu
ther, it is trivial to show that the unbiased estimator given
the relative frequency of transmitted particlesT̂st5nt /N
saturates the CRLB~20!. Hence,if one neglects the output o
the ordinary channel po and considers the statistics~17! es-
sentially binomial, the Zeno estimation can be at most
good as the standard one: it cannot be better.

V. TWO STATISTICAL PROTOCOLS

A. Binomial „single-channel… protocol

In spite of the conclusions of Sec. IV, we will now con
struct a protocol and show that by the QZE one can achi
a resolution that is superior to the ‘‘ordinary’’ resolution o
tained in a standard transmission experiment. Notice
0-3
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pa(t) in Eq. ~17!, unlike pa8(t) in Eq. ~15!, is anincreasing
function of t. Therefore, with respect to absorbed particl
the Zeno tomographic image~for sufficiently largeL) yields
a kind of negative of the standard absorption tomograp
image. This can be given a rather intuitive explanation:
deed, the absorption probability in Eq.~17! reduces to the
same form as the standard one~15!, i.e.,

pa~t!512~teff
Ze!2, ~21!

by introducing an ‘‘effective’’ transmission coefficient

teff
Ze5A12pa. ~22!

For example, if we taket150.98, t250.99, and chooseL
512 000, then, according to Eq.~17!, we getteff1

Ze '0.99 and
teff2

Ze '0.98. The two gray levels areinterchangedby the
Zeno apparatus. If most of the sample has transmission
efficientt2 the absorbed energy is reduced by using the Z
setup.

A more precise comparison of the performances of
Zeno and standard techniques can be given in the framew
of decision theory. For simplicity let us focus on distinguis
ing only two gray levelst1 andt2 (t1,t2) corresponding to
hypothesesH1 andH2 that occur in the sample with frequen
cies

P0~H1!5a, P0~H2!512a. ~23!

With this simplification we lose no generality since the t
mography withM gray levels can always be split into a s
quence of pairwise decisions between two adjacent gray
els.

We will proceed in two steps. First we will assume that
the Zeno configuration of Fig. 1~a! all output particles are
collected at a single detector. In other words, the Zeno
orthogonal channels are considered as a single output an
statistics~17! is binomial (pz1po ,pa). Each particle is then
either absorbed or transmitted~and detected! by the Zeno
apparatus. Obviously, by merging the two output chann
together, some information about the sample is wasted.
know, however, that this strategy will be optimal if the num
ber of loopsL is very large. Then there are almost no p
ticles exiting via the ordinary channelno'0, which can then
be safely ignored. A better and more general strategy wil
studied later.

Since both experiments obey the same~binomial! statis-
tics we use the notation of the Zeno experiment. The anal
of the standard experiment is similar. If no distinction
made between the Zeno and ordinary channels, the dec
is based on the number of absorbed particlesna . If na is
smaller than or equal to a decision levelna

d , then H1 is
chosen; otherwiseH2 is chosen. The probability of makin
an error in identifying the gray level of a given pixel is

Pe5aP~H2uH1!1~12a!P~H1uH2!, ~24!

where
01211
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P~H1uH2!5 (
na<na

d
p~nauH2! ~25!

is the probability of choosingH1 whenH2 is true, and

p~nauH2!5S N

na
D pa~t2!na@12pa~t2!#N2na ~26!

is the binomial probability of absorbingna particles when
H2 is true. @For P(H2uH1) the summation is overna.na

d .#
An optimal protocol is given by determining thena

d that
minimizes the error~24!.

Alternatively, one defines the likelihood ratio@9#

R5
L~t1uN,na ,a!

L~t2uN,na,12a!
, ~27!

where

L~t i uN,na ,a!5P0~Hi !p~nauHi !

5aS N

na
D pa~t i !

na@12pa~t i !#
N2na ~28!

represents the likelihood of hypothesisHi ( i 51,2). The op-
timum decision levelna

d is determined by solving for equa
likelihoods3

R51. ~29!

In both cases one gets

na
d5

ln@~12a!/a#2N ln$@12pa~t1!#/@12pa~t2!#%

ln@pa~t1!/pa~t2!#2 ln$@12pa~t1!#/@12pa~t2!#%
~30!

and, substituting in Eq.~24!,

Pe5a$12BI@N2ña
d,11ña

d ;12pa~t1!#%

1~12a!BI@N2ña
d,11ña

d ;12pa~t2!#, ~31!

whereBI(a,b;z) is the regularized incomplete Beta functio
@10# and ña

d is the greatest integer less than or equal tona
d .

The mean number of absorbed particles is

3The likelihood criterion~27! is also valid for other~nonbinomial!
statistics and can be easily generalized to the case of more than
gray levels.
0-4
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Na
(Ze)5N@apa~t1!1~12a!pa~t2!#. ~32!

By inserting Eqs.~30! and~32! in Eq. ~31!, the average prob
ability of error ~31! can be expressed as a function ofa, t
[t1 , dt5t22t1, andNa

(Ze) . The probability of error for the
standard setup is obtained in a completely analogous wa

The performances of the Zeno and standard methods
compared in Fig. 2. First, the~exact! Lth power of the matrix
Vt in Eq. ~10! is evaluated; then for a given error ratePe ,
the number of absorbed particles is calculated by solving
~31! numerically. Their ratio is shown as a function ofa for
a few values of the transmission coefficientt. Notice that the
exposition of the sample can be significantly reduced if
distribution of gray levels in the sample is not uniform. F
instance, a reduction factor of 2.5 is obtained when
sample consists of 97% of dense material and 3% of the
absorbing one,a50.97. Such parameters are typical f
structural analyses: a small structural defect~crack! inside a
thin sample would typically show small contrast (dt!1)
with the surrounding almost transparent (t'1) material,
while its area would be small compared to the area of
sample (a'1).

B. Trinomial „two-channel… protocol

The binomial decision strategy outlined in the previo
subsection is not the optimum one. Unavoidable losses
other imperfections of real experimental devices set a s
limit on the maximum number of loops that can be achiev
in a laboratory. In such a case the ordinary channel can
longer be ignored. The data consist then of the tw
component vector (nz ,no) of the numbers of particles
counted in the Zeno and ordinary output channels. The d
sion will be based onboth these numbers.

The decision levels are readily obtained from the eq
likelihood criterion

FIG. 2. Ratio of the number of absorbed particles in the Ze
(Na

(Ze)) and standard (Na
(st)) setup. The smaller the ratio in th

graph, the less irradiation in the Zeno apparatus~for the same reso-
lution!. Pe50.5%; dt50.02; t5$0.8,0.9,0.95,0.97%; L52000.
01211
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R5
L~t1uN,nz ,no ,a!

L~t2uN,nz ,no,12a!
51, ~33!

where

L~tuN,nz ,no ,a!5
aN!

nz!no!na!
pz~t!nzpo~t!nopa~t!na.

~34!

This equation is to be solved for the decision vector (nz
d ,no

d).
Equation~33! is just one condition for the two unknownsnz
andno , so there exists a one-parametric family of solutio
By substituting Eq.~34! into Eq. ~33! one easily finds

nz
d2a~t1 ,t2!no

d5b~t1 ,t2 ,a!, ~35!

where the coefficientsa andb read

a5
ln$@po~t1!pa~t2!#/@po~t2!pa~t1!#%

ln$@pz~t2!pa~t1!#/@pz~t1!pa~t2!#%
, ~36!

b5
N ln@pa~t1!/pa~t2!#1 ln@a/~12a!#

ln$@pz~t2!pa~t1!#/@pz~t1!pa~t2!#%
. ~37!

In a two-dimensional representation each possible exp
mental outcome (nz ,no) is represented by a point lying in
side the triangle$0<no1nz<N% shown in Fig. 3. Equation
~35! divides this triangle into two regions. All experiment
outcomes that fall within the same region issue the sa
decision. In the general case ofM different gray levels there
are M21 equations~35! defining M21 in general nonpar-
allel lines dividing the square intoM striplike regions. This is
shown in Fig. 3 forM53.

o

FIG. 3. Typical decision levels of the binomial~dashed lines!
and trinomial~solid lines! decision strategies whena'1. This fig-
ure corresponds to the simulation shown in the last row of Fig. 5~c!
below, whereM53, the triangle is divided intoM53 regions, and
the three gray shades are labeled as white, gray, and black, re
tively.
0-5
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An interesting situation arises when the coefficienta in
Eq. ~35! becomes close to unity. In that case, the decis
level is the linenz

d2no
d5const. Let us recall that the decisio

levels of the binomial decision strategy discussed in the p
vious subsection werena

d5const@see Eq.~30!#, or, equiva-
lently, nz

d1no
d5const. Hence ifL, t1 and t2 are such that

a'1, the decision levels of the binomial and trinomial de
sion strategies areorthogonalto each other. This is shown i
Fig. 3. Under such conditions one can expect further gain
the precision of the Zeno apparatus as compared to stan
absorption tomography. This regime was chosen for
computer simulations of the following section.

FIG. 4. The object to be reconstructed: a cell ofGiardia lam-
blia, one of the most primitive eukaryotes. The original picture h
been reduced for simplicity to three levels of gray: white, gray, a
black, occurring with frequenciesaw50.02, ag50.07, andab

50.91, respectively.
01211
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Notice that the steepness of the decision lines~35! de-
pendsonly on the absorption of the corresponding adjac
gray levels. It depends neither on their frequencies, nor
the total number of incident particles.

Finally, let us discuss the limitL→`. When the number
of loops L increases,po→0 much faster thanpa @see Eq.
~17!# and one is allowed to putno

d50 andnz
d5N2na

d in Eq.
~35!, which reduces to

na
d5N2b~t1 ,t2 ,a!. ~38!

By substitutingpz(t)512pa(t) in Eqs.~37! and ~38!, one
reobtains the binomial condition~30!: the binomial strategy
becomes optimal in this limit.

VI. SIMULATIONS

We have seen that the Zeno technique can reduce the
of absorption without losing resolution~compared to the
standard technique!. ~Alternatively, the Zeno setup can yiel
an improved resolution, while keeping the absorption at
same level as in the standard setup.! The object in Fig. 4 is a
cell of Giardia lamblia, a protist, one of the most primitive
eukaryotes. Giardia has been called a ‘‘missing link’’ in t
evolution of eukaryotic cells from prokaryotic cells. Th
number of gray levels in the figure has been reduced to th
to make the analysis simpler: white, gray, and black,tw
50.99, tg50.96, tb50.8, occurring with frequenciesaw
50.02, ag50.07, and ab50.91, respectively. Figure 5
shows the results of a numerical simulation, performed w
the standard and Zeno methods, the latter forL510 andL
5165, for different numbers of absorbed particlesNa . In

s
d

p

0
f

FIG. 5. Comparison of standard and Zeno tomographic techniques. In each frame, top left5 reconstruction by standard technique; to
right 5 misinterpreted pixels by the standard technique; center left5 reconstruction by Zeno technique withL510; center right5
misinterpreted pixels by the Zeno technique withL510; bottom left5 reconstruction by Zeno technique withL5165; bottom right5
misinterpreted pixels by the Zeno technique withL5165. The mean number of absorbed particles per pixel~irradiation! is Na51.7, 2.3, 4,
and 13 for frames~a!, ~b!, ~c!, and~d!, respectively. The total number of particlesN ~total energy! scales approximately as 3Na , 1.8Na , and
6.5Na for top, center, and bottom reconstructions, respectively. We usedtw50.99, tg50.96, andtb50.8. The sample consists of 10 00
(51003100) pixels, where white, gray, and black occur with frequenciesaw50.02, ag50.07, andab50.91, respectively. The number o
misinterpreted pixels are~top to bottom! ~a! 968, 786, 315;~b! 942, 596, 212;~c! 717, 382, 68;~d! 205, 69, 0.
0-6
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each frame the standard and the two Zeno reconstruction
compared, together with the pixels that have been misin
preted. Figure 5 confirms the expectation based on
asymptotic formulas~17!: in general, provided that the objec
contains a small fraction of more transparent pixels an
larger fraction of more absorbing material, the Zeno se
yields a better resolution for a given irradiation. Clearly,
significant improvement with respect to standard absorp
tomography is achieved for as few asL510 loops. The im-
provement is very large forL5165.

The number of absorbed particles increases from~a! to ~d!
in Fig. 5. Observe that in~a! the standard reconstruction fai
completely, while the outline and basic shape of the ob
can be recognized already in the Zeno reconstruction w
L510. In ~c! the Zeno reconstructions are quite good, wh
standard tomography does not detect white pixels in the
ject. When the intensity of the illuminating beam is increas
further, in frame~d!, all the reconstructed images becom
visually hard to tell from the sample, but the error rates
the Zeno apparatuses are still much better~by a factor of 3 or
more!, as shown by the number of misinterpreted pixels.

It is worth commenting on the distribution of misinte
preted pixels. Clearly, in all the cases analyzed, it is
uniform. In general, when the distribution of gray levels
the sample is not uniform, any reconstruction techniq
tends to perform better in the ‘‘background,’’ while makin
more mistakes in the region where the ‘‘structure’’ is prese
The improvement due to the Zeno method becomes appa
if one looks in particular at Figs. 5~b! and 5~c!: in these
cases, interestingly, the standard method yields more
takes in the background; this is an unpleasant feature, if
is interested in detecting small irregular structures in a m
or less uniform background. The features of the distribut
of misinterpreted pixels require more careful study and th
comprehension might lead to additional ideas.

Any increase in the number of loopsL in the interferom-
eter makes the difference between standard and Zeno tom
raphy even bigger. Clearly, this is more demanding in ter
of experimental realization.

VII. CONCLUSIONS

We have shown that a quantum Zeno tomography is p
sible and performs better than standard tomography
given prior knowledge about the distribution of grays in t
sample is available. This is a common situation in radiog
phy, where one is often interested in detecting a small st
ture in a uniform background, as, for instance, in the analy
of small structural defects.
.
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In our numerical simulations we have illustrated som
situations in which the resolution is improved by the Ze
method, for agiven number of absorbed particles. Alterna-
tively, for a given resolution, the Zeno method performs be
ter, absorbing fewer particles. This can be interesting in
plications, for instance if one wants to limit the dama
provoked by the absorption of radiation without losing
resolution.

It is obvious from Fig. 2 that an even larger improveme
is possible for almost transparent samples, provided thata is
close to unity. This means that there isno fundamental limit
to the improvement that can be achieved over the stand
setup: in other words, there is no ‘‘optimal’’ configuration.

There are additional issues that deserve careful study
instance, the effects due to a Poissonian beam~total number
of incoming particlesN not fixed! and a complex transmis
sion coefficientt.

Let us also comment on experimental feasibility. Figure
shows that an experimental test of the Zeno tomograp
technique should not be as difficult as one might think: sim
lations have been performed for as few asL510 loops in the
interferometer, giving better results than the stand
method. It is reasonable to think that a Zeno setup wit
much larger number of loops can be built for uv light~highly
absorbed by some biological samples!. Also, by changing the
light wavelength, one could efficiently ‘‘observe’’ differen
regions of the sample~or slightly different samples!. More-
over, the experimental configuration we have proposed~pho-
tons in a MZI, as in Fig. 1! is certainly not the only conceiv
able one. Phase imaging and tomography have b
demonstrated for both x rays and neutrons@11#. In addition,
Rauch and collaborators, with the VESTA apparatus@12#,
have been able to keepneutronsin a 1 mlong perfect crystal
storage system~‘‘resonator’’! for a few seconds, so that th
neutrons bounce back and forth between two mirrors sev
thousand times. This would lead us to the full asympto
(L@1) regime considered in Fig. 2 and the last row of F
5, where the Zeno method can perform much better. Ther
hopefully more to come.
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