Conditional preparation of arbitrary superpositions of atomic Dicke states

Karel Lemr1 Jaromír Fiurášek2

1Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic

2Department of Optics, Palacký University Olomouc, Czech Republic
Atomic state manipulation is essential for many quantum information protocols.

Possible applications

- quantum memory
- quantum repeaters
- quantum computation with atoms
Our goal

Proposal of scheme capable of preparation of arbitrary superpositions of atomic Dicke states.

Target Dicke states

\[|\psi_{\text{target}}\rangle = \sum_{n=0}^{N} c_n |n\rangle \]

- state of atomic collective spin
- Dicke state \(|n\rangle \) - \(n \) excited atoms
- using light beam to manipulate the atomic state
State of collective atomic spin

- atomic cloud in magnetic field
- collective spin oriented in one main direction
- spin deviations described using x_A, p_A quadratures
- similarly x_L, p_L used for light quadratures
QND interaction

\[\hat{H}_{\text{QND}} = \hbar \bar{\kappa} \hat{x}_A \hat{x}_L \]
Main scheme

Resulting action

Procedure:
- light in non-Gaussian state
- QND interaction: $\hat{H}_{\text{QND}} = \hbar \kappa \hat{x}_A \hat{x}_L$
- homodyne detection of \hat{p}_L

Resulting action on atoms

$$\hat{\Theta}(p_L) \propto (\hat{x}_A + p_L / \kappa) \exp \left[-\epsilon (\hat{x}_A + p_L / \kappa^2) \right]$$

- in Dicke basis: $|0_A\rangle \rightarrow \cos(\alpha)|0_A\rangle + \sin(\alpha)|1_A\rangle$
- α depends on homodyne detection outcome
Combination with displacement

- basic QND interaction is enveloped by displacement operations on atoms
- displacement can be implemented by magnetic field
- allows further control over the resulting atomic state
to prepare atomic state containing $|n\rangle$ Dicke state, one needs to repeat the basic QND interaction N times.

allows preparation of superpositions of Dicke states with only real roots in the wave function’s polynomial part.
Fidelity - probability trade off

- homodyne detection outcome is random
- atomic action $\hat{\Theta}(p_L)$ depends on HD outcome
- average fidelity $F(\ket{\psi_{\text{prepared state}}}, \ket{\psi_{\text{desired target state}}}) < 1$

- more HD outcomes accepted → higher scheme success probability
 → lower average fidelity
Numerical simulations

Numerical simulation

\(\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \) (red): average fidelity about 90% even for 100% success probability

\(|2\rangle \) (blue): lower average fidelity due to two repetitions of the basic QND interaction scheme
Which HD outcomes shall we accept?

- the best strategy = best fidelity - probability trade off
- plot fidelity as a function of HD outcomes (contours)
- accept every HD outcome within chosen fidelity contour
Alternative schemes

Basic QND scheme generalised

- addressing rotated atomic quadrature $\hat{x}_{\theta A}$
- additional degree of freedom: θ

Generalised interaction

$$\hat{H}(\theta)_{\text{QND}} = \hbar \kappa \hat{x}_{\theta A} \hat{x}_L$$

- not limited only to "real roots"
- capable of preparation of any superposition of Dicke states
Alternative strategy

\[\hat{U}_{\text{QND}} = \exp^{i\kappa \hat{x}_A \hat{x}_L} \] similar to Fourier transform

- idea: prepare the light in a specific state
- the QND interaction imprints the desired state on atoms
- easy to calculate which state of light one needs
- only one QND interaction with atoms is necessary
- light state may be difficult to prepare
Conclusion

- basic scheme for Dicke states preparation proposed
- QND interaction accompanied by displacement operation
- limited to "real roots" superpositions
- several numerical simulations and strategy optimization
- rotated atomic quadrature scheme overcomes the "real roots" limitation
- Fourier based approach, only one interaction needed
Acknowledgement

This research was supported by the Ministry of Education of the Czech Republic under the projects

- Centre of Modern Optics (LC06007)

- Research Center - Optical structures, detection systems and related technologies for low photon number applications (1M06002)

- Measurement and Information in Optics (MSM6198959213)

Thank you for your attention.