
Macroscopic Entanglement

Nicolas Sangouard

Universität Basel, Physik Departement, Schweiz  
www.qotg.physik.unibas.ch

Olomouc , March 2015

http://www.qotg.physik.unibas.ch


The quantum world is weird...

Do quantum properties hold at any scale?



A.J. Leggett Prog. Theor. Phys. Supplement 69, 80 (1980)

Macroscopic quantum effects ?

Macroscopic quantum effects

Quantum Mechanics is a “microscopic” theory

2

Microscopic quantum effect only!



Why don’t we observe quantum effects at macro scales ?

Decoherence	


Nothing else?



What is a macroscopic quantum state ? 
Quantum : e.g. Entanglement

Macro : e.g. mass ?
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FIG. 1. Experimental setup. The quantum memories MA and MB are implemented using neodymium ions doped into
yttrium ortho-silicate crystals (Nd3+:Y2SiO5) separated by 1.3 cm and cooled to 3 K using a cryostat (see ref. [24] for details).
The total e�ciency of each memory was 15%. A fiber optic switch is used to alternate between a 15 ms long preparation of the
two Nd ensembles as atomic frequency combs on the 4F3/2 �4I9/2 transition, followed by attempts of entanglement creation
for another 15 ms. For the latter, continuous wave light at 532 nm is coupled into a periodically poled KTP waveguide, leading
to the production of pairs of photons at wavelengths of 883 nm and 1338 nm through spontaneous parametric downconversion.
Photons from each pair are separated on a dichroic mirror (DM) and frequency filtered to below the 120 MHz bandwidth of the
quantum memories. The detection of an idler photon at 1338 nm (using a low-noise superconducting single photon detector [27])
heralds the presence of a signal photon at 883 nm. The signal photon now traverses the switch, a polarizing beam splitter (PBS)
and a Faraday rotator (FR), before a 50/50 beamsplitter (BS) creates single-photon entanglement between spatial modes A
and B. This entanglement is, upon absorption, mapped onto the crystals MA and MB . After a preprogrammed storage time
of 33 ns, the photons are reemitted and pass through the BS again. Depending on which output mode of BS they emerge from,
they either reach detector 1 or are rotated in polarization by the FR and reflected by the PBS towards detector 2.

optical depth and the quantum memory e⇥ciency up to
15%. The resulting fields can then be probed using sin-
gle photon detectors to reveal heralded entanglement be-
tween the memories. Since the entanglement cannot in-
crease through local operations on the optical modes A
and B, the entanglement of the retrieved light fields pro-
vides a lower bound for the entanglement between the
two memories.

The photonic state retrieved from the memories is de-
scribed by a density matrix �, including loss and noise,
expressed in the Fock state basis. To reveal entangle-
ment in this basis, one cannot resort to violating a Bell
inequality given solely ine⇥cient and noisy single pho-
ton detectors. Instead, as shown in ref. [5] (see also
ref. [13, 14]), a tomographic approach based on single
photon detectors can be used. Indeed, it is possible to
determine the presence of entanglement between the re-
trieved fields from the knowledge of the heralded prob-
abilities pmn of detecting m photons in mode A and n
in mode B, where m,n ⌃ {0, 1}, and from the coherence
between these modes. More precisely, one can obtain a
lower bound on the concurrence C of the detected fields,
a measure of entanglement ranging from 0 for a separable
state to 1 for a maximally entangled state, through

C ⇤ max(0, V (p01 + p10)� 2
�
p00p11). (1)

The term V is the interference visibility obtained by re-
combining optical modes A and B on a 50/50 beamsplit-
ter: it is directly proportional to the coherence between
the retrieved fields in modes A and B. To obtain a large
concurrence, that is, a large amount of entanglement, one
should maximize V (the coherence) and p10 + p01 (the

probability to detect the heralded photon), and mini-
mize p00 and p11 (the probabilities of detecting separable
states |0⌥A|0⌥B and |1⌥A|1⌥B stemming from a lost sig-
nal photon and from two signal photons, respectively).
Implicit to this method is the assumptions that i) the
creation of more than two pairs is negligible, and ii) the
o�-diagonal elements of � with di�erent number of pho-
tons vanish (this is valid since no local oscillator provid-
ing a phase reference was used; see ref. [5]).

To estimate V , p00, p10, p01 and p11, we used the setup
of Fig. 1 in the following way. First, the visibility V
was measured by allowing the re-emitted delocalized pho-
ton to interfere with itself using a balanced Michelson
interferometer whose phase was actively stabilized (see
Fig. 1). Then, we blocked spatial mode B to estimate
p10 by summing the number of detections on detectors 1
and 2, conditioned on a heralding signal. Probability p01
is estimated similarly by blocking mode A. Note that
the probability of getting simultaneous counts on both
detectors was negligibly small in front of the probability
of a single detection. Then, p00 is estimated through nor-
malization of the total probability, p00 + p10 + p01 ⌅ 1,
which is justified by the fact that p11 ⇧ p10 + p01 ⇧ p00
(see measured values in the Appendix). To estimate p11,
we used two di�erent methods, described below.

In the first method, we use a direct measurement of
threefold coincidences, i.e. involving all three detectors.
Details about this measurement are given in the Ap-
pendix. With a pump power of 16 mW and a coin-
cidence time window of 10 ns, we obtained C(MLE) =
6.3(3.8) ⇥ 10�5 using a maximum likelihood estima-
tion (MLE) of the threefold coincidence probability, and

Macroscopic quantum 
superposition

3

1

2
0 1 ! 1 0( )

1

2
0 alive ! 1 dead( )

• involves a large number of particles

Usmani et al., Nature Photonics. 6, 
234 (2012)

• the two components are macroscopically distinct
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C(CE) = 3.9(3.8) ⇥ 10�5 using a more conservative es-
timation (CE); see Appendix. Both estimations yield a
concurrence that is greater than 0 by at least one stan-
dard deviation, and show that entanglement was indeed
present between the two crystals. This measurement re-
quired 166 hours, a period in which two threefold coin-
cidences were observed. The prohibitively long integra-
tion time of this method prevented us from attempting
it with lower pump powers (i.e. for lower probability of
creating more than one pair). Hence, to study how the
concurrence changes with pump power, we used a second
method based on twofold coincidences, which we now de-
scribe.

In the second method, p11 is estimated using a sup-
plementary assumption (see the Appendix for details).
This approach is motivated by the results obtained in
ref. [13]. Specifically, we assume that all the observed
detections stem from a two-mode squeezed-state, and
thus the measured zero-time cross-correlation ḡs,i can be
written as ḡs,i = 1 + 1/p, where p ⌅ 1 and p2 are in-
terpreted as the probabilities of creating one and two
photon pairs, respectively. We then proceed as follows
to estimate p11. We first measure the zero-time cross-
correlation gAs,i between detections in the idler mode and
the signal mode A (with mode B blocked). Then we
measure gBs,i in the same way (with mode A blocked) and

verify that gAs,i ⇤ gBs,i. We calculate the average of gAs,i
and gBs,i, denoted ḡs,i, and estimate p11 using

p11 =
4p10p01
ḡs,i � 1

. (2)

In the Appendix, we provide justifications and additional
measurements that support our assumption and give ev-
idence that it yields a lower bound on the concurrence.
In particular, we measured the second-order autocorre-
lation of the signal (or idler) mode without storage to

be g(2)s,s (0) = 1.81(2) (or g(2)i,i (0) = 1.86(9)), which is very
close to the ideal value of 2 associated with the ther-
mal photon statistics of a two-mode squeezed state. We
also measured the zero-time second-order autocorrelation
function of the heralded signal photon just before stor-

age and obtained g(2)s,s|i(0) = 0.061(4) for a pump power
of 8 mW, which is consistent with p ⌅ 1. Note that
this method of estimating p11 is based on twofold coinci-
dences as opposed to threefold coincidences for the other
method. For our specific setup, this resulted in a reduc-
tion of the measurement time by a factor of 106 for similar
statistical confidence on the concurrence. This method
requires no physical modifications to the optical circuit to
measure the di�erent components of the retrieved fields,
which simplifies its implementation.

We performed a series of measurements for several val-
ues of the pump power, which is proportional to p pro-
vided p ⌅ 1. For all measurements we used coincidence
windows of 10 ns, and all results are based on raw counts
(i.e. without subtraction of dark counts and accidental
coincidences). The inset of 2a shows the interference of
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FIG. 2. Results. a, Visibility as a function of pump power.
The visibility is approximately constant with an average of
96.5± 1.2% (green shaded region). The inset shows the visi-
bility curves at 16 mW measured with detectors 1 ( ) and 2
( ) (15 minutes acquisition time per point; the error bars are
smaller than the symbols). The di�erent amplitudes result
from non-uniform loss after recombination of modes A and B
on the beamsplitter. The visibilities agree within uncertain-
ties in the fits. b, Zero-time cross-correlation ḡs,i as a function
of pump power. The decreasing values agree well with a theo-
retical model (shaded region; see Appendix). c, Lower bound
on the concurrence estimated using the cross-correlation mea-
surement the as a function of pump power ( ), calculated us-
ing Eq. 1 and 2, and the mean visibility of a. The concurrence
decreases with pump power, as expected, but remains positive
up to 16 mW. The shaded region corresponds to the model
in b. All measured values of p10, p01 and p11 are given in the
Appendix. All values are based on raw counts. Uncertainties
are obtained assuming Poissonnian detection statistics. The
lower bound on the concurrence at 16 mW obtained from
measured threefold coincidences using either the maximum
likelihood estimation ( ) or the conservative estimation ( )
are also shown (they are horizontally o�setted for clarity).

I. Usmani et al. Nature Photonics 6, 234 (2012) (Collaboration with the N. Gisin group)



What is a macroscopic quantum state? 
Quantum : e.g. Entanglement

Macro : e.g. Number of particles ?

T.S. Iskhakov et al. PRL 109, 150502 (2012)

Example: entanglement  
involving 100 000 photons
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Ref. [1], if a bipartite system containing two macroscopic
light beams A,B (Fig. 1) is separable, it satisfies a cer-
tain condition. Violation of this condition indicates that
the state is non-separable (entangled if it is pure).
To simplify comparison with experiment, we derive a

necessary condition of separability in terms of the Stokes
parameters and their variances [17]. This approach en-
ables us to prove a stronger condition than the one of
Ref. [1]. It is important that our consideration is also
valid for multimode beams.
As shown in Section A of the supplementary material,

for a separable state, the sum of the three Stokes vari-
ances ∆S2

i , i = 1, 2, 3, cannot be smaller than twice the
total photon number ⟨Ŝ0⟩,

3
∑

i=1

∆S2
i /⟨Ŝ0⟩ ≥ 2. (3)

A similar inequality was proved for atomic ensembles in
Ref. [5].
Inequality (3) is often mentioned as one of the un-

certainty relations in polarization quantum optics (see,
for instance, [3, 20]). Indeed, it follows directly from
the well-known equality for the Stokes operators Ŝi [3],
Ŝ2
1 + Ŝ2

2 + Ŝ2
3 = Ŝ0(Ŝ0 + 2). It should be noted, how-

ever, that this operator equality holds true only in the
case where, apart of the two polarization modes, the
light beam contains only a single frequency and angu-
lar mode [21, 22]. Thus, inequality (3) is not of general
validity. In fact, it is a necessary condition of separabil-
ity. Its violation indicates that a beam is non-separable,
i.e., is a sufficient condition of non-separability. As we
show below, Eq. (3) is violated in our experiment.
The experiment was performed with the macro-

scopic singlet Bell state |Ψ(−)
mac⟩, similar to the one con-

sidered in [1, 8, 9, 11]. The setup (Fig. 2) is described in
detail in Refs. [2, 17].

Theoretically, the singlet state |Ψ(−)
mac⟩ has three Stokes

parameters equal to zero, ⟨Ŝ1,2,3⟩ = 0, as well as the
corresponding variances, ∆S2

1,2,3 = 0, and higher-order
moments [21]. Thus, in theory condition (3) is always
violated, as its left-hand side is zero. In practice, achiev-
ing a zero variance of any Stokes observable is impossible.
The noise is caused by the inevitable losses (including the
non-ideal quantum efficiency of the detectors) and the
imperfect mode matching. To optimize the mode match-
ing, beams A,B are filtered in the angle separately.
Testing condition (3) requires the measurement of vari-

ances for three Stokes observables and the total pho-
ton number ⟨Ŝ0⟩, which is the shot-noise level. The
variances of S1,2,3 and the mean photon number ⟨Ŝ0⟩
were measured by analyzing the statistics over 20000
pulses [23]. Typical photon numbers per pulse were
105 (Fig. 2). This was due to a very large number of
modes collected. It is known that collinear type-I phase

!
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FIG. 2. Top: the experimental setup. Orthogonally po-
larized squeezed vacuums are generated in two type-I BBO
crystals and overlapped at a polarizing beamsplitter (PBS);
the residual pump is eliminated by dichroic mirrors (DM) and
a long-pass filter OG. The interferometer is balanced using a
trombone prism. A dichroic plate (DP) is inserted for pro-
ducing the macroscopic singlet state. Two apertures (A1,A2)
placed in the focal plane of a lens select the angular spectra of
the beams at two wavelengths, separated by a dichroic mirror
DM1 and joined together by another dichroic mirror DM2.
The measurement part also includes a Glan prism (GP), a
half-wave plate (HWP) or a quarter-wave plate (QWP), and
two detectors. Bottom left: number of photons per pulse ver-
sus the pump power. Bottom right: variance of the Stokes
observable plotted versus the direction in 3D (the object in-
side the sphere). The outer sphere shows the shot-noise level.

matching is characterized by a large number of angu-
lar Schmidt modes [24]. By accepting, with our angular
apertures, nearly whole angular spectra at wavelengths
λA,λB , we collected about 104 angular modes and 102

frequency modes [6]. At the same time, the number of
photons per mode was mesoscopic. The bottom-left part
of Fig. 2 shows the output/input characteristic of the
down-converter; the dependence is almost linear and its
fit yields the maximum gain 0.33±0.06 corresponding to
the number of photons per mode 0.12 ± 0.04. However,
condition (3) is invariant to the number of modes [17].
This is why it is suitable for testing multimode states; on
the contrary, traditional Wigner-function measurement
requires single-mode states and is therefore not applica-
ble here. Besides, measurement of the photon-number
variance for squeezed vacuum has been shown to be in-
variant to the gain, at least up to values Γ ∼ 2 [6].
Figure 3 shows the left-hand side of inequality (3) plot-

ted against the diameter of the A1 aperture, D1. For all
points below the dashed line, the necessary condition of
separability is violated. We see that with the transverse
modes properly matched, it is violated by more than 5

h 1p
2
(|0A1Bi � |1A0Bi)

i⌦100000

Many copies of a micro state 
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Intuition :       and      can be distinguished  
with a detector having no microscopic resolution 
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Consider a general detector model : 
A pointer sifted by a value corresponding 
to the photon number

A “classical” detector = sensitive only to 
photon number with limited resolution

5

N

Consider a simple textbook detector model:

A classical pointer on a scale is shifted by !

the value corresponding to the number !

of photons in the state.

Sekatski et al., PRA 2014

P.  Sekatski, N. Sangouard and N. Gisin Phys. Rev. A 89, 012116 (2014)

based on the distinguishability with a coarse-grained detector
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Proposal for a macro measure
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FIG. 1. Experimental setup. SOURCES: A Ti:Sapphire laser pulsed in the picosecond regime with a 76MHz repetition rate
at 780 nm pumps two periodically poled lithium niobate (PPLN) bulk crystals. In one crystal, pairs of photons are generated by
type II spontaneous parametric down conversion and separated by a polarising beamsplitter (PBS). One photon is sent through
a 25GHz filter (f ) at a central wavelength of 1563 nm, and detected in a gated APD with 20% detection efficiency. The second
PPLN crystal is seeded by an additional CW laser at 1563 nm, generating a local oscillator (by means of pulsed coherent state)
via difference frequency generation, whose bandwidth is restricted by energy conservation to the bandwidth of the pump laser.
MICRO entanglement: The heralded single photon (HSP) is sent to a fibre 50:50 beamsplitter, realising an entangled state
between the two output modes A and B. The figure-8 shapes represents the entanglement between the two modes. MACRO
entanglement: The mode A is then combined with the local oscillator on a unbalanced beamsplitter (90:10), corresponding to
a displacement operation on the HSP state. A set of black lines represents the fact that on this mode the state can be seen
as macroscopic. ANALYSIS: The measurement setup consists in the application, on the mode A, of an inverse displacement
operation Da(α)

−1 = Da(−α) by means of another 90/10 fibre beamsplitter that closes a Mach-Zehnder interferometer. The
adjustable U-bench allows one to accurately balance the path length difference for the experimental wavelength and to stabilise
the phase on the side of the interference fringe from a reference laser (c.f. Annexe). In this interferometer, a piezo (PZT) is
used to compensate the phase fluctuations. The PZT on the mode B is used to observe single photon interference fringes. A
pair of PBSs and a half waveplate (HWP) are used to recombine the modes A and B (HWP at π/8 ) or not (HWP at 0)
to access V or pij , respectively (c.f. main text). The two outputs are detected by two APDs with 25% detection efficiency,
triggered by the detection of an idler photon in the HSP source.

coupled into a monomode fibre with an efficiency of 50%.
The measurement of the second order auto-correlation
g(2)(0) = 1.9(1) unambiguously demonstrates the purity
of the signal field [15]. By sending the latter into a
balanced beamsplitter, one obtains, leaving aside the
loss, a maximally entangled state that describes the
two output modes A and B sharing a single photon
1
√

2
(|1⟩A|0⟩B + |0⟩A|1⟩B) . This path entangled state,

known as single-photon entanglement, can be seen as
the signature of the non-classical feature of the heralded
signal photon [16, 17].

The second step consists in amplifying the mode A by
applying a unitary operation Da(α) corresponding to a
displacement in the phase space. The latter is obtained
by combining the mode A and an intense local oscillator
on a highly unbalanced beamsplitter [18, 19]. The physics
behind the displacement is based on an interference pro-
cess. Hence, the field A and the local oscillator need to be
indistinguishable. This is insured in practice by produc-
ing the local oscillator by means of a difference frequency
generation (DFG), using an identical nonlinear crystal to
the one used for the photon pair creation but stimulated

by a cw telecom laser. The indistinguishability between
the resulting local oscillator and the field A is confirmed
through a Hong-Ou-Mandel type interference [20] whose
dip, reported in FIG. 2, has a visibility limited by the
reflectivity of the beamsplitter and the photon statistics
only. As such, after the displacement, the detection of an
idler photon heralds the generation of an entangled state
of the form

1√
2
(Da(α)|1⟩A|0⟩B + |α⟩A|1⟩B) . (1)

|α⟩A results from the displacement of the vacuum. It
follows a Poissonian photon number distribution with
mean photon number |α|2 equal to the variance. The
displacement also increases the mean photon number
of the single photon state |1⟩, but it preserves its
non-gaussian character. Specifically the state Da(α)|1⟩A
is characterised by a photon number distribution with
a mean photon number |α|2 + 1 and a variance 3|α|2.
The state (1) thus describes entanglement between a
microscopically populated mode B and a mode A whose
mean population can be adjusted by tuning the intensity
of the local oscillator. Remarkably, for large |α|2, it
involves a superposition of two components |α⟩A and
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pair of brackets  and everything inside this brackets is just a label. The superposition of two states is represented

as a linear combination of the corresponding kets.
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So the combination of this two states  result in a superposition that show that the cat is

something between alive and dead, right? Thank you WildKET ;-)

|Alive⟩ + |Dead⟩1
2√

1
2√

FormlessCloud Jul 27 '13 at 15:45

4 Answers

The expression in the picture contains kets only. Kets represent states of a system. In this case, the

"alive" state is the first one and the "dead" state the second.

The numerical factors are there for normalisation. It is assumed both states are equally likely, so they

have the same numerical factor. If we call the expression in the picture , the inner product

(analogous to the scalar product of two vectors)

|Ψ⟩ 1

⟨Ψ|Ψ⟩ = ∫ ( )Ψ( )dΨ∗ r ⃗ r ⃗ r ⃗ 

should be equal to . This is because we interpret the wavefunction  as a probability amplitude

distribution and hence the scalar product of the wavefunction with itself as a probability distribution.

Integrating a probability distribution over the entire space (I used the position space here, but you

could just as well integrate over an abstract state space for example) should always give , due to

the nature of probability theory. This expresses the idea that the system (cat) must be in  state.

1 Ψ( )r ⃗ 

1
some

Now, there's a problem with this expression and that problem is also the resolution of the issue

associated with Schrödinger's cat (the criticism that according to QM the cat would be both dead

and alive at the same time). And that is that the cat is not a quantum system. A common mistake is

that a conscious observer is needed for the "collapse" of the wavefunction, as it is described in the

Copenhagen interpretation. This is not true. The cat will not be in a superposition of both dead and

alive but in one particular state (see also ).decoherence

 Some more information on the inner product .1 ⟨Ψ|Ψ⟩
Let's consider a general ket in some state space  (which is just a special kind of  and

kets are special column vectors), say . Let's assume the dimension  of this space is finite. It

doesn't have to be, but it makes things conceptually easier to understand. Because then a finite

basis  (with ) exists for this vector space, meaning we can write every ket in  as

 vector space

|a⟩ d

| ⟩ei i = 1 … d 
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FIG. 1. Experimental setup. SOURCES: A Ti:Sapphire laser pulsed in the picosecond regime with a 76MHz repetition rate
at 780 nm pumps two periodically poled lithium niobate (PPLN) bulk crystals. In one crystal, pairs of photons are generated by
type II spontaneous parametric down conversion and separated by a polarising beamsplitter (PBS). One photon is sent through
a 25GHz filter (f ) at a central wavelength of 1563 nm, and detected in a gated APD with 20% detection efficiency. The second
PPLN crystal is seeded by an additional CW laser at 1563 nm, generating a local oscillator (by means of pulsed coherent state)
via difference frequency generation, whose bandwidth is restricted by energy conservation to the bandwidth of the pump laser.
MICRO entanglement: The heralded single photon (HSP) is sent to a fibre 50:50 beamsplitter, realising an entangled state
between the two output modes A and B. The figure-8 shapes represents the entanglement between the two modes. MACRO
entanglement: The mode A is then combined with the local oscillator on a unbalanced beamsplitter (90:10), corresponding to
a displacement operation on the HSP state. A set of black lines represents the fact that on this mode the state can be seen
as macroscopic. ANALYSIS: The measurement setup consists in the application, on the mode A, of an inverse displacement
operation Da(α)

−1 = Da(−α) by means of another 90/10 fibre beamsplitter that closes a Mach-Zehnder interferometer. The
adjustable U-bench allows one to accurately balance the path length difference for the experimental wavelength and to stabilise
the phase on the side of the interference fringe from a reference laser (c.f. Annexe). In this interferometer, a piezo (PZT) is
used to compensate the phase fluctuations. The PZT on the mode B is used to observe single photon interference fringes. A
pair of PBSs and a half waveplate (HWP) are used to recombine the modes A and B (HWP at π/8 ) or not (HWP at 0)
to access V or pij , respectively (c.f. main text). The two outputs are detected by two APDs with 25% detection efficiency,
triggered by the detection of an idler photon in the HSP source.

coupled into a monomode fibre with an efficiency of 50%.
The measurement of the second order auto-correlation
g(2)(0) = 1.9(1) unambiguously demonstrates the purity
of the signal field [15]. By sending the latter into a
balanced beamsplitter, one obtains, leaving aside the
loss, a maximally entangled state that describes the
two output modes A and B sharing a single photon
1
√

2
(|1⟩A|0⟩B + |0⟩A|1⟩B) . This path entangled state,

known as single-photon entanglement, can be seen as
the signature of the non-classical feature of the heralded
signal photon [16, 17].

The second step consists in amplifying the mode A by
applying a unitary operation Da(α) corresponding to a
displacement in the phase space. The latter is obtained
by combining the mode A and an intense local oscillator
on a highly unbalanced beamsplitter [18, 19]. The physics
behind the displacement is based on an interference pro-
cess. Hence, the field A and the local oscillator need to be
indistinguishable. This is insured in practice by produc-
ing the local oscillator by means of a difference frequency
generation (DFG), using an identical nonlinear crystal to
the one used for the photon pair creation but stimulated

by a cw telecom laser. The indistinguishability between
the resulting local oscillator and the field A is confirmed
through a Hong-Ou-Mandel type interference [20] whose
dip, reported in FIG. 2, has a visibility limited by the
reflectivity of the beamsplitter and the photon statistics
only. As such, after the displacement, the detection of an
idler photon heralds the generation of an entangled state
of the form

1√
2
(Da(α)|1⟩A|0⟩B + |α⟩A|1⟩B) . (1)

|α⟩A results from the displacement of the vacuum. It
follows a Poissonian photon number distribution with
mean photon number |α|2 equal to the variance. The
displacement also increases the mean photon number
of the single photon state |1⟩, but it preserves its
non-gaussian character. Specifically the state Da(α)|1⟩A
is characterised by a photon number distribution with
a mean photon number |α|2 + 1 and a variance 3|α|2.
The state (1) thus describes entanglement between a
microscopically populated mode B and a mode A whose
mean population can be adjusted by tuning the intensity
of the local oscillator. Remarkably, for large |α|2, it
involves a superposition of two components |α⟩A and
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thus have important applications for quantum metrology.

Two-mode vacuum squeezed states — As an exam-
ple of two-mode squeezed states, let us consider the two-
mode squeezed vacuum. It is obtained from a parametric
process in which photons from a pump laser decay spon-
taneously into photon pairs – one in mode 1, its twin
in mode 2 – while preserving energy and momentum.
The corresponding propagator ¯S(g) = eg(a

†
1a

†
2�a1a2) with

squeezing parameter g, applies straightforwardly on the
vacuum if written in the normal order. This results in
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are anti-correlated. The
quantum nature of these correlations can be revealed
through the Duan – Simon criterion [6, 7] which states
that for any bipartite separable states and any real pa-
rameter a
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while for a two-mode squeezed state
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The questions that are at the core of this letter are:
How to evaluate the size of this kind of states? Are their
effective size comparable to other photonic states?

Macroscopic distinctness for cv states — While sev-
eral definitions have been proposed to identify states that
are macroscopically distinct [23, 24, 26, 27, 30], we here
focus on the proposal of Ref. [30] based on coarse-grained
measurements. This choice is arbitrary to some extent.
Note, however, that the extension that we propose below
easily applies to the measure of Ref. [26]. The exten-
sion of measures of Refs. [24, 27] to two-mode squeezed
states is less obvious as they primarily address spin sys-
tems but the link between measures for spins and photons
presented in [4] might be the way to proceed.

The basic principle of the measure of macroscopicity
based on coarse-grained measurement is simple. It can
be seen as a game where Alice chooses a state in the set

{|�
0

i, |�
1

i} with equal a priori probabilities and sends it
to Bob. Bob has to guess which one has been sent using a
coarse-grained measurement only. It can be any measure-
ment provided that its resolution is limited. The quan-
tum superposition state |�

0

i + |�
1

i is qualified macro-
scopic if Bob wins the game with a detector having no
microscopic resolution. Concretely, if one focuses on a
noisy photon counting detector for example, the size of
|�

0

i + |�
1

i is characterized by the noise that one can
tolerate to distinguish |�

0

i and |�
1

i.
To extend this measure to cv states, we can mimic

its original idea by introducing a 50/50 binning of mea-
surement outcomes. For a two-mode squeezed vacuum
state in particular, Alice measures her mode with a given
quadrature and bins the result with respect to its sign.
As Alice’s measurement is assumed to be very accu-
rate, this binning corresponds to equiprobable projec-
tions onto two orthogonal subspaces of the measured
state. Bob has to guess whether she got a positive or
negative outcome by measuring his mode with a noisy
measurement. The distinguishability of components that
Bob receives is again given by the noise that can be
tolerated to win the game. Note that the measure-
ment of correlated quadratures maximizes the proba-
bility to correctly guess Alice’s outcome. Concretely,
the probability that Alice gets the result x
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For comparison, the noise that can be tolerated to win
a similar game with the optical Schrödinger-cat state
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In both cases, the noise scales like the square root of
the photon number. Two-mode squeezed states and
Schrödinger-cat states thus belong to the same class of
macroscopic states.
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The questions that are at the core of this letter are:
How to evaluate the size of this kind of states? Are their
effective size comparable to other photonic states?
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eral definitions have been proposed to identify states that
are macroscopically distinct [23, 24, 26, 27, 30], we here
focus on the proposal of Ref. [30] based on coarse-grained
measurements. This choice is arbitrary to some extent.
Note, however, that the extension that we propose below
easily applies to the measure of Ref. [26]. The exten-
sion of measures of Refs. [24, 27] to two-mode squeezed
states is less obvious as they primarily address spin sys-
tems but the link between measures for spins and photons
presented in [4] might be the way to proceed.
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state. Bob has to guess whether she got a positive or
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2

thus have important applications for quantum metrology.

Two-mode vacuum squeezed states — As an exam-
ple of two-mode squeezed states, let us consider the two-
mode squeezed vacuum. It is obtained from a parametric
process in which photons from a pump laser decay spon-
taneously into photon pairs – one in mode 1, its twin
in mode 2 – while preserving energy and momentum.
The corresponding propagator ¯S(g) = eg(a

†
1a

†
2�a1a2) with

squeezing parameter g, applies straightforwardly on the
vacuum if written in the normal order. This results in

 tms = (1� tanh

2 g)
1
2 etanh g a

†
1a

†
2 |00i. (1)

The mean photon number in both mode is N =

2tr(a†
1

a
1

| tmsih tms|) = 2 sinh

2 g. Furthermore, the
variance of the observable ¯X'

1

� ¯X�

2

where ¯X✓

i

=

1p
2

⇣
a
i

ei✓ + a†
i

e�i✓

⌘
is given by

V
 tms(

¯X'

1

� ¯X�

2

) = cosh 2g � sinh 2g cos('+ �). (2)

This indicates that the quadratures ¯X0

1

– ¯X0

2

are cor-
related whereas ¯X

⇡/2

1

– ¯X
⇡/2

2

are anti-correlated. The
quantum nature of these correlations can be revealed
through the Duan – Simon criterion [6, 7] which states
that for any bipartite separable states and any real pa-
rameter a

V
sep

✓
|a| ¯X�

1

+

1

a
¯X�

2

◆
+ V

sep

✓
|a| ¯X�

0

1

� 1

a
¯X�

0

2

◆

> a2h[ ¯X�

1

, ¯X�

0

1

]i+ 1

a2
h[ ¯X�

2

, ¯X�

0

2

]i

� 2 for �� �0 = �� �

0
=

⇡

2

(3)

while for a two-mode squeezed state

V
 tms

�
¯X0

1

+

¯X0

2

�
+ V

 tms

⇣
¯X
⇡/2

1

� ¯X
⇡/2

2

⌘
= 2e�2g.

The questions that are at the core of this letter are:
How to evaluate the size of this kind of states? Are their
effective size comparable to other photonic states?

Macroscopic distinctness for cv states — While sev-
eral definitions have been proposed to identify states that
are macroscopically distinct [23, 24, 26, 27, 30], we here
focus on the proposal of Ref. [30] based on coarse-grained
measurements. This choice is arbitrary to some extent.
Note, however, that the extension that we propose below
easily applies to the measure of Ref. [26]. The exten-
sion of measures of Refs. [24, 27] to two-mode squeezed
states is less obvious as they primarily address spin sys-
tems but the link between measures for spins and photons
presented in [4] might be the way to proceed.

The basic principle of the measure of macroscopicity
based on coarse-grained measurement is simple. It can
be seen as a game where Alice chooses a state in the set

{|�
0

i, |�
1

i} with equal a priori probabilities and sends it
to Bob. Bob has to guess which one has been sent using a
coarse-grained measurement only. It can be any measure-
ment provided that its resolution is limited. The quan-
tum superposition state |�

0

i + |�
1

i is qualified macro-
scopic if Bob wins the game with a detector having no
microscopic resolution. Concretely, if one focuses on a
noisy photon counting detector for example, the size of
|�

0

i + |�
1

i is characterized by the noise that one can
tolerate to distinguish |�

0

i and |�
1

i.
To extend this measure to cv states, we can mimic

its original idea by introducing a 50/50 binning of mea-
surement outcomes. For a two-mode squeezed vacuum
state in particular, Alice measures her mode with a given
quadrature and bins the result with respect to its sign.
As Alice’s measurement is assumed to be very accu-
rate, this binning corresponds to equiprobable projec-
tions onto two orthogonal subspaces of the measured
state. Bob has to guess whether she got a positive or
negative outcome by measuring his mode with a noisy
measurement. The distinguishability of components that
Bob receives is again given by the noise that can be
tolerated to win the game. Note that the measure-
ment of correlated quadratures maximizes the proba-
bility to correctly guess Alice’s outcome. Concretely,
the probability that Alice gets the result x

1

and Bob
x
2

knowing that they measure the quadratures ¯X0

1

and
¯X0

2

is given by |p(x
1

, x
2

,�)|2 = tr(| tmsih tms|�( ¯X0

1

�
x
1

)g
�

(

¯X0

2

� x
2

)) where g
�

stands for the noise of Bob’s
measurement device. We assume that g

�

is a Gaus-
sian with spread � and zero mean. Hence, the proba-
bility that Bob correctly guesses the sign of Alice’s re-
sult is given by P guess

�

=

R
+1
0

|p(x
1

, x
2

,�)|2dx
1

dx
2

+R
0

�1 |p(x
1

, x
2

,�)|2dx
1

dx
2

. We find

P guess

�

=

1

2

+

1

⇡
arctan(

sinh 2gp
1 + 2�2

cosh 2g
). (4)

We can access the maximum noise �
max

that Bob can
tolerate to win the game with a fixed probability P guess

�

by inverting the previous formula:

�
max

=

s
�1 +N(

1

2

+N)cotan2

(

1

2

� P guess

�

)

2 + 2N
, (5)

For comparison, the noise that can be tolerated to win
a similar game with the optical Schrödinger-cat state
(| "i|↵i � | #i|� ↵i) is given by

�
max

=

s
|↵|2

�
erf�1

(P guess

�

)

�
2

� 1

2

.

In both cases, the noise scales like the square root of
the photon number. Two-mode squeezed states and
Schrödinger-cat states thus belong to the same class of
macroscopic states.

2

thus have important applications for quantum metrology.

Two-mode vacuum squeezed states — As an exam-
ple of two-mode squeezed states, let us consider the two-
mode squeezed vacuum. It is obtained from a parametric
process in which photons from a pump laser decay spon-
taneously into photon pairs – one in mode 1, its twin
in mode 2 – while preserving energy and momentum.
The corresponding propagator ¯S(g) = eg(a

†
1a

†
2�a1a2) with

squeezing parameter g, applies straightforwardly on the
vacuum if written in the normal order. This results in

 tms = (1� tanh

2 g)
1
2 etanh g a

†
1a

†
2 |00i. (1)

The mean photon number in both mode is N =

2tr(a†
1

a
1

| tmsih tms|) = 2 sinh

2 g. Furthermore, the
variance of the observable ¯X'

1

� ¯X�

2

where ¯X✓

i

=

1p
2

⇣
a
i

ei✓ + a†
i

e�i✓

⌘
is given by

V
 tms(

¯X'

1

� ¯X�

2

) = cosh 2g � sinh 2g cos('+ �). (2)

This indicates that the quadratures ¯X0

1

– ¯X0

2

are cor-
related whereas ¯X

⇡/2

1

– ¯X
⇡/2

2

are anti-correlated. The
quantum nature of these correlations can be revealed
through the Duan – Simon criterion [6, 7] which states
that for any bipartite separable states and any real pa-
rameter a

V
sep

✓
|a| ¯X�

1

+

1

a
¯X�

2

◆
+ V

sep

✓
|a| ¯X�

0

1

� 1

a
¯X�

0

2

◆

> a2h[ ¯X�

1

, ¯X�

0

1

]i+ 1

a2
h[ ¯X�

2

, ¯X�

0

2

]i

� 2 for �� �0 = �� �

0
=

⇡

2

(3)

while for a two-mode squeezed state

V
 tms

�
¯X0

1

+

¯X0

2

�
+ V

 tms

⇣
¯X
⇡/2

1

� ¯X
⇡/2

2

⌘
= 2e�2g.

The questions that are at the core of this letter are:
How to evaluate the size of this kind of states? Are their
effective size comparable to other photonic states?

Macroscopic distinctness for cv states — While sev-
eral definitions have been proposed to identify states that
are macroscopically distinct [23, 24, 26, 27, 30], we here
focus on the proposal of Ref. [30] based on coarse-grained
measurements. This choice is arbitrary to some extent.
Note, however, that the extension that we propose below
easily applies to the measure of Ref. [26]. The exten-
sion of measures of Refs. [24, 27] to two-mode squeezed
states is less obvious as they primarily address spin sys-
tems but the link between measures for spins and photons
presented in [4] might be the way to proceed.

The basic principle of the measure of macroscopicity
based on coarse-grained measurement is simple. It can
be seen as a game where Alice chooses a state in the set

{|�
0

i, |�
1

i} with equal a priori probabilities and sends it
to Bob. Bob has to guess which one has been sent using a
coarse-grained measurement only. It can be any measure-
ment provided that its resolution is limited. The quan-
tum superposition state |�

0

i + |�
1

i is qualified macro-
scopic if Bob wins the game with a detector having no
microscopic resolution. Concretely, if one focuses on a
noisy photon counting detector for example, the size of
|�

0

i + |�
1

i is characterized by the noise that one can
tolerate to distinguish |�

0

i and |�
1

i.
To extend this measure to cv states, we can mimic

its original idea by introducing a 50/50 binning of mea-
surement outcomes. For a two-mode squeezed vacuum
state in particular, Alice measures her mode with a given
quadrature and bins the result with respect to its sign.
As Alice’s measurement is assumed to be very accu-
rate, this binning corresponds to equiprobable projec-
tions onto two orthogonal subspaces of the measured
state. Bob has to guess whether she got a positive or
negative outcome by measuring his mode with a noisy
measurement. The distinguishability of components that
Bob receives is again given by the noise that can be
tolerated to win the game. Note that the measure-
ment of correlated quadratures maximizes the proba-
bility to correctly guess Alice’s outcome. Concretely,
the probability that Alice gets the result x

1

and Bob
x
2

knowing that they measure the quadratures ¯X0

1

and
¯X0

2

is given by |p(x
1

, x
2

,�)|2 = tr(| tmsih tms|�( ¯X0

1

�
x
1

)g
�

(

¯X0

2

� x
2

)) where g
�

stands for the noise of Bob’s
measurement device. We assume that g

�

is a Gaus-
sian with spread � and zero mean. Hence, the proba-
bility that Bob correctly guesses the sign of Alice’s re-
sult is given by P guess

�

=

R
+1
0

|p(x
1

, x
2

,�)|2dx
1

dx
2

+R
0

�1 |p(x
1

, x
2

,�)|2dx
1

dx
2

. We find

P guess

�

=

1

2

+

1

⇡
arctan(

sinh 2gp
1 + 2�2

cosh 2g
). (4)

We can access the maximum noise �
max

that Bob can
tolerate to win the game with a fixed probability P guess

�

by inverting the previous formula:

�
max

=

s
�1 +N(

1

2

+N)cotan2

(

1

2

� P guess

�

)

2 + 2N
, (5)

For comparison, the noise that can be tolerated to win
a similar game with the optical Schrödinger-cat state
(| "i|↵i � | #i|� ↵i) is given by

�
max

=

s
|↵|2

�
erf�1

(P guess

�

)

�
2

� 1

2

.

In both cases, the noise scales like the square root of
the photon number. Two-mode squeezed states and
Schrödinger-cat states thus belong to the same class of
macroscopic states.

size 

Lagahaout et al. Opt. Comm. 96, 337 (2015)



Two mode squeezed states as macro states?

Alice

A “classical” detector = sensitive only to 
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Let us now focus on practical considerations. The ob-
servation that Alice’s and Bob’s x-quadratures of the
two-mode squeezed vacuum state are “macroscopically”
correlated (correlated at a large scale, larger then the
detector’s resolution) is at the heart of our generaliza-
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Accordingly if the coherence range x
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is lower than
the correlation range as witnessed by �

max

, one can
only claim that the state exhibits quantum correlations
within the range x

C

, which is then the true size of the
state. Revealing the size of large quantum states thus
requires to reveal narrow variances which is harder and
harder as the size increases, cf. below.

General measures for multimode cv states — Besides
measures for macroscopic distinguishability, there has
been recent proposals that aim to go beyond the basic
structure |�
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i [1, 22, 24, 28]. While the measures
of Refs. [1, 22, 24] were originally defined for spin sys-
tems, the definition of Ref. [28] is directly suitable for cv
photonic states. For pure states, these three proposals
are comparable since a state | i is called macroscopically
quantum if it shows a large variance V with respect to a
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is that the measures [1, 22, 24, 28] are convex in the
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instead to use a similar account that has been success-
fully applied in the spin case [1, 22, 24]. The idea is that
the effective size of a product state is the average value
of its components, while entangled states should be able
to profit from quantum correlations between the modes.
Both requirements are achieved by defining the effective
size for ⇢ as
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the QFI (or the variance for pure states) with re-
spect to sums of local quadrature operators parametrized
by ✓ = (✓

1

, . . . , ✓
n

). The examples from above then
lead to N

e↵

(| 
↵

i⌦n

) = 2|↵|2/[1 + exp(�2|↵|2)] and
N

e↵

(

�� p
n↵

↵
) = 2n|↵|2/[1 + exp(�2n|↵|2)] (cp. to [39]).

We now come to the evaluation of the effective size for
the two-mode squeezed vacuum state. It is simple to see
that the variance is largest for the quadratures that are
maximally correlated. For the state (1), these are the
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In principle, the effective size of a pure state could

be determined by witnessing a large variance for sums
of quadrature operators. However, for mixed states, a
large variance is not sufficient. Instead, one has to ver-
ify a large value of a convex function like the QFI. Since
this quantity is typically only accessibly through a full
state tomography, one has to find other means to esti-
mate it. Recently, a general lower bound on the QFI
has been found [38]. It was shown that for any quan-
tum state ⇢ and any pair of operators A,B, it holds that
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(A)F
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(B) � hi[A,B]i2
⇢

, which is a tighter version of
the Heisenberg uncertainty relation. Here, we use this in-
equality to bound the QFI from below. For B =
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,
we set A =
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For the two-mode squeezed state, the anti-correlations
between ¯X
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and ¯X
⇡/2

2

lead to a reduced variance and
therefore to a potentially large value of N
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.
Note that Eq. (10) [as well as Eq. (8)] resembles very

much the ideas of Refs. [25, 40] for a generalized notion
of macroscopic quantum coherences. However, we use
these expressions only to bound quantitative measures.
These measures are general enough to compare two-
mode squeezed states with other states like cat states.

On the difficulty to certify the quantum nature of two-
mode squeezed states — The common feature of mea-

Figure 1. Bounds on the effective size Neff (blue squares) of
two-mode squeezed states obtained from experimental data
reported in Refs. [8–13] using inequality (10). The red trian-
gles indicate the minimal photon number N necessary for a
cat state |↵i+ |�↵i to have the same effective size according
to Eq. (9). For example, the state reported in Ref. [8] has a
size Neff � 1.2 for which one needs at least a cat state with
N ⇡ 0.2 for the same size.

sures for macroscopicity presented before is the require-
ment to reveal narrow variances, especially when deal-
ing with large size states. How hard is it in practice?
To answer this question, we consider the effect of vari-
ous experimental imperfections on the observed variance
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which decays expo-
nentially with the squeezing parameter (in the limit of
large enough g).

In each case, we clearly see that it becomes harder
and harder to observe narrow variances with two-mode
squeezed states as their size increases. This is in
agreement with recent results [41, 42] stating that it is
difficult to observe the quantum nature of macroscopic
states. This naturally raises the question of the size
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Let us now focus on practical considerations. The ob-
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Accordingly if the coherence range x
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is lower than
the correlation range as witnessed by �

max

, one can
only claim that the state exhibits quantum correlations
within the range x

C

, which is then the true size of the
state. Revealing the size of large quantum states thus
requires to reveal narrow variances which is harder and
harder as the size increases, cf. below.

General measures for multimode cv states — Besides
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i [1, 22, 24, 28]. While the measures
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is not straightforward. Indeed, a multimode version for
the measure of Lee and Jeong was proposed [28]. How-
ever, it is additive and hence a bunch of “kitten states”
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large n) is as macroscopically quantum as a “big” single
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instead to use a similar account that has been success-
fully applied in the spin case [1, 22, 24]. The idea is that
the effective size of a product state is the average value
of its components, while entangled states should be able
to profit from quantum correlations between the modes.
Both requirements are achieved by defining the effective
size for ⇢ as
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. In words, one maximizes
the QFI (or the variance for pure states) with re-
spect to sums of local quadrature operators parametrized
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). The examples from above then
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We now come to the evaluation of the effective size for
the two-mode squeezed vacuum state. It is simple to see
that the variance is largest for the quadratures that are
maximally correlated. For the state (1), these are the
operators ¯X0
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and ¯X
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. The effective size
for each of these choices reads N
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e2g ⇡ N which is approximately half of the
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In principle, the effective size of a pure state could

be determined by witnessing a large variance for sums
of quadrature operators. However, for mixed states, a
large variance is not sufficient. Instead, one has to ver-
ify a large value of a convex function like the QFI. Since
this quantity is typically only accessibly through a full
state tomography, one has to find other means to esti-
mate it. Recently, a general lower bound on the QFI
has been found [38]. It was shown that for any quan-
tum state ⇢ and any pair of operators A,B, it holds that
V
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(A)F
⇢

(B) � hi[A,B]i2
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, which is a tighter version of
the Heisenberg uncertainty relation. Here, we use this in-
equality to bound the QFI from below. For B =
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,
we set A =
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one has
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For the two-mode squeezed state, the anti-correlations
between ¯X
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and ¯X
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lead to a reduced variance and
therefore to a potentially large value of N
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.
Note that Eq. (10) [as well as Eq. (8)] resembles very

much the ideas of Refs. [25, 40] for a generalized notion
of macroscopic quantum coherences. However, we use
these expressions only to bound quantitative measures.
These measures are general enough to compare two-
mode squeezed states with other states like cat states.

On the difficulty to certify the quantum nature of two-
mode squeezed states — The common feature of mea-

Figure 1. Bounds on the effective size Neff (blue squares) of
two-mode squeezed states obtained from experimental data
reported in Refs. [8–13] using inequality (10). The red trian-
gles indicate the minimal photon number N necessary for a
cat state |↵i+ |�↵i to have the same effective size according
to Eq. (9). For example, the state reported in Ref. [8] has a
size Neff � 1.2 for which one needs at least a cat state with
N ⇡ 0.2 for the same size.

sures for macroscopicity presented before is the require-
ment to reveal narrow variances, especially when deal-
ing with large size states. How hard is it in practice?
To answer this question, we consider the effect of vari-
ous experimental imperfections on the observed variance
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and harder to observe narrow variances with two-mode
squeezed states as their size increases. This is in
agreement with recent results [41, 42] stating that it is
difficult to observe the quantum nature of macroscopic
states. This naturally raises the question of the size
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which decays expo-
nentially with the squeezing parameter (in the limit of
large enough g).

In each case, we clearly see that it becomes harder
and harder to observe narrow variances with two-mode
squeezed states as their size increases. This is in
agreement with recent results [41, 42] stating that it is
difficult to observe the quantum nature of macroscopic
states. This naturally raises the question of the size
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instead to use a similar account that has been success-
fully applied in the spin case [1, 22, 24]. The idea is that
the effective size of a product state is the average value
of its components, while entangled states should be able
to profit from quantum correlations between the modes.
Both requirements are achieved by defining the effective
size for ⇢ as
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We now come to the evaluation of the effective size for
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In principle, the effective size of a pure state could

be determined by witnessing a large variance for sums
of quadrature operators. However, for mixed states, a
large variance is not sufficient. Instead, one has to ver-
ify a large value of a convex function like the QFI. Since
this quantity is typically only accessibly through a full
state tomography, one has to find other means to esti-
mate it. Recently, a general lower bound on the QFI
has been found [38]. It was shown that for any quan-
tum state ⇢ and any pair of operators A,B, it holds that
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between ¯X
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lead to a reduced variance and
therefore to a potentially large value of N
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Note that Eq. (10) [as well as Eq. (8)] resembles very

much the ideas of Refs. [25, 40] for a generalized notion
of macroscopic quantum coherences. However, we use
these expressions only to bound quantitative measures.
These measures are general enough to compare two-
mode squeezed states with other states like cat states.

On the difficulty to certify the quantum nature of two-
mode squeezed states — The common feature of mea-

Figure 1. Bounds on the effective size Neff (blue squares) of
two-mode squeezed states obtained from experimental data
reported in Refs. [8–13] using inequality (10). The red trian-
gles indicate the minimal photon number N necessary for a
cat state |↵i+ |�↵i to have the same effective size according
to Eq. (9). For example, the state reported in Ref. [8] has a
size Neff � 1.2 for which one needs at least a cat state with
N ⇡ 0.2 for the same size.

sures for macroscopicity presented before is the require-
ment to reveal narrow variances, especially when deal-
ing with large size states. How hard is it in practice?
To answer this question, we consider the effect of vari-
ous experimental imperfections on the observed variance
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which decays expo-
nentially with the squeezing parameter (in the limit of
large enough g).

In each case, we clearly see that it becomes harder
and harder to observe narrow variances with two-mode
squeezed states as their size increases. This is in
agreement with recent results [41, 42] stating that it is
difficult to observe the quantum nature of macroscopic
states. This naturally raises the question of the size
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instead to use a similar account that has been success-
fully applied in the spin case [1, 22, 24]. The idea is that
the effective size of a product state is the average value
of its components, while entangled states should be able
to profit from quantum correlations between the modes.
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be determined by witnessing a large variance for sums
of quadrature operators. However, for mixed states, a
large variance is not sufficient. Instead, one has to ver-
ify a large value of a convex function like the QFI. Since
this quantity is typically only accessibly through a full
state tomography, one has to find other means to esti-
mate it. Recently, a general lower bound on the QFI
has been found [38]. It was shown that for any quan-
tum state ⇢ and any pair of operators A,B, it holds that
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, which is a tighter version of
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between ¯X
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therefore to a potentially large value of N

e↵

.
Note that Eq. (10) [as well as Eq. (8)] resembles very

much the ideas of Refs. [25, 40] for a generalized notion
of macroscopic quantum coherences. However, we use
these expressions only to bound quantitative measures.
These measures are general enough to compare two-
mode squeezed states with other states like cat states.

On the difficulty to certify the quantum nature of two-
mode squeezed states — The common feature of mea-

Figure 1. Bounds on the effective size Neff (blue squares) of
two-mode squeezed states obtained from experimental data
reported in Refs. [8–13] using inequality (10). The red trian-
gles indicate the minimal photon number N necessary for a
cat state |↵i+ |�↵i to have the same effective size according
to Eq. (9). For example, the state reported in Ref. [8] has a
size Neff � 1.2 for which one needs at least a cat state with
N ⇡ 0.2 for the same size.

sures for macroscopicity presented before is the require-
ment to reveal narrow variances, especially when deal-
ing with large size states. How hard is it in practice?
To answer this question, we consider the effect of vari-
ous experimental imperfections on the observed variance
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which decays expo-
nentially with the squeezing parameter (in the limit of
large enough g).

In each case, we clearly see that it becomes harder
and harder to observe narrow variances with two-mode
squeezed states as their size increases. This is in
agreement with recent results [41, 42] stating that it is
difficult to observe the quantum nature of macroscopic
states. This naturally raises the question of the size
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measurement [53,54]. In the limit where the write (ampli-
fying) and readout (cooling) pulses are shorter than the
mechanical decoherence time, and for a small enough
initial phonon occupancy (n̄0 ≪ 1), the twofold coin-
cidence probability vanishes (gð2Þ → 0) [Fig. 1(d)],
demonstrating the heralded creation of a single-phonon
Fock state and its successful up-conversion into a single
cavity photon.
Principle.—We consider the optical and mechanical

modes (represented by bosonic annihilation operators â
and b̂, respectively) of an optomechanical cavity driven by
a laser on the lower or upper mechanical sideband,
corresponding to the angular frequencies ω# ¼ ωc # Ωm
[Fig. 1(b)]. The Hamiltonian is a sum of three terms,
Ĥ ¼ Ĥ0 þ ĤOM þ Ĥdr#, describing the uncoupled sys-
tems, Ĥ0 ¼ ℏωcâ†âþ ℏΩmb̂

†b̂, the optomechanical
interaction, ĤOM¼−ℏg0â†âðb̂†þb̂Þ, and the laser
driving, Ĥdr# ¼ ℏðs&#eiω#tâþ s#e−iω#tâ†Þ, where js#j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κP#=ℏω#

p
is the incoming photon flux for a laser power

P#. As detailed in Ref. [55], after switching to the
interaction picture with respect to Ĥ0 and taking the
weak-coupling (g0 ≪ κ) and resolved-sideband (κ ≪ Ωm)
limits, we obtain the linearized Langevin equations during
the write (amplification) pulse,

dâ
dt

¼ i
ℏ
½ĤBSB; â( −

κ
2
âþ

ffiffiffi
κ

p
âin; (1a)

db̂
dt

¼ i
ℏ
½ĤBSB; b̂( −

γ
2
b̂þ ffiffiffi

γ
p

b̂in; (1b)

(where BSB is blue sideband) with γ the energy decay rate
of the mechanical oscillator. ĤBSB ¼ −ℏgþâ†b̂† þ H:c: is a
parametric gain interaction and leads to the generation of
photon-phonon pairs [Fig. 1(c)]. Here, gþ ¼ g0

ffiffiffiffiffiffi
n̄w

p
is the

effective optomechanical coupling rate enhanced by
the intracavity photon number n̄w ¼ jð−isþÞ=ð−iΩm þ
κ=2Þj2 ¼ κPþ=½ℏωcðΩ2

m þ κ2=4Þ( at the laser frequency.
For simplicity, we consider the optical cavity to be over-
coupled, i.e., the total cavity decay rate is dominated by the
external in- or out-coupling rate κext, so that κ ≃ κext. The
operator âin represents the vacuum noise entering the
optical cavity, and b̂in is the thermal noise from a phonon
bath at temperature Tbath and mean occupancy n̄th ≈
ðkBTbath=ℏΩmÞ. The oscillator initial thermal occupancy
n̄0 can be significantly smaller than n̄th if the readout laser
is also used for sideband cooling (see Sec. III in the
Supplemental Material [55]) [8,11].
In a first simplified treatment, we neglect the decay of the

mechanical oscillator, which is a valid approximation if the
pulse sequence is shorter than the thermal decoherence time
ðγn̄thÞ−1. Since in our scheme gþ ≪ κ, we can adiabatically
eliminate the cavity mode in Eqs. (1a) and (1b), âwðtÞ≃
ð2=κÞðigþb̂†w þ

ffiffiffi
κ

p
âw;inÞ. Using the input-output relations

[56] âw;out ¼ −âw;in þ
ffiffiffi
κ

p
âw (the subscript w refers to the

operators during the write pulse), we obtain the coupled
optomechanical equations

âw;out ¼ âw;in þ i
ffiffiffiffiffiffiffiffi
2~gw

p
b̂†w; (2a)

db̂w
dt

¼ ~gwb̂w þ i
ffiffiffiffiffiffiffiffi
2~gw

p
â†w;in; (2b)

where ~gw ≡ ð2g2þ=κÞ. Introducing the temporal modes
[57] for the cavity driven by a write pulse of
duration Tw, Âw;inðoutÞðTwÞ ¼ ½ð#2~gwÞ=ð1 − e∓2~gwTwÞ(−1=2×R Tw
0 e∓~gwtâinðoutÞðtÞdt, we can write the solutions of
Eqs. (2a) and (2b) as U†Aw;inU and U†bwð0ÞU, where
the propagator U is given by [55]

(a)

(c) (e)

(d)

(b)

FIG. 1 (color online). (a) Schematics of the optomechanical
system pumped at the upper and lower motional sidebands and of
the correlation measurement on the filtered cavity photons.
(b) Representation of the relevant mechanical and optical
frequencies and linewidths. (c) Resonant transitions during the
write and readout pulses. For a given cavity photon number na,
the Fock states of the mechanical oscillator form a harmonic
ladder. Emission at ωc is enhanced by the cavity, which allows us
to selectively address the Stokes (S) [anti-Stokes (AS)] transitions
between phonon states when driving the upper (lower) mechani-
cal sideband. (d) Pulse sequence (cooling step not shown).
Detection of a Stokes photon within the write pulse duration
Tw is the heralding event. After a storage time Toff , coincidences
between anti-Stokes photons emitted at time tr and tr þ τ are
measured. We define tr ¼ 0 at the beginning of the readout pulse.
(e) Conditional two-photon coincidence as a function of the
initial mechanical occupancy n̄0 (log scale) for different values
of the product ~gwTw, under the assumption of negligible
mechanical damping [Tw ≪ ðγn̄thÞ−1 and Toff ¼ 0]. Open
squares: only single-photon emission events are postselected;
see Eq. (5). Solid lines: including the contribution from multiple
photon emission.
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Proposal of a test bench for unconventional decoherence
property [27,28] and has the advantage of being easily
prepared, see Fig. 1. It can be written as

1ffiffiffi
2

p ðDðβÞjþiAj−iB −DðβÞj−iAjþiBÞ; (1)

where j$i ¼ 2−ð1=2Þðj0i$ j1iÞ, j0i being the vacuum, and
j1i the single photon Fock state [29]. DðβÞ ¼ eβa

†−β⋆a
stands for the displacement operator and can be imple-
mented using an unbalanced beam splitter and a coherent
state [30]. Although the photon number distributions for
DðβÞjþiA and DðβÞj−iA partially overlap (their variance is
given by β2 þ ð1=4Þ), their mean photon numbers β2 $
β þ ð1=2Þ are separated by 2β [27]. (Here β is considered
real, as throughout Letter). In other words, their distance in
the photon number space is of the order of the square root
of their size. This makes the state (1) macroscopic in the
sense that its components can be distinguished without a
microscopic resolution [28].
Consider first the case where jniA photons interact

with the mechanical mode initially prepared in its
motional ground state j0iM. According to Ref. [19],
they induce a coherent displacement of the mechanical
state whose amplitude varies periodically in time
eiðg

2
0n

2=ω2
mÞðωmt−sinðωmtÞÞjðg0n=ωmÞð1 − e−iωmtÞiM jniA. The

first exponential term corresponds to the variation of the
cavity length and is quadratic in the photon number because
the mean position of the mechanical oscillator depends on
the photon number. To avoid this nonlinear behavior, we
consider the pulsed regime where the interaction time τ is
much smaller than the mechanical period [sinðωmτÞ ∼ ωmτ,
cf. below for the detailed conditions]. Right after this
interaction, the propagator has the simple form
eig0τa

†aðmþm†Þ and after a free evolution of duration t, the
overall propagator can be written as UðtÞ ¼
eig0τa

†aðeiωmtmþe−iωmtm†Þe−iωmtm†m. An initial state j0iMjniA
now evolves towards jnαðtÞiMjniA where jnαðtÞiM is a
coherent state with a fixed amplitude and a periodic phase
nαðtÞ ¼ −ig0nτe−iωmt. In other words, the n photons kick
the mechanical mode that gets an additional momentum
2g0nτp0 at time t ¼ 0 (p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏMωm=2

p
is the initial

mechanical momentum spread). The mechanical state then
starts to rotate in phase space. It reaches a minimal position
−2g0nτx0 after π=2ωm, then gets a momentum −2g0nτp0

after π=ωm and so on.
Let us now come back to the initial state (1). The pulse in

A enters the optomechanical cavity, the mechanical mode

being in j0iM, as before. A time t after the interaction, the
state of the system is

1ffiffiffi
2

p
"X

k

aðþÞ
β ðkÞjkiAjkαðtÞiMj−iB

−
X

k

að−Þβ ðkÞjkiAjkαðtÞiMjþiB
#
; (2)

where að$Þ
β ðkÞ¼ð1=

ffiffiffi
2

p
Þe−ðβ2=2Þðβk=

ffiffiffiffi
k!

p
Þð1$ððk=βÞ−βÞÞ

are the probability amplitudes for having k photons in
DðβÞj$iA. Since

P
kða

ðþÞ
β ðkÞÞ⋆að−Þβ ðkÞ ¼ 0, the mechani-

cal mode entangles with the optical modes. Specifically,
after π=2ωm, the state (2) involves two mechanical states
ρð$Þ
M ¼

P
kja

ð$Þ
β ðkÞj2j−g0τkiMh−g0τkj, each having a vari-

ance ð1þ g20τ
2ð1þ 4β2ÞÞx20 in space and for which the

mean position is separated by 4g0τβx0 (see Fig. 2). These
two mechanical states can thus be distinguished with a
detector having a resolution δx ∼ 2g0τβx0, see below. For
g0τβ ≥ 1, such a detector cannot resolve two phononic
Fock states with n and nþ 1 excitations (no microscopic
resolution) and the entangled state (2) can fairly be defined
as being macroscopic.
Macroscopic correlations.—We now show how to dem-

onstrate that the mechanical mode involves macroscopi-
cally distinct states ρð$Þ

M . More precisely, we show that B
and M are correlated, i.e., when the state of B is projected
into j−i (jþi), the mechanical mode is found in ρðþÞ

M [ρð−ÞM ]
a quarter of a mechanical period after the interaction, (cf.
Fig. 3) and that these correlations can be revealed without
the need for a microscopic resolution. This is done by
tracing out A, and by measuring the X̄ ¼ 2−1=2ðb† þ bÞ
quadrature of B and the mirror position. The latter can be
realized following Ref. [24], by observing through a

FIG. 1. A single photon is sent through a beam splitter and
creates an entangled state between the two output modes A and B:
A then undergoes a displacement and couples to a mechanical
system by momentum transfer in the pulsed regime.

FIG. 2 (color online). Trajectory of the mechanical state in the
phase space. (I) The mirror first gets a momentum proportional to
the mean photon number. The superposition of two mechanical
states (corresponding to the two ovals) result from the interaction
with a superposition of DðβÞj−iA and DðβÞjþiA. (II) After a
quarter of a period, the positions of the two superposed states are
maximally distinct and are correlated with the X̄ quadrature of the
mode B. (III) By measuring the position after a multiple of a half
period, the information about the number of photons in A
(contained in the mirror) is erased, which enables us to observe
the entanglement between A and B.
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The interference pattern 
allows one to «see» the 
mirror decoherence

quadrature measurement the phase acquired by a strong,
short light pulse reflected by the mechanical oscillator. We
attribute the value þ1 (−1) to a positive (negative) result of
the quadrature measurement on B andþ1 (−1) if the mirror
is found to be shifted more to the left (right) with respect
to its mean position −g0τx0ð1þ 2β2Þ. For an uncertainty
δx on the measurement of the mirror position, the
probability P$E$ for having the same results {$1, $1}
is given by ð1=4Þ þ ðg0τβ=2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g20τ

2β2 þ δx2=ð4x20Þ
p

Þ
(for β ≫ 1) while the probability for having different
results P$E∓ ¼ ð1=2Þ − P$E$ . Therefore, the correlations
between the outcomes (the probability for having
correlated results minus the probability for having
anticorrelated results) are given by ð2=πÞðg0τβ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g20τ

2β2 þ δx2=ð4x20Þ
p

Þ. In the regime of interest
g0τβ ≥ 1, even a coarse grained measurement with the
resolution δx ¼ 2g0τβx0 leads to substantial correlations
∼0.45. This is a consequence of the macroscopic character-
istic of the optomechanical state (2).
Testing unconventional decoherence models.—Figure 4

shows how to probe the effect of mirror decoherence. First,
the mechanical position is measured at any time that is a
multiple of half a mechanical period where no information
is obtained about the state of A. Finding the mirror at the
position y projects the overall state into
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Actively controlling the relative length of paths A and B
to get rid of the undesired phase term ei

ffiffi
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p
g0τky and

subsequently applying Dð−βÞ leaves the optomechanical
state in ð1=

ffiffiffi
2

p
Þðj1iAj0iB − j0iAj1iBÞjyiM. The modes A

and B can then be combined on a beam splitter and varying
their relative phase leads to interference fringes, ideally
with a unit visibility (V). (Note here that from the values
of the probabilities pmn of detecting m ∈ f0; 1g photons in
A and n ∈ f0; 1g in B, a lower bound on the negativity
between A and B can be obtained N AB ≥
ð1=2Þð
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ðp00 − p11Þ2 þ ðVðp01 þ p10ÞÞ2

p − ðp00 þ p11ÞÞ
through the approach presented in Ref. [31].) Decoherence
of the mirror operates as a weak measurement of the photon
number on A (see the Supplemental Material [32]).
Therefore, if the measurement of the mechanical position
is delayed, more and more “which path” information is
revealed, which decreases the visibility as the delay time
increases. In particular, we compare conventional (envi-
ronmentally induced) decoherence with unconventional
decoherence proposed by gravitationally induced collapse
[4,5] and by quantum gravity [33] (see the Supplemental
Material [32]). For sufficiently large β, i.e., macroscopic
entanglement, and small thermal dissipation we find an
experimentally feasible parameter regime, in which the
unconventional decoherence rates surpass the conventional
ones, hence opening up the possibility for experimental
tests (see below). Finally, note that the observed visibility is
degraded if the mirror position is not accurately measured.
A small imprecision δx would indeed introduce an addi-
tional phase on A that prevents its redisplacement to the
single photon level and degrades the quality of the
interference between A and B [27,34]. Quantitatively,

V ≈ 1 − 3

2
δϕ4β4 þ oðδϕ4β4Þ; (4)

where δϕ ¼ ðδx=x0Þð2ðδx=x0Þ2 þ 1Þ−ð1=2Þ
ffiffiffi
2

p
g0τ. A high

accuracy δx≲ ðx0=ðg0τβÞ2Þ is thus required to observe
high visibility and to see the effect of mirror decoherence.
Witnessing optomechanical entanglement.—We can

prove that the mirror is entangled with the optical modes
from an entanglement witness that uses the values of {P$E$ ,
P$E∓} andN AB only (see the Supplemental Material [32]).
The witness is based on the following intuitive argument:
sinceB is a qubit, the onlyway forM to be correlated toB and
for B to be entangled with the joint system AM is thatM is
entangled with AB: Concretely, we can conclude about
optomechanical entanglement if N AB >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PþEþP−Eþ

p
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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. We emphasize that in contrast to the correla-
tion measurement, the detection of entanglement N AB
requires a measurement of the mirror position with a very
high accuracy (through V). We are retrieving what seems to
be the essence of macroentangled states: although they
involve components that can easily be distinguishedwithout
microscopic resolution, one needs detectors with a very high
precision to reveal their quantum nature [28,35].
Experimental feasibility.—We now address the question

of the experimental feasibility in detail. First, we require

FIG. 3. Setup for checking that the result of the homodyne
measurement on B is correlated with the position ofM even if the
position measurement does not have a microscopic resolution.

FIG. 4. Setup for probing the effect of decoherence on the
interference between A and B obtained after erasing the which
path information gained by the mirror. A feedback loop is needed
to control the path length of A (relative to B) depending on the
result of the measurement of the mirror position.
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property [27,28] and has the advantage of being easily
prepared, see Fig. 1. It can be written as

1ffiffiffi
2

p ðDðβÞjþiAj−iB −DðβÞj−iAjþiBÞ; (1)

where j$i ¼ 2−ð1=2Þðj0i$ j1iÞ, j0i being the vacuum, and
j1i the single photon Fock state [29]. DðβÞ ¼ eβa

†−β⋆a
stands for the displacement operator and can be imple-
mented using an unbalanced beam splitter and a coherent
state [30]. Although the photon number distributions for
DðβÞjþiA and DðβÞj−iA partially overlap (their variance is
given by β2 þ ð1=4Þ), their mean photon numbers β2 $
β þ ð1=2Þ are separated by 2β [27]. (Here β is considered
real, as throughout Letter). In other words, their distance in
the photon number space is of the order of the square root
of their size. This makes the state (1) macroscopic in the
sense that its components can be distinguished without a
microscopic resolution [28].
Consider first the case where jniA photons interact

with the mechanical mode initially prepared in its
motional ground state j0iM. According to Ref. [19],
they induce a coherent displacement of the mechanical
state whose amplitude varies periodically in time
eiðg

2
0n

2=ω2
mÞðωmt−sinðωmtÞÞjðg0n=ωmÞð1 − e−iωmtÞiM jniA. The

first exponential term corresponds to the variation of the
cavity length and is quadratic in the photon number because
the mean position of the mechanical oscillator depends on
the photon number. To avoid this nonlinear behavior, we
consider the pulsed regime where the interaction time τ is
much smaller than the mechanical period [sinðωmτÞ ∼ ωmτ,
cf. below for the detailed conditions]. Right after this
interaction, the propagator has the simple form
eig0τa

†aðmþm†Þ and after a free evolution of duration t, the
overall propagator can be written as UðtÞ ¼
eig0τa

†aðeiωmtmþe−iωmtm†Þe−iωmtm†m. An initial state j0iMjniA
now evolves towards jnαðtÞiMjniA where jnαðtÞiM is a
coherent state with a fixed amplitude and a periodic phase
nαðtÞ ¼ −ig0nτe−iωmt. In other words, the n photons kick
the mechanical mode that gets an additional momentum
2g0nτp0 at time t ¼ 0 (p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏMωm=2

p
is the initial

mechanical momentum spread). The mechanical state then
starts to rotate in phase space. It reaches a minimal position
−2g0nτx0 after π=2ωm, then gets a momentum −2g0nτp0

after π=ωm and so on.
Let us now come back to the initial state (1). The pulse in

A enters the optomechanical cavity, the mechanical mode

being in j0iM, as before. A time t after the interaction, the
state of the system is
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are the probability amplitudes for having k photons in
DðβÞj$iA. Since

P
kða

ðþÞ
β ðkÞÞ⋆að−Þβ ðkÞ ¼ 0, the mechani-

cal mode entangles with the optical modes. Specifically,
after π=2ωm, the state (2) involves two mechanical states
ρð$Þ
M ¼

P
kja

ð$Þ
β ðkÞj2j−g0τkiMh−g0τkj, each having a vari-

ance ð1þ g20τ
2ð1þ 4β2ÞÞx20 in space and for which the

mean position is separated by 4g0τβx0 (see Fig. 2). These
two mechanical states can thus be distinguished with a
detector having a resolution δx ∼ 2g0τβx0, see below. For
g0τβ ≥ 1, such a detector cannot resolve two phononic
Fock states with n and nþ 1 excitations (no microscopic
resolution) and the entangled state (2) can fairly be defined
as being macroscopic.
Macroscopic correlations.—We now show how to dem-

onstrate that the mechanical mode involves macroscopi-
cally distinct states ρð$Þ

M . More precisely, we show that B
and M are correlated, i.e., when the state of B is projected
into j−i (jþi), the mechanical mode is found in ρðþÞ

M [ρð−ÞM ]
a quarter of a mechanical period after the interaction, (cf.
Fig. 3) and that these correlations can be revealed without
the need for a microscopic resolution. This is done by
tracing out A, and by measuring the X̄ ¼ 2−1=2ðb† þ bÞ
quadrature of B and the mirror position. The latter can be
realized following Ref. [24], by observing through a

FIG. 1. A single photon is sent through a beam splitter and
creates an entangled state between the two output modes A and B:
A then undergoes a displacement and couples to a mechanical
system by momentum transfer in the pulsed regime.

FIG. 2 (color online). Trajectory of the mechanical state in the
phase space. (I) The mirror first gets a momentum proportional to
the mean photon number. The superposition of two mechanical
states (corresponding to the two ovals) result from the interaction
with a superposition of DðβÞj−iA and DðβÞjþiA. (II) After a
quarter of a period, the positions of the two superposed states are
maximally distinct and are correlated with the X̄ quadrature of the
mode B. (III) By measuring the position after a multiple of a half
period, the information about the number of photons in A
(contained in the mirror) is erased, which enables us to observe
the entanglement between A and B.
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property [27,28] and has the advantage of being easily
prepared, see Fig. 1. It can be written as
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p ðDðβÞjþiAj−iB −DðβÞj−iAjþiBÞ; (1)

where j$i ¼ 2−ð1=2Þðj0i$ j1iÞ, j0i being the vacuum, and
j1i the single photon Fock state [29]. DðβÞ ¼ eβa

†−β⋆a
stands for the displacement operator and can be imple-
mented using an unbalanced beam splitter and a coherent
state [30]. Although the photon number distributions for
DðβÞjþiA and DðβÞj−iA partially overlap (their variance is
given by β2 þ ð1=4Þ), their mean photon numbers β2 $
β þ ð1=2Þ are separated by 2β [27]. (Here β is considered
real, as throughout Letter). In other words, their distance in
the photon number space is of the order of the square root
of their size. This makes the state (1) macroscopic in the
sense that its components can be distinguished without a
microscopic resolution [28].
Consider first the case where jniA photons interact

with the mechanical mode initially prepared in its
motional ground state j0iM. According to Ref. [19],
they induce a coherent displacement of the mechanical
state whose amplitude varies periodically in time
eiðg
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first exponential term corresponds to the variation of the
cavity length and is quadratic in the photon number because
the mean position of the mechanical oscillator depends on
the photon number. To avoid this nonlinear behavior, we
consider the pulsed regime where the interaction time τ is
much smaller than the mechanical period [sinðωmτÞ ∼ ωmτ,
cf. below for the detailed conditions]. Right after this
interaction, the propagator has the simple form
eig0τa

†aðmþm†Þ and after a free evolution of duration t, the
overall propagator can be written as UðtÞ ¼
eig0τa

†aðeiωmtmþe−iωmtm†Þe−iωmtm†m. An initial state j0iMjniA
now evolves towards jnαðtÞiMjniA where jnαðtÞiM is a
coherent state with a fixed amplitude and a periodic phase
nαðtÞ ¼ −ig0nτe−iωmt. In other words, the n photons kick
the mechanical mode that gets an additional momentum
2g0nτp0 at time t ¼ 0 (p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏMωm=2
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is the initial

mechanical momentum spread). The mechanical state then
starts to rotate in phase space. It reaches a minimal position
−2g0nτx0 after π=2ωm, then gets a momentum −2g0nτp0

after π=ωm and so on.
Let us now come back to the initial state (1). The pulse in

A enters the optomechanical cavity, the mechanical mode

being in j0iM, as before. A time t after the interaction, the
state of the system is
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are the probability amplitudes for having k photons in
DðβÞj$iA. Since

P
kða

ðþÞ
β ðkÞÞ⋆að−Þβ ðkÞ ¼ 0, the mechani-

cal mode entangles with the optical modes. Specifically,
after π=2ωm, the state (2) involves two mechanical states
ρð$Þ
M ¼

P
kja

ð$Þ
β ðkÞj2j−g0τkiMh−g0τkj, each having a vari-

ance ð1þ g20τ
2ð1þ 4β2ÞÞx20 in space and for which the

mean position is separated by 4g0τβx0 (see Fig. 2). These
two mechanical states can thus be distinguished with a
detector having a resolution δx ∼ 2g0τβx0, see below. For
g0τβ ≥ 1, such a detector cannot resolve two phononic
Fock states with n and nþ 1 excitations (no microscopic
resolution) and the entangled state (2) can fairly be defined
as being macroscopic.
Macroscopic correlations.—We now show how to dem-

onstrate that the mechanical mode involves macroscopi-
cally distinct states ρð$Þ

M . More precisely, we show that B
and M are correlated, i.e., when the state of B is projected
into j−i (jþi), the mechanical mode is found in ρðþÞ

M [ρð−ÞM ]
a quarter of a mechanical period after the interaction, (cf.
Fig. 3) and that these correlations can be revealed without
the need for a microscopic resolution. This is done by
tracing out A, and by measuring the X̄ ¼ 2−1=2ðb† þ bÞ
quadrature of B and the mirror position. The latter can be
realized following Ref. [24], by observing through a

FIG. 1. A single photon is sent through a beam splitter and
creates an entangled state between the two output modes A and B:
A then undergoes a displacement and couples to a mechanical
system by momentum transfer in the pulsed regime.

FIG. 2 (color online). Trajectory of the mechanical state in the
phase space. (I) The mirror first gets a momentum proportional to
the mean photon number. The superposition of two mechanical
states (corresponding to the two ovals) result from the interaction
with a superposition of DðβÞj−iA and DðβÞjþiA. (II) After a
quarter of a period, the positions of the two superposed states are
maximally distinct and are correlated with the X̄ quadrature of the
mode B. (III) By measuring the position after a multiple of a half
period, the information about the number of photons in A
(contained in the mirror) is erased, which enables us to observe
the entanglement between A and B.
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property [27,28] and has the advantage of being easily
prepared, see Fig. 1. It can be written as
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p ðDðβÞjþiAj−iB −DðβÞj−iAjþiBÞ; (1)

where j$i ¼ 2−ð1=2Þðj0i$ j1iÞ, j0i being the vacuum, and
j1i the single photon Fock state [29]. DðβÞ ¼ eβa

†−β⋆a
stands for the displacement operator and can be imple-
mented using an unbalanced beam splitter and a coherent
state [30]. Although the photon number distributions for
DðβÞjþiA and DðβÞj−iA partially overlap (their variance is
given by β2 þ ð1=4Þ), their mean photon numbers β2 $
β þ ð1=2Þ are separated by 2β [27]. (Here β is considered
real, as throughout Letter). In other words, their distance in
the photon number space is of the order of the square root
of their size. This makes the state (1) macroscopic in the
sense that its components can be distinguished without a
microscopic resolution [28].
Consider first the case where jniA photons interact

with the mechanical mode initially prepared in its
motional ground state j0iM. According to Ref. [19],
they induce a coherent displacement of the mechanical
state whose amplitude varies periodically in time
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first exponential term corresponds to the variation of the
cavity length and is quadratic in the photon number because
the mean position of the mechanical oscillator depends on
the photon number. To avoid this nonlinear behavior, we
consider the pulsed regime where the interaction time τ is
much smaller than the mechanical period [sinðωmτÞ ∼ ωmτ,
cf. below for the detailed conditions]. Right after this
interaction, the propagator has the simple form
eig0τa

†aðmþm†Þ and after a free evolution of duration t, the
overall propagator can be written as UðtÞ ¼
eig0τa

†aðeiωmtmþe−iωmtm†Þe−iωmtm†m. An initial state j0iMjniA
now evolves towards jnαðtÞiMjniA where jnαðtÞiM is a
coherent state with a fixed amplitude and a periodic phase
nαðtÞ ¼ −ig0nτe−iωmt. In other words, the n photons kick
the mechanical mode that gets an additional momentum
2g0nτp0 at time t ¼ 0 (p0 ¼
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mechanical momentum spread). The mechanical state then
starts to rotate in phase space. It reaches a minimal position
−2g0nτx0 after π=2ωm, then gets a momentum −2g0nτp0

after π=ωm and so on.
Let us now come back to the initial state (1). The pulse in

A enters the optomechanical cavity, the mechanical mode

being in j0iM, as before. A time t after the interaction, the
state of the system is
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are the probability amplitudes for having k photons in
DðβÞj$iA. Since
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cal mode entangles with the optical modes. Specifically,
after π=2ωm, the state (2) involves two mechanical states
ρð$Þ
M ¼
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β ðkÞj2j−g0τkiMh−g0τkj, each having a vari-

ance ð1þ g20τ
2ð1þ 4β2ÞÞx20 in space and for which the

mean position is separated by 4g0τβx0 (see Fig. 2). These
two mechanical states can thus be distinguished with a
detector having a resolution δx ∼ 2g0τβx0, see below. For
g0τβ ≥ 1, such a detector cannot resolve two phononic
Fock states with n and nþ 1 excitations (no microscopic
resolution) and the entangled state (2) can fairly be defined
as being macroscopic.
Macroscopic correlations.—We now show how to dem-

onstrate that the mechanical mode involves macroscopi-
cally distinct states ρð$Þ

M . More precisely, we show that B
and M are correlated, i.e., when the state of B is projected
into j−i (jþi), the mechanical mode is found in ρðþÞ

M [ρð−ÞM ]
a quarter of a mechanical period after the interaction, (cf.
Fig. 3) and that these correlations can be revealed without
the need for a microscopic resolution. This is done by
tracing out A, and by measuring the X̄ ¼ 2−1=2ðb† þ bÞ
quadrature of B and the mirror position. The latter can be
realized following Ref. [24], by observing through a

FIG. 1. A single photon is sent through a beam splitter and
creates an entangled state between the two output modes A and B:
A then undergoes a displacement and couples to a mechanical
system by momentum transfer in the pulsed regime.

FIG. 2 (color online). Trajectory of the mechanical state in the
phase space. (I) The mirror first gets a momentum proportional to
the mean photon number. The superposition of two mechanical
states (corresponding to the two ovals) result from the interaction
with a superposition of DðβÞj−iA and DðβÞjþiA. (II) After a
quarter of a period, the positions of the two superposed states are
maximally distinct and are correlated with the X̄ quadrature of the
mode B. (III) By measuring the position after a multiple of a half
period, the information about the number of photons in A
(contained in the mirror) is erased, which enables us to observe
the entanglement between A and B.
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test bench for post-quantum theories 
+ even in the weak optomechanical coupling regime 
+ even if the mechanical device is NOT prepared in its motional 
ground state



Conclusion
Macro measure based on the distinguishability  
with a coarse-grained detector

Realization of a micro-macro entangled state 

The quantum features of such states are very hard to observe  
decoherence + measurement precision 

Potential useful to test post-quantum theories with an explicit collapse 
model

Extension to CV states


