Macroscopic Entanglement

Nicolas Sangouard

Universität Basel, Physik Departement, Schweiz www.qotg.physik.unibas.ch

Olomouc, March 2015

The quantum world is weird...

Do quantum properties hold at any scale?

Macroscopic quantum effects ?

Microscopic quantum effect only!

A.J. Leggett Prog. Theor. Phys. Supplement 69, 80 (1980)

Why don't we observe quantum effects at macro scales ?

Decoherence Nothing else?

What is a macroscopic quantum state ?

Quantum : e.g. Entanglement

Macro : e.g. mass ?

I. Usmani et al. Nature Bhotonics 6,234 (2012) (Collaboration With the N. Gisih traut))

What is a macroscopic quantum state?

Quantum : e.g. Entanglement

Macro : e.g. Number of particles ?

T.S. Iskhakov et al. PRL 109, 150502 (2012)

Example: entanglement involving 100 000 photons

$\left[\frac{1}{\sqrt{2}}(|0_A 1_B\rangle - |1_A 0_B\rangle)\right]^{\otimes 100000}$

Many copies of a micro state

$$\Phi_0 + \Phi_1$$
 macro ?

1_ Sensitive to decoherence mechanisms

W. Dur, C. Simon, and J.I. Cirac, Phys. Rev. Lett. 89, 210402 (2002)

$$\Phi_0 + \Phi_1$$
 macro ?

1 Sensitive to decoherence mechanisms

W. Dur, C. Simon, and J.I. Cirac, Phys. Rev. Lett. 89, 210402 (2002)

2_ $\Phi_0 + \Phi_1$ significant advantage for interferometric applications over Φ_0 and Φ_1 G. Bjork and P. Mana, J. of Opt. B 6, 429 (2004)

$$\Phi_0 + \Phi_1$$
 macro ?

1 Sensitive to decoherence mechanisms

W. Dur, C. Simon, and J.I. Cirac, Phys. Rev. Lett. 89, 210402 (2002)

2_ $\Phi_0 + \Phi_1$ significant advantage for interferometric applications over Φ_0 and Φ_1 G. Bjork and P. Mana, J. of Opt. B 6, 429 (2004)

3_ Local distinguishability between Φ_0 and Φ_1

J.I. Korsbakken et al., Phys. Rev. A 75, 042106 (2007)

$$\Phi_0 + \Phi_1$$
 macro ?

1 Sensitive to decoherence mechanisms

W. Dur, C. Simon, and J.I. Cirac, Phys. Rev. Lett. 89, 210402 (2002)

2_ $\Phi_0 + \Phi_1$ significant advantage for interferometric applications over Φ_0 and Φ_1 G. Bjork and P. Mana, J. of Opt. B 6, 429 (2004)

3_ Local distinguishability between Φ_0 and Φ_1

J.I. Korsbakken et al., Phys. Rev. A 75, 042106 (2007)

4_ Large number of one particle operators to go from Φ_0 to Φ_1 F. Marquardt et al., Phys. Rev. A 78, 012109 (2008)

based on the distinguishability with a coarse-grained detector

$$\Phi_0 + \Phi_1$$
 macro ?

Intuition : Φ_0 and Φ_1 can be distinguished with a detector having no microscopic resolution

Consider a general detector model : A pointer sifted by a value corresponding to the photon number

P. Sekatski, N. Sangouard and N. Gisin Phys. Rev. A 89,012116 (2014)

based on the distinguishability with a coarse-grained detector

$$\Phi_0 + \Phi_1$$
 macro ?

Intuition : Φ_0 and Φ_1 can be distinguished with a detector having no microscopic resolution

Consider a general detector model : A pointer sifted by a value corresponding to the photon number

based on the distinguishability with a coarse-grained detector

$$\Phi_0 + \Phi_1$$
 macro ?

Intuition : Φ_0 and Φ_1 can be distinguished with a detector having no microscopic resolution

Consider a general detector model : A pointer sifted by a value corresponding to the photon number

P. Sekatski, N. Sangouard and N. Gisin Phys. Rev.A 89,012116 (2014)

Pointer has a no-zero σ spread \rightarrow Coarse-grained measurement

based on the distinguishability with a coarse-grained detector

$$\Phi_0 + \Phi_1$$
 macro ?

Intuition : Φ_0 and Φ_1 can be distinguished with a detector having no microscopic resolution

Consider a general detector model : A pointer sifted by a value corresponding to the photon number

Pointer has a no-zero σ spread \rightarrow Coarse-grained measurement

Bob

photons is the same than

 $|0\rangle_A|\uparrow\rangle_B+|N\approx 38\rangle_A|\downarrow\rangle_B$

Example a macroscopic quantum state

with respect to the macro measure based on coarse-graining

Entanglement between
$$|\psi\rangle = -\frac{1}{\sqrt{2}}$$

two spatial modes

$$\frac{1}{\sqrt{2}}(|0_A 1_B\rangle - |1_A 0_B\rangle)$$

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left[|1\rangle_A |0\rangle_B + |0\rangle_A |1\rangle\right]$$

 \rangle_B

Example a macroscopic quantum state

with respect to the macro measure based on coarse-graining

$|\uparrow\rangle|$ $\rangle + |\downarrow\rangle|$

Example a macroscopic quantum state

with respect to the macro measure based on coarse-graining

Displacement back to Micro-Micro entanglement before detection

Experimental setup for creating & detecting a displaced-single photon entangled state

MACRO entanglement SOURCES **MICRO** entanglement В APD pulsed 780 nm laser $\mathcal{D}_a(\alpha)$ PPLN A 50/50 PBS 90/10CW telecom laser * $|\overline{\alpha}\rangle$ **U-BENCH** PPLN 50/50DM

mental setup for creating & detecting a displaced-single photon entangled state

Experimental setup

for creating & detecting a displaced single-photon entangled state

Experimental setup

for creating & detecting a displaced single-photon entangled state

See also A. Lvovsky et al. Nature Physics 9, 543 (2013)

How hard is it to observe the quantumness of macro states?

Consider a phase noise channel $\zeta_{\Delta}(\rho) = \int d\varphi \ \bar{p}_{\Delta}(\varphi) e^{-i\varphi a^{\dagger}a} \rho e^{i\varphi a^{\dagger}a}$ with a Gaussian distribution of phase noise $\bar{p}_{\Delta}(\varphi)$ (standard deviation Δ)

It can be seen as a weak measurement of the photon number Pointer state $|E_0\rangle$ with a Gaussian shape $|\langle x|E_0\rangle|^2$ and spread Δ^{-1} Interaction $U = e^{i\hat{p}a^{\dagger}a}$ $\mathrm{tr}_E U\rho |E_0\rangle \langle E_0 | U^{\dagger} = \zeta_{\Delta}(\rho)$

The entangled states that are macro with respect to the coarse-grained measure are inevitably very sensitive to phase noise!

P. Sekatski, N. Gisin and N. Sangouard, Phys. Rev. Lett. 113, 090403 (2014)

How hard is it to observe the quantumness of macro states?

Consider a micro-macro entangled state

$$|\psi\rangle_{mM} = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_m |\phi_0\rangle_M - |\downarrow\rangle_m\right)$$

i.e. for which the components can be distinguished with a very coarse-grained detector 1

$$P_{\frac{1}{\Delta}}[\phi_0,\phi_1] \sim 1 \quad \text{even for} \quad \frac{1}{\Delta} \to +\infty$$

the entanglement remaining in $|\psi\rangle_{mM}$ after a tiny phase noise $\Delta \to 0$

$$\mathcal{N}\left(\zeta_{\Delta}\left(|\psi\rangle_{mM}\right)\right) \leq \sqrt{P_{\frac{1}{\Delta}}[\phi_{0},\phi_{1}]\left(1-P_{\frac{1}{\Delta}}[\phi_{0},\phi_{1}]\right)}\left(1-P_{\frac{1}{\Delta}}[\phi_{0},\phi_{1}]\right)$$

P. Sekatski, N. Gisin and N. Sangouard, Phys. Rev. Lett. 113, 090403 (2014)

$_{m}|\phi_{1}\rangle_{M})$

Two mode squeezed states as macro states? based on the distinguishability with a coarse-grained detector

Lagahaout et al. Opt. Comm. 96, 337 (2015) Sekatski et al., PRA 2014 E. Oudot et al. arXiv: 1410

Coarse grained Bob Х ?

Sekatski et al., PRA 2014

For any state, its size is bounded by $x_C = \frac{1}{\sqrt{V_{\psi_{\text{tms}}}(\bar{X}_1^{\frac{\pi}{2}} + \bar{X}_2^{\frac{\pi}{2}})}}$.

Hard to observe quantum features of macro states

 $V(\bar{X}_1^{\pi/2} + \bar{X}_2^{\pi/2}) \mapsto \eta V(\bar{X}_1^{\pi/2} + \bar{X}_2^{\pi/2}) + 1 - \eta$ loss

Sekatski et al., PRA 2014 E. Oudot, P. Sekatski, F. Frowis, N. Gisin and N. Sangouard arXiv:1410.8421

Coarse grained Bob 2

Two mode squeezed states as macro states? based on the distinguishability with a coarse-grained detector Projective Coarse grained Bob Alice X Two-mode +/squeezed state X_{1}^{0}

Hard to observe quantum features of macro states noise $\rho \mapsto \int d\lambda h(\lambda) e^{i\hat{X}_0\lambda} \rho e^{-i\hat{X}_0\lambda}$

 $V(\bar{X}_{1}^{\pi/2} + \bar{X}_{2}^{\pi/2}) \mapsto V(\bar{X}_{1}^{\pi/2} + \bar{X}_{2}^{\pi/2}) + \Delta^{2}h_{1} + \Delta^{2}h_{2} \qquad N_{\text{eff}} \leq \frac{1}{\sqrt{\Delta^{2}h_{1}} + A^{2}h_{2}}$ Sekatski et al., PRA 2014 Sekatski et al., PRA 2014

Sekatski et al., PRA 2014 E. Oudot, P. Sekatski, F. Frowis, N. Gisin and N. Sangouard arXiv:1410.8421

Two mode squeezed states as macro states? based on the distinguishability with a coarse-grained detector

Interestingly, the proposed bound allows one to compare the size of states obtained in various experiments

E. Oudot, P. Sekatski, F. Frowis, N. Gisin and N. Sangouard arXiv: 1410.8421

Testing explicit collapse models with macro states

Does a massive object in a superposition of two well distinct positions undergo intrinsic decoherence ? GRW model Diosi & Penrose model...

Tool : Optically controlled mechanical device

Movable mirror with a large mass

$$g_0 a^{\dagger} a \left(b + b^{\dagger} \right)$$

Interaction with an optical field in a superposition of well distinct states in photon number

P. Sekatski, M. Aspelmeyer and N. Sangouard, Phys. Rev. Lett. 112, 143602 (2014)

Proposal of a test bench for unconventional decoherence

test bench for post-quantum theories + even in the weak optomechanical coupling regime + even if the mechanical device is NOT prepared in its motional ground state

P. Sekatski, M. Aspelmeyer and N. Sangouard, Phys. Rev. Lett. 112, 143602 (2014)

Conclusion

Macro measure based on the distinguishability with a coarse-grained detector

Realization of a micro-macro entangled state

The quantum features of such states are very hard to observe decoherence + measurement precision

Potential useful to test post-quantum theories with an explicit collapse model

Extension to CV states