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Entanglement

• A bipartite separable state

̂𝜚 = 
𝑘
𝑝𝑘 ̂𝜚

(1)
𝑘 ⊗ ̂𝜚 (2)𝑘 , where 𝑝𝑘 ⩾ 0, 

𝑘
𝑝𝑘 = 1

• Different notions of separability in multipartite case
– In three-partite case there 4 kinds of entanglement —
1|23, 2|13, 3|12 and 1|2|3, which correspond to

̂𝜚 = 𝑝𝑘 ̂𝜚
(1)
𝑘 ⊗ ̂𝜚 (23)𝑘

̂𝜚 = 𝑝𝑘 ̂𝜚
(2)
𝑘 ⊗ ̂𝜚 (13)𝑘

̂𝜚 = 𝑝𝑘 ̂𝜚
(3)
𝑘 ⊗ ̂𝜚 (12)𝑘

̂𝜚 = 𝑝𝑘 ̂𝜚
(1)
𝑘 ⊗ ̂𝜚 (2)𝑘 ⊗ ̂𝜚 (3)𝑘



Entanglement

• In general, a kind of separability is a decomposition {𝐼1, … , 𝐼𝑚}.
In the previous case 1|23-separability corresponds to {{1}, {2, 3}}
and 1|2|3-separability to {{1}, {2}, {3}}

• For 𝑛 ⩾ 2 there are 2𝑛−1 − 1 bipartitions and many more parti-
tions into more parts

• A tripartite state is biseparable if it is a mixture
̂𝜚 = 𝑝1 ̂𝜚1 + 𝑝2 ̂𝜚2 + 𝑝3 ̂𝜚3

where ̂𝜚1 is 1|23-separable, ̂𝜚2 is 2|13-separable and ̂𝜚3 is 3|12-
separable

• In general, a state is biseparable if is a mixture of 2𝑛−1 − 1 state
that are separable with respect to all possible bipartitions



Separability conditions

• A classical result1
⟨(�̂�1 + �̂�2)2 + (�̂�1 − �̂�2)2⟩ ⩾ 2

or, in a more general form

𝑎�̂�1 +
1
𝑎�̂�2

2

+ 𝑎�̂�1 −
1
𝑎�̂�2

2

 ⩾
⎧⎪
⎨⎪⎩

𝑎2+ 1
𝑎2 for sep.

𝑎2− 1
𝑎2 for quant.

• There are twoboundaries—one for quantumness andone sep-
arability

•Many boundaries in a multipartite case

1L.-M. Duan, G. Giedke, J. I. Cirac and P. Zoller Inseparability Criterion for Continuous Variable Systems, Phys. Rev. Lett. 84, 2722 (2000)



Conditions for bipartite separability

• The inequality
⟨(�̂�1 + �̂�2)2 + (�̂�1 − �̂�2)2⟩ ⩾ 2

is equivalent to the inequality

⟨(�̂�† + �̂�)(�̂� + �̂�†)⟩ ⩾ 1 (1)

• If �̂� and �̂� act on different parts, and [�̂�, �̂�†] = 𝑐 > 0, then2
⟨(�̂�† + �̂�)𝑛(�̂� + �̂�†)𝑛⟩ ⩾ 𝑐𝑛𝑛!

• For �̂� = �̂�, �̂� = �̂� (so that 𝑐 = 1) and 𝑛 = 1we get Eq. (1)

• For �̂� = �̂�, �̂� = �̂� and 𝑛 ⩾ 1we have3
⟨(�̂�† + �̂�)𝑛(�̂� + �̂�†)𝑛⟩ ⩾ 𝑛!

•We can use multipartite �̂� and �̂�!
2E.Shchukin and P. van Loock Tripartite separability conditions exponentially violated by Gaussian states, Phys. Rev. A 90, 012334 (2014)
3H. Nha, S.-Y. Lee, S.-W. Ji and M. S. Kim Efficient entanglement criteria beyond Gaussian limits using Gaussianmeasurements, Phys. Rev. Lett. 108, 030503 (2012)



Conditions for tripartite separability

• Let us take �̂� = �̂� and �̂� = �̂� + �̂�, and denote

𝒜 (𝑛)
1|23 =

1
𝑛!⟨(�̂�

† + �̂� + �̂�)𝑛(�̂� + �̂�† + �̂�†)𝑛⟩

Then we have the inequality

𝒜 (𝑛)
1|23 ⩾ 

2𝑛 for all 1|23-separable states
1 for all states

• The tripartite pure Gaussian state with wave function

𝜓(𝐱) = 1
4√𝜋3

𝑒−
1
2𝐱
𝑇𝐴𝐱, 𝐴 =

⎛
⎜
⎝

3 2 2
2 2 1
2 1 2

⎞
⎟
⎠

is the eigenstate of �̂�† + �̂� + �̂� with eigenvalue zero and for this
state we have𝒜 (𝑛)

1|23 = 1



Conditions for tripartite separability

• Let us introduce the symmetrized sum

𝒮 (𝑛) = 13(𝒜
(𝑛)
1|23 +𝒜

(𝑛)
2|13 +𝒜

(𝑛)
3|12)

Then we have the inequality

𝒮 (𝑛) ⩾
⎧⎪
⎨⎪⎩

2𝑛 for fully separable states
2𝑛+3
3 for biseparable states
1 for all states

• The inequality𝒮 (𝑛) > 1 is always strict and tight
• For the tripartite pure Gaussian state with wave function

𝜓(𝐱) = 4


det𝐴𝜉
𝜋3 𝑒−

1
2𝐱
𝑇𝐴𝜉𝐱, 𝐴𝜉 =

⎛
⎜
⎝

1 𝜉 𝜉
𝜉 1 𝜉
𝜉 𝜉 1

⎞
⎟
⎠

we have𝒮 (𝑛) → 1when 𝜉 → 1. Violation grows as 2𝑛!



Violation

• For the GHZ/W state |𝜑𝑎⟩, which are pure Gaussian states with

𝐴𝑎 = 
𝑎 𝑒 𝑒
𝑒 𝑎 𝑒
𝑒 𝑒 𝑎

, 𝑒 = 𝑎
2 − 1 − √(𝑎2 − 1)(9𝑎2 − 1)

4𝑎
for 𝑎 = 1.5 the violation grows as 1.16𝑛.

• Let us introduce

̃𝒜 (𝑛)
1|23 =

1
𝑛!⟨(−�̂�

† + �̂� + �̂�)𝑛(−�̂� + �̂�† + �̂�†)𝑛⟩

then we can define ̃𝒮 (𝑛) in the same way as𝒮 (𝑛) and this new
quantity will satisfy the same inequalities

• If a pure Gaussian state with matrix 𝐴 violates the inequalities
for𝒮 (𝑛) for some 𝑛 then the Gaussian state with matrix𝐴−1 vi-
olates the inequalities for ̃𝒮 (𝑛) for the same 𝑛



Conditions for tripartite separability

• In terms of position and momentum operators our inequalities
for 𝑛 = 1 read as follows. Let us define

𝒯 = 3⟨(�̂�𝑎 + �̂�𝑏 + �̂�𝑐)2⟩ + ⟨(−�̂�𝑎 + �̂�𝑏 + �̂�𝑐)2⟩
+ ⟨(�̂�𝑎 − �̂�𝑏 + �̂�𝑐)2⟩ + ⟨(�̂�𝑎 + �̂�𝑏 − �̂�𝑐)2⟩

Then the inequalities for𝒮 (1) are equivalent to

𝒯 ⩾
⎧⎪
⎨⎪⎩

9 for fully separable states
5 for biseparable states
3 for all states

• These inequalities can be proven without PT!
The key points are the inequality ⟨�̂�2+ �̂�2⟩ ⩾ |⟨[�̂�, �̂�]⟩| for arbi-
trary observables �̂� and �̂� , and the relation for the commutator
[�̂�𝑎 + �̂�𝑏 + �̂�𝑐, −�̂�𝑎 + �̂�𝑏 + �̂�𝑐] = 𝑖 (and the two similar ones)



Second-order conditions

• Let𝑀 be a real, symmetric, positive-definite 2𝑛 × 2𝑛matrix

𝒢 = ⟨𝐫T𝑀𝐫⟩
where 𝐫 = (𝐱, 𝐩)

• Usually block-diagonal matrices are considered

𝑀 = 𝑋 0
0 𝑃

In this case
𝒢 = Tr(𝑋𝛾𝑥𝑥) + Tr(𝑃𝛾𝑝𝑝)

where 𝛾𝑥𝑥 = (⟨�̂�𝑖�̂�𝑗⟩)𝑛𝑖,𝑗=1 and 𝛾𝑝𝑝 = (⟨�̂�𝑖�̂�𝑗⟩)𝑛𝑖,𝑗=1

• Replacing 𝜓(𝐱) by 𝜓(𝐱 + 𝐱0)𝑒−𝑖(𝐱,𝐩0), where 𝐱0 = ⟨𝐱⟩, 𝐩0 = ⟨𝐩⟩,
we can also use Δ𝐫 instead of 𝐫



Second-order conditions

• The condition
⟨(�̂�1 + �̂�2)2 + (�̂�1 − �̂�2)2⟩ ⩾ 2

uses matrices

𝑋 = 𝑎
2 1
1 𝑎−2 = 

𝑎
𝑎−1 𝑎 𝑎

−1 , 𝑃 =  𝑎
2 −1
−1 𝑎−2 = 

𝑎
−𝑎−1 𝑎 −𝑎

−1

• The work⁴ general rank-one matrices

𝑋 = 𝐡𝐡T, 𝑃 = 𝐠𝐠T
where 𝐡 and 𝐠 are arbitrary real non-zero 𝑛-vectors

• The work⁵ uses general matrices𝑋 and 𝑃

⁴P. van Loock and A. Furusawa Detecting genuinemultipartite continuous-variable entanglement, Phys. Rev. A 67, 052315 (2003)
⁵S. Gerke et al Full multipartite entanglement of frequency-comb Gaussian states, Phys. Rev. Lett. 114, 050501 (2015)



Convex optimization

• ... thediscovery that convexoptimizationproblems (beyond least-squaresand
linear programs) aremore prevalent in practice than was previously thought.
Since 1990 many applications have been discovered in areas such as auto-
matic control systems, estimationandsignalprocessing, communicationsand
networks, electronic circuit design, data analysis andmodeling, statistics, and
finance. Convex optimization has also found wide application in combinato-
rial optimization and global optimization, where it is used to find bounds on
the optimal value, as well as approximate solutions. We believe that many
other applications of convex optimization are still waiting to be discovered.

• There are great advantages to recognizing or formulating aproblemas a con-
vex optimization problem. Themost basic advantage is that the problem can
then be solved, very reliably and efficiently, using interior-point methods or
other special methods for convex optimization. These solution methods are
reliable enough to be embedded in a computer-aided design or analysis tool,
or even a real-time reactive or automatic control system.⁶

⁶S. Boyd and L. Vandenberghe Convex optimization, Cambridge University Press, 2009



Theminimal value

•What is the minimal of ⟨𝐫T𝑀𝐫⟩ over all quantum states?

• TheWilliamson theorem⁷ states that there is a symplecticmatrix
𝑆 such that

𝑆T𝑀𝑆 = Λ 0
0 Λ

• Every symplectic transform is implementable as a unitary trans-
formation⁸ so that

⟨𝐫T𝑀𝐫⟩ = 𝐫T Λ 0
0 Λ 𝐫

′

and thus the minimal value of ⟨𝐫T𝑀𝐫⟩ is equal to TrΛ

• For block-diagonal𝑀we have TrΛ = Tr√𝑋𝑃√𝑋

⁷M. de Gosson Symplectic geometry and quantummechanics, Birkhäuser Verlag, 2000
⁸R. Simon, E. C. G. Sudarshan, and N. Mukunda, Gaussian pure states in quantummechanics and the symplectic group, Phys. Rev. A 37, 3028 (1988)



Trace inequalities

•We have the tight inequality

𝒢 = Tr(𝑋𝛾𝑥𝑥) + Tr(𝑃𝛾𝑝𝑝) ⩾ Tr√𝑋𝑃√𝑋

• For a pure state with wave function 𝜓(𝐱)we have

𝒢 = (𝐱T𝑋𝐱)|𝜓(𝐱)|2 + (∇𝜓∗(𝐱))T𝑃(∇𝜓(𝐱))𝑑𝐱

• If 𝜓(𝐱) = 𝑓(𝐱)𝑒𝑖𝜑(𝐱), where 𝑓(𝐱) is real, then

(∇𝜓∗)T𝑃(∇𝜓)𝑑𝐱 = (∇𝑓)T𝑃(∇𝑓) + 𝑓2(∇𝜑)T𝑃(∇𝜑)𝑑𝐱

•We see that𝒢 (𝜓) ⩾ 𝒢 (𝑓) ⇒ real wave functions are sufficient



Trace inequalities

• For real wave function 𝑓(𝐱)we have

𝒢 = (𝐱T𝑋𝐱)𝑓(𝐱)2 + (∇𝑓(𝐱))T𝑃(∇𝑓(𝐱))𝑑𝐱

• Introduce 𝐮(𝐱) = √𝑋𝑓(𝐱)𝐱 and 𝐯(𝐱) = √𝑃(∇𝑓)(𝐱), then

𝒢 = ‖𝐮(𝐱)‖2 + ‖𝐯(𝐱)‖2𝑑𝐱

• Applying Cauchy-Schwarz inequality, we get

𝒢 ⩾ 2 (𝐮(𝐱), 𝐯(𝐱)) 𝑑𝐱 = 2 𝑓(𝐱)𝐱T√𝑋√𝑃(∇𝑓)(𝐱) 𝑑𝐱

• The latter expression is easily shown to be equal to Tr(√𝑋√𝑃)



Trace inequalities

•We obtain the inequality

Tr√𝑋𝑃√𝑋 ⩾ Tr(√𝑋√𝑃) = Tr( 4√𝑋√𝑃 4√𝑋) (2)

• Araki-Lieb-Thirring trace inequalities⁹

Tr(𝐴1/2𝐵𝐴1/2)𝑟𝑞 ⩾ Tr(𝐴𝑟/2𝐵𝑟𝐴𝑟/2)𝑞
for positive definite matrices𝐴 and 𝐵 and, 𝑞 ⩾ 0 and ⩽ 𝑟 ⩽ 1

• For 𝑞 = 1 and 𝑟 = 1/2we get the inequality (2)

⁹E. H. Lieb and W. E. Thirring Bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett. 35, 687 (1975)
E. H. Lieb and W. E. Thirring Inequalities for themoments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Studies in Mathematical Physics,
269–303 (1976)
H. Araki On an inequality of Lieb and Thirring, Lett. Math. Phys. 19, 167 (1990)



Separability condition

• If 𝑓(𝐱) is a real wave function of the form 𝑓(𝐱) = 𝑔(𝐱′)ℎ(𝐱′′) and
parts 𝑖 and 𝑗 are separable than ⟨�̂�𝑖�̂�𝑗⟩ = 0. The values ⟨�̂�𝑖�̂�𝑗⟩ fac-
torize: ⟨�̂�𝑖�̂�𝑗⟩ = ⟨�̂�𝑖⟩⟨�̂�𝑗⟩

• Replacing 𝑓(𝐱) by 𝑓(𝐱 + 𝐱0), where 𝐱0 = ⟨𝐱⟩,𝒢 gets replaced by
𝒢 − ⟨𝐱⟩T𝑋⟨𝐱⟩ ⩽ 𝒢

• Tominimize𝒢 wecanassume that ⟨𝐱⟩ = 0and thus that ⟨�̂�𝑖�̂�𝑗⟩ =
0 if parts 𝑖 and 𝑗 are separable

•We have
𝒢 = Tr(𝑋𝛾𝑥𝑥) + Tr(𝑃𝛾𝑝𝑝)
= Tr(𝑋′(𝐮)𝛾𝑥𝑥) + Tr(𝑃′(𝐯)𝛾𝑝𝑝)



Separability condition

• For example: For 2|134 and 1|2|34-separability the matrix 𝑋′(𝐮)
reads as

⎛
⎜
⎜
⎝

𝑋11 ..𝑢1. 𝑋13 𝑋14
..𝑢1. 𝑋22 ..𝑢2 𝑢3.
𝑋13 ..𝑢2 𝑋33 𝑋34
𝑋14 𝑢3. 𝑋34 𝑋44

⎞
⎟
⎟
⎠
,

⎛
⎜
⎜
⎝

𝑋11 ..𝑢1. ..𝑢2 𝑢3.
..𝑢1. 𝑋22 ..𝑢4 𝑢5.
..𝑢2 ..𝑢4 𝑋33 𝑋34
𝑢3. 𝑢5. 𝑋34 𝑋44

⎞
⎟
⎟
⎠

The matrix 𝑃′(𝐯) is constructed in the same way.

• If a state is separable than

𝒢 ⩾ max
𝐮,𝐯 𝑋

′(𝐮)𝑃′(𝐯)𝑋′(𝐮)

• To each kind of separability corresponds its own optimization
problem



Entanglement condition

•We have to minimize the function

ℰ (𝑋, 𝑃) = 𝒢 (𝑋, 𝑃) − max
𝐮,𝐯 𝑋

′(𝐮)𝑃′(𝐯)𝑋′(𝐮)

• Errors of the measurements should be taken into account!

• The right function to minimize is

ℰ (𝑋, 𝑃) = 𝒢 (𝑋, 𝑃) + 𝑠 𝜎(𝑋, 𝑃) − max
𝐮,𝐯 𝑋

′(𝐮)𝑃′(𝐯)𝑋′(𝐮)

where

𝜎(𝑋, 𝑃) =

⃓⃓
⃓
⎷

𝑛

𝑖,𝑗
𝜎2𝑥𝑥,𝑖𝑗𝑋2

𝑖𝑗 +
𝑛

𝑖,𝑗
𝜎2𝑝𝑝,𝑖𝑗𝑃2𝑖𝑗



Entanglement condition

• The number 𝑠determines the probability𝐏(𝑠) of the right result.
If the measurements of the elements of the covariance matrix
have Gaussian distribution then

𝐏(𝑠) = erf 𝑠2


Formexample, for 𝑠 = 3 (so-called ”three sigma rule”)𝐏 = 0.997.

• The function ℰ (𝑋, 𝑃) is convex!

• Due to uniformness, ℰ (𝜆𝑋, 𝜆𝑃) = 𝜆ℰ (𝑋, 𝑃) for 𝜆 ⩾ 0, it is bet-
ter to consider an optimization problem with linear constraints

min
Tr(𝑋𝛾𝑥𝑥+𝑃𝛾𝑝𝑝)=𝐶

(𝑠𝜎(𝑋, 𝑃) − max
𝐮,𝐯 𝑋

′(𝐮)𝑃′(𝐯)𝑋′(𝐮)) < −𝐶.



Analytical condition

• Let us consider the quantity

𝒢𝑛 = 
1≤𝑖<𝑗≤𝑛

⟨(�̂�𝑖 + �̂�𝑗)2 + (�̂�𝑖 − �̂�𝑗)2⟩.

• It is the general quantity 𝒢 with

𝑋 =
⎛
⎜
⎝

𝑛 − 1 … 1
. . . . . . . . . . . . . .
1 … 𝑛 − 1

⎞
⎟
⎠
, 𝑃 =

⎛
⎜
⎝

𝑛 − 1 … −1
. . . . . . . . . . . . . .
−1 … 𝑛 − 1

⎞
⎟
⎠

• Quantumness bound

𝒢𝑛 > (𝑛 − 1)𝑛(𝑛 − 2)



Analytical condition

• It can be shown that

max
𝐮,𝐯 𝑋

′(𝐮)𝑃′(𝐯)𝑋′(𝐮) ⩾ (𝑛 − 1)𝑛(𝑛 − 2)+

4𝑘(𝑛 − 𝑘)

√𝑛(√2𝑛 − 2 + √𝑛 − 2)

• If a state satisfies the inequality

𝒢𝑛 < (𝑛 − 1)𝑛(𝑛 − 2) +
4(𝑛 − 1)

√𝑛(√2𝑛 − 2 + √𝑛 − 2)
then it is genuine entangled



Analytical condition

𝑛 2 3 4 5 6 7 8

q 0 3.46 8.48 15.49 24.49 35.49 48.49
a 2 5.00 10.03 17.06 26.07 37.08 50.09
b 2 5.46 10.89 18.26 27.59 38.89 52.17
f 2 6 12 20 30 42 56



Conclusion

• Conditions for genuine multipartite entanglement

• Exponential violation by pure tripartite Gaussian states

• Potential applicability to non-Gaussian states


