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e A bipartite separable state
A ~(1) o A2
0 = Zpkp,i )®Q,£ ), where p; >0, Zpk =1
k k

e Different notions of separability in multipartite case

—In three-partite case there 4 kinds of entanglement —
1|23, 2|13, 3|12 and 1|2|3, which correspond to

0= @0
0=2nd @0
6= 2nd ® 6
0=21nd ®0° @4



e In general, a kind of separability is a decomposition {Iy, ..., L,}.

In the previous case 1|23-separability corresponds to {{1}, {2,, H
and 1|2|3-separability to {{1}, {2}, {3}}

e For n > 2 there are 271 — 1 bipartitions and many more parti-
tions into more parts

e A tripartite state is biseparable if it is a mixture

0 = p101 + P202 + P30s
where ¢, is 1|23-separable, ), is 2|13-separable and g5 is 3|12-
separable

e In general, a state is biseparable if is a mixture of 2”1 — 1 state
that are separable with respect to all possible bipartitions



Separability conditions

e A classical result’
((B1+ X))+ (P1— P 22
or, in a more general form

1 2 1 2 g g2+al_2 for sep.
LZX1+E-X2 + ap1_5p2 = ‘gz—al_z forquant.

e There are two boundaries — one for quantumness and one sep-
arability

e Many boundaries in a multipartite case

'L.-M. Duan, G. Giedke, J. I. Cirac and P. Zoller Inseparability Criterion for Continuous Variable Systems, Phys. Rev. Lett. 84, 2722 (2000)



Conditions for bipartite separability

e The inequality
(1 +2)° + (P11 — P2)*) = 2
is equivalent to the inequality
(@ +b)y@a+ohy =1

e If A and B act on different parts, and [B, Bf] = ¢ > 0, then?

(A* + BY"(A + BH") > ¢n!
(sothatc =1)andn =1 we get Eq. (1)

and n > 1 we have’
(@t + by«a + bHm = n!

e We can use multipartite A and B!

*E.Shchukin and P. van Loock Tripartite separability conditions exponentially violate d by Gau states, Phys. Rev. A 90, 012334 (2014)
*H.Nha, S.-Y. Lee, S.-W. Ji and M. S. Kim Efficient entanglement criteria beyond Gaussian limi t ing Gaussian measurements, Phys. Rev. Lett. 108, 030503 (2012)
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Conditions for tripartite separability

e Let ustake A = dand B = b + ¢, and denote
L A B A
&/1((;)3 = a((a* +b+8)"a+ b+ e
Then we have the inequality

VLR 2" forall 1|23-separable states
1  forall states

e The tripartite pure Gaussian state with wave function

1 LT, 322
g 2X x, A=1221
V3 212

is the eigenstate of 41 + b + ¢ with eigenvalue zero and for this
state we have .o/, = 1

h(x) =



Conditions for tripartite separability

e Let us introduce the symmetrized sum
B R )
S = 5(52/153 + i3 + Fypa)
Then we have the inequality

2" for fully separable states

) > 2"3+3 for biseparable states
1 for all states

e The inequality . > 1 is always strict and tight
e For the tripartite pure Gaussian state with wave function

4 det AE —1XTAEX 1 5 5)
— 2 , A — 5 1 5
v \/ e 5 (ci ¢ 1

we have . — 1 when & — 1. Violation grows as 2"




e For the GHZ/W state |@,), which are pure Gaussian states with

Aa:(ﬂee) . a’> —1—4/(a?-1)(9a2 - 1)

eael,
e e a 4q

fora = 1.5 the violation grows as 1.16".
e Let us introduce

1 A A
AR '<(—cfr +b+e) (-4 + bt +2ehm)
then we can define . in the same way as .%’™ and this new

quantity will satisfy the same inequalities

e If a pure Gaussian state with matrix A violates the mequalltles

for . for some n then the Gau55|an state with matrix A~! vi-
olates the inequalities for .57 for the same n



Conditions for tripartite separability

e In terms of position and momentum operators our inequalities
forn = 1 read as follows. Let us define

T =3R4+ &+ &) + (=P, + Dy + D))
+ <(i§a o ibb T ibc)2> T <(i§a + ibb o ﬁc)2>
Then the inequalities for .V are equivalent to
9 for fully separable states

I =5 forbiseparable states
3 for all states

e These inequalities can be proven without PT!
The key points are the inequality (X2+Y?) = ([X, Y])| for arbi-

trary observables X and Y, and the relation for the commutator
(X, + Xy + &, —D, + Py + pc] = i (and the two similar ones)



Second-order conditions

e Let M be a real, symmetric, positive-definite 2n X 2n matrix
Z = (r'Mr)
wherer = (x, p)

e Usually block-diagonal matrices are considered
(X0
M=(o 7)

G = Tr(Xyy) + Tr(Py,,)

n n

where y,, = (<5ci56j>)i,]-:1 and y,, = (<IA9iIA9j>)i,j:1

In this case

e Replacing y(x) by 1(x + xp)e™"*Po), where x, = (x), py = (p),
we can also use Ar instead of r



Second-order conditions

e The condition
(R + 2)* + (P1—P)*) = 2
uses matrices

x=(% L) =(A)@a), p=(Y )= (L

e The work* general rank-one matrices
X =hh!, P=gg!
where h and g are arbitrary real non-zero n-vectors

e The work’ uses general matrices X and P

*P.van Loock and A. Furusawa Detecting genuine multipartite continuous-variable entanglement, Phys. Rev. A 67, 052315 (2003)
>S. Gerke et al Full multipartite entanglement of frequency-comb Gaussian states, Phys. Rev. Lett. 114, 050501 (2015)



® ... thediscovery that convex optimization problems (beyond least-squares and
linear programs) are more prevalent in practice than was previously thought.
Since 1990 many applications have been discovered in areas such as auto-
matic control systems, estimation and signal processing, communications and
networks, electronic circuit design, data analysis and modeling, statistics, and
finance. Convex optimization has also found wide application in combinato-
rial optimization and global optimization, where it is used to find bounds on
the optimal value, as well as approximate solutions. We believe that many
other applications of convex optimization are still waiting to be discovered.

® There are great advantages to recognizing or formulating a problem as a con-
vex optimization problem. The most basic advantage is that the problem can
then be solved, very reliably and efficiently, using interior-point methods or
other special methods for convex optimization. These solution methods are
reliable enough to be embedded in a computer-aided design or analysis tool,

. . . 6
or even a real-time reactive or automatic control system.

®S. Boyd and L. Vandenberghe Convex optimization, Cambridge University Press, 2009



e What is the minimal of (r' Mr) over all quantum states?

e The Williamson theorem” states that there is a symplectic matrix
S5 such that A O)

T —
SMS—(OA

e Every symplectic transform is implementable as a unitary trans-

formation® so that
(r'Mr) = <rT (/8 R) r>

and thus the minimal value of (r' Mr) is equal to Tr A

e For block-diagonal M we have Tr A = Tr \/\/?P\/Y

M. de Gosson Symplectic geometry and quantum mechanics, Birkhauser Verlag, 2000
®R. Simon, E. C. G. Sudarshan, and N. Mukunda, Gaussian pure states in quantum mechanics and the symplectic group, Phys. Rev. A 37, 3028 (1988)



e We have the tight inequality

Z = Tt(Xyy) + Tr(Py,,) > Tr \/ VXPVX

e For a pure state with wave function 1(x) we have

Z = f ((xTXx)|¢(x)|2 4 (w*(x))TP(w(x)))dx

o If (x) = f(x)e'?™, where f(x) is real, then
[uteevpax = [((VATPVE) + (V) P(VP)) dx

e We seethat 7 (v) > Z(f) = real wave functions are sufficient



e For real wave function f(x) we have

7 = [((KX0f (02 + (VF )PV ()|

e Introduce u(x) = VX f(x)x and v(x) = VP(Vf)(x), then
7 = [(IuIP + VIR ax

e Applying Cauchy-Schwarz inequality, we get
7 > 2| [ e, vy ax| = 2| [ FoxVX VPV ) o

¢ The latter expression is easily shown to be equal to Tr(\/ix/l_j)



Trace inequalities

e We obtain the inequality

Tr \/ VXPVX > Tr(WXVP) = Tr(WXVPVX) ()

e Araki-Lieb-Thirring trace inequalities’
Tr(AY?BAY?)" > Tr(A"2B’ A"?)1
for positive definite matrices Aand Band, g > 0and < r <1

e Forg = 1andr = 1/2 we get the inequality (2)

°E. H. Lieb and W. E. Thirring Bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett. 35,687 (1975)
E. H. Lieb and W. E. Thirring Inequalities for the moments of the eigenvalues of the Schrédinger Hamiltonian and their relation to Sobolev inequalities, Studies in Mathematical Physics,

269-303 (1976)
H. Araki On an inequality of Lieb and Thirring, Lett. Math. Phys. 19, 167 (1990)



Separability condition

o If f(x) is a real wave function of the form f(x) = ¢(x ’)h(x”) and
parts i and j are separable than (plp]> = 0. The values (XX ) fac-

torize: (X;X; ) = (X; )(x )

e Replacing f(x) by f(x+ xg), where x; = (x), & gets replaced by
Z -\ Xx)g &

e To minimize & we can assume that (x) = 0and thus that (5ci5c]-> =
0 if parts i and j are separable

e We have
G = Tr(Xyy) + Tr(Py,,)
= Tr(X'(w)y ) + Tr(P ,(V)ypp)



e For example: For 2|134 and 1|2|34-separability the matrix X’(u)
reads as

X1 Uy X3 Xy X1 W Uy U
Uy Xy Up Uz Uy Xpp Uy Us
Xq3 Uy X33 Xaa |’ Uy Uy X33 X34
Xy Uz X34 Xy Us Us X34 Xy

The matrix P’(v) is constructed in the same way.

e If a state is separable than

G > III}%X\/ X'(0)P’'(v){ X’ (u)

e To each kind of separability corresponds its own optimization
problem



Entanglement condition

e We have to minimize the function

& (X,P)=%2(X,P) - nl}%x\/ X'(u)P’'(v)VX’(u)

e Errors of the measurements should be taken into account!

e The right function to minimize is

£(X,P) = Z(X,P) +sa(X,P) - nl}%x\/ X’ (u)P'(v)\/ X' (u)

where

o(X,P) = E g% . X i 2 4 Z app i
N Y




e The number s determines the probability P(s) of the right result.

If the measurements of the elements of the covariance matrix
have Gaussian distribution then

S
(s) =er 5
Form example, fors = 3 (so-called “three sigmarule”) P = 0.997.

e The function & (X, P) is convex!

e Due to uniformness, & (AX,AP) = A& (X, P)for A > 0, it is bet-
ter to consider an optimization problem with linear constraints

min (so(X,P) — max \/\/X’(u)P’(V)\/X’(u)) < —C.

Tr(Xy e +Pyp,)=C




Analytical condition

e Let us consider the quantity
Tu= D, (Ei+2)+@i- P,
1<i<j<n
e It is the general quantity & with

n—1.. 1 n—1.. -1
) =1 P o P=]
1 ...n-1 -1 ..n-1

e Quantumness bound
Z > (n—-1)nn-2)




Analytical condition

e [t can be shown that
mu%x\/ X'(W)P'(v)X’(u) = (n - 1)\/11(11 —2)+
4k(n — k)

Vi(V2n =2+ Vn -2)

e If a state satisfies the inequality

4(n—1)

Vi(V2n -2 + vn - 2)

Z < (n—1Dnmn-2)+

then it is genuine entangled



Analytical condition

ni 2 3 4 5 6 7 8

q 0 3.46 848 1549 2449 3549 48.49
a 2 5.00 10.03 17.06 26.07 37.08 50.09
b 2 546 10.89 1826 2759 38.89 52.17
fl| 2 6 12 20 30 42 56




Conclusion

e Conditions for genuine multipartite entanglement
e Exponential violation by pure tripartite Gaussian states

e Potential applicability to non-Gaussian states



