

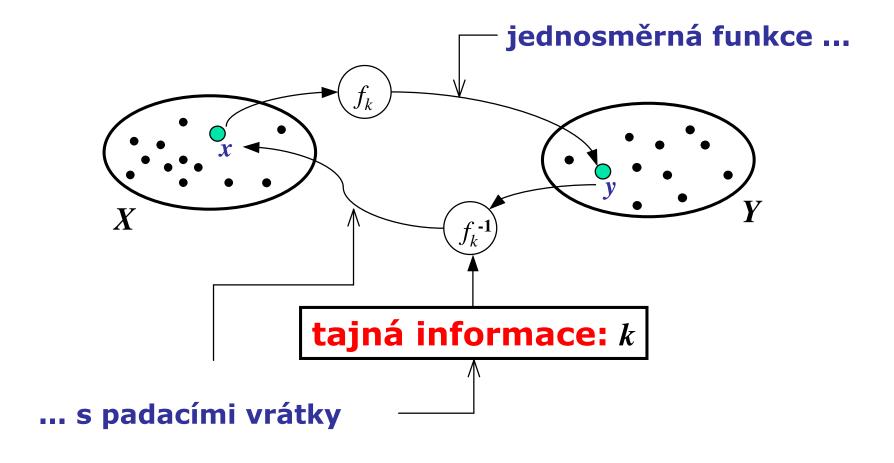
Tomáš Rosa

eBanka a.s., Praha Katedra počítačů, FEL, ČVUT v Praze trosa@ebanka.cz

Osnova přednášky

- Kryptologie
 - základní seznámení s oborem
- Podpisová schémata
 - elementární principy, schéma s dodatkem
 - metody RSA, DSA, ECDSA
 - kryptoanalýza podpisových schémat, útoky
- Nepopiratelnost digitálního podpisu
 - souvislost s nepadělatelností
 - univerzální nepopiratelnost
- Elektronický podpis
 - souvislost s digitálním podpisem
 - druhy elektronického podpisu

- Historické souvislosti
 - 1976, Diffie-Hellman: formulace základních principů asymetrických schémat
 - 1978, Rivest-Shamir-Adleman: metoda RSA
 - 1990, Rompel: existence jednosměrných funkcí je nutnou a postačující podmínkou pro existenci podpisových schémat
 - 1991, NIST: metoda DSA jako součást první verze standardu DSS
 - 1992, Vanstone: návrh ECDSA
 - 1998¹, 1999², 2000³: ECDSA přijato jako standard ISO¹, ANSI², IEEE³ a NIST³



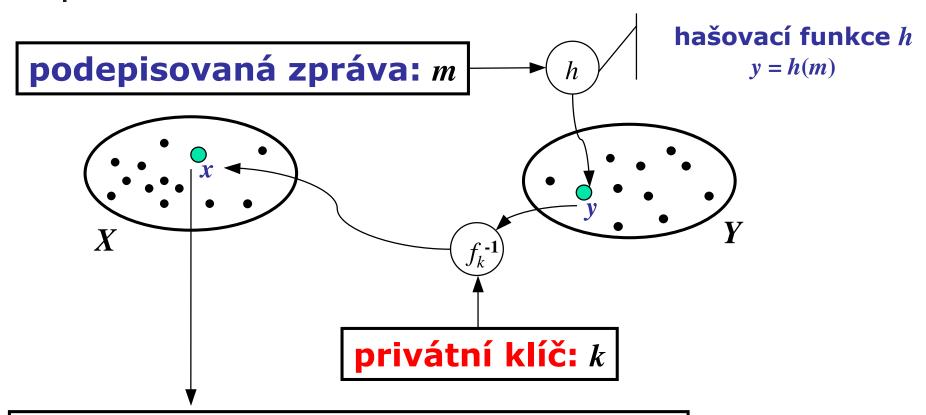
-elementární principy- (1)

- Ukážeme si konstrukci podpisového schématu typu RSA
 - schéma se opírá o použití <u>jednosměrné</u> <u>funkce s padacími vrátky</u>
 - metody založené na čistě <u>jednosměrných</u>
 <u>funkcích</u> jsou poněkud odlišné (DSA, ECDSA)

-elementární principy- (2)

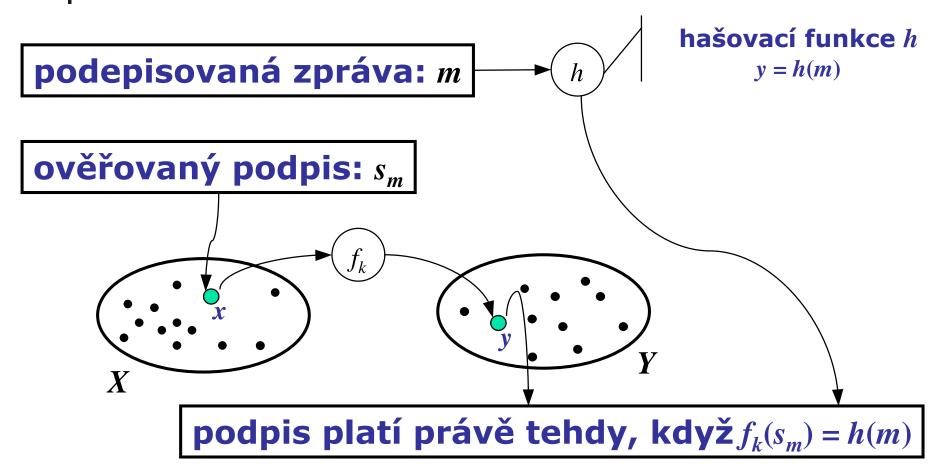
-elementární principy- (3)

- Předpokládejme
 - funkce f_k je spojena s určitým konkrétním subjektem uživatelem \mathcal{A}
 - je to jeho <u>veřejný klíč</u>
 - informace o padacích vrátkách k je známa pouze subjektu A
 - je to jeho <u>privátní klíč</u>



-elementární principy- (4)

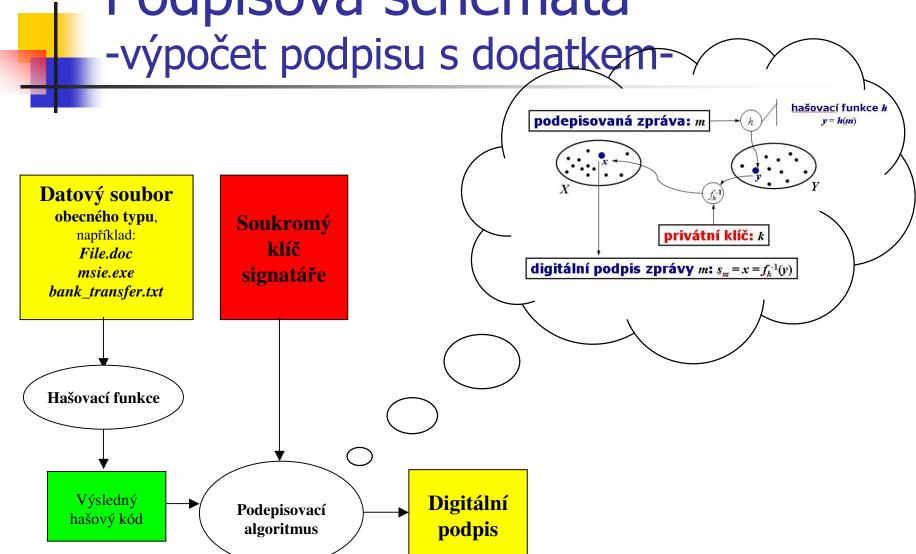
- \blacksquare Z vlastností f_k plyne
 - z pouhé znalosti f_k nelze najít výpočetně schůdnou inverzní funkci f_k^{-1}
 - čili speciálně: ze znalosti veřejného klíče nelze nalézt klíč privátní
 - tedy nakonec prakticky: ten, kdo zná pouze veřejný klíč, dokáže podpis ověřit, ale nedokáže jej sám vytvořit

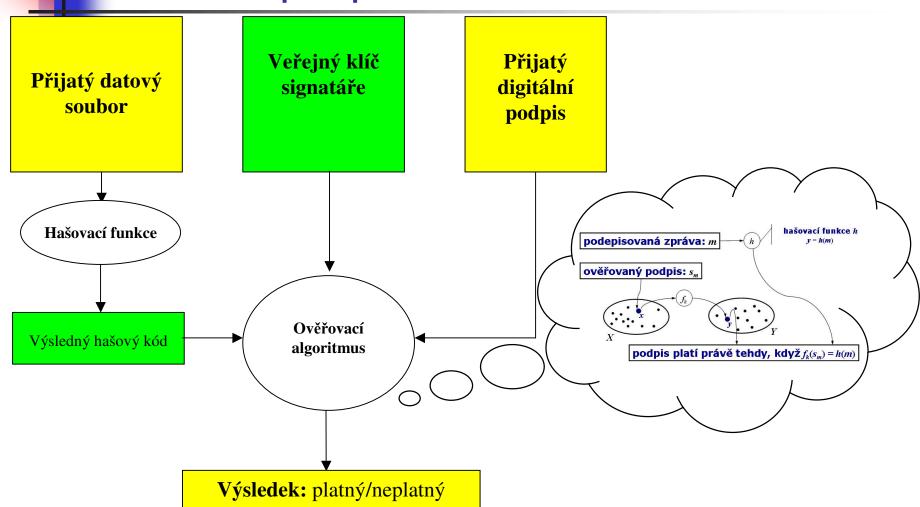

-elementární principy- (5)

digitální podpis zprávy m: $s_m = x = f_k^{-1}(y)$



-elementární principy- (6)




-inicializace instance-

-ověření podpisu s dodatkem-

O vztahu asymetrických šifer a podpisových schémat

- Obecně: Asymetrické šifry a podpisová schémata nejsou jedno a totéž
- Speciální případy: Za určitých okolností lze asymetrickou šifru převést na podpisové schéma a obráceně
 - pozor na terminologii: odšifrování ~ podpis!
- Společný rys:
 - využití jednosměrných funkcí a jednosměrných funkcí s padacími vrátky
 - rozhodující vliv na bezpečnost má způsob kódování šifrované či podepisované zprávy

(1)

- İnicializace schématu
 - Vygenerujme nezávisle dvě velká (zhruba stejně) prvočísla p, q, p ≠ q.
 - Spočtěme N = pq, $\lambda = \text{lcm}(p-1, q-1)$.
 - Zvolme náhodné číslo e, $1 < e < \lambda$, $gcd(e, \lambda) = 1$.
 - Někdy se volí e pevně (zejména e = 3, 65537).
 - Spočtěme d splňující: $1 < d < \lambda$, $ed \equiv 1 \pmod{\lambda}$.
 - Použijeme rozšířený Eukleidův algoritmus.
 - Veřejným klíčem budiž dvojice (N, e).
 - N nazýváme modul a e veřejný exponent RSA.
 - Privátním klíčem budiž dvojice (N, d).
 - d nazýváme privátní exponent RSA.
 - Pro bezpečnost je nutné ošetřit integritu dvojice (N, d).

(2)

- Podepisovací transformace: RSASP((N, d), m)
 - Vstup: Privátní klíč RSA (N, d), zformátovaná zpráva pro podpis m, 0 ≤ m ≤ N-1.
 - Výpočet:
 - RSASP((N, d), m) = $m^d \mod N$
- Ověřovací transformace: RSAVP((*N*, *e*), *s*)
 - Vstup: Veřejný klíč RSA (*N*, *e*), ověřovaný podpis *s*, 0 ≤ *s* ≤ *N*-1.
 - Výpočet:
 - RSAVP((N, e), s) = $s^e \mod N$

Podpisové schéma

- Vystavěno na transformacích RSASP(.) a RSAVP(.).
 - Důležité jsou přídavné funkce ENCODE/VERIFY.
- Schéma s obnovou zprávy
 - Zprávu a její podpis nelze jednoznačně oddělit.
 Používá se zřídka pro velmi krátké zprávy.
 - ISO/IEC 9796 závažné problémy
- Schéma s dodatkem
 - Podpis tvoří jasně identifikovatelný doplněk k podepsané zprávě.
 - V současnou dobu toto schéma převažuje.

RSA podpisové schéma s dodatkem-

- Výpočet podpisu zprávy
 - Vstup: privátní klíč RSA (N, d), zpráva pro podpis
 M (jako binární řetězec).
 - Výpočet:
 - H = hash(M)
 - Na úrovni stejných hašových kódů jsou dvě různé zprávy nerozlišitelné.
 - $_{2}$ m = ENCODE(H)
 - s = RSASP((N, d), m)
 - 4. Výsledkem budiž s.

RSA (5) podpisové schéma s dodatkem-

- Ověření podpisu zprávy
 - Vstup: veřejný klíč RSA (N, e), zpráva pro ověření podpisu M (jako binární řetězec), ověřovaný podpis s.
 - Výpočet:

```
_{L} m = RSAVP((N, e), s)
```

- $_{2}$ H = hash(M)
- $\mathcal{L} = VERIFY(H, m), V \in \{ANO, NE\}$
- 4. Výsledkem budiž V.

(1)

- Standardizován ve FIPS PUB 186-2
 - DSS Digital Signature Standard, popisuje DSA Digital Signature Algorithm a navíc stanoví, že jako hašovací funkce (dále h) se má použít SHA-1 (FIPS PUB 180-2).
 - Zatím není DSA standardizován pro SHA-256,-384,-512 (nově zavedeny ve FIPS PUB 180-2).
 - Tento krok lze očekávat v následujících verzích FIPS PUB 186.
- Algebraicky připomíná ElGamal přenesený na podgrupu prvočíselného řádu.
 - Souvisí také se Schnorrovým schématem.

(2)

Inicializace schématu

- Vygenerujme náhodné prvočíslo q, $2^{159} < q < 2^{160}$.
- Vygenerujme náhodné prvočíslo p, $2^{1023} tak, aby <math>q \mid (p-1)$.
- Nalezněme generátor lpha cyklické podgrupy grupy ${m Z_{\!
 ho}}^*$ řádu ${m q}$.
- Zvolme privátní exponent x, 0 < x < q.
- Vypočtěme veřejný klíč y, $y = \alpha^x \mod p$.
- Veřejné parametry schématu jsou (p, q, α) .
 - Někdy je veřejný klíč uváděn ve tvaru (p, q, α, y).
- Privátní klíč je čtveřice (p, q, α , x).
 - Je nutné zajistit integritu čtveřice (p, q, α , x).
 - Ačkoliv to tak řada popisů dělá, není vhodné vnímat x samostatně jako privátní klíč.

(3)

- Podpis zprávy
 - Vstup: Privátní klíč (p, q, α, x), zpráva pro podpis m, hašovací funkce h (v DSS h=SHA-1).
 - Výpočet:
 - 1. Vygenerujme tajné náhodné číslo k, 0 < k < q.
 - Parametr k bývá označován jako dočasný klíč zprávy.
 - Kompromitace k vede ke kompromitaci privátního klíče.
 - Vypočtěme $r = (\alpha^k \mod p) \mod q$.
 - Vypočtěme $s = k^1(h(m) + xr) \mod q$, kde $kk^1 \equiv 1 \pmod q$.
 - Ověřme, že $r \neq 0$ a $s \neq 0$, jinak se výpočet opakuje.
 - 5. Podpisem budiž dvojice (*r*, *s*).

(4)

Ověření podpisu

Vstup: Veřejné parametry a klíč (p, q, α, y), zpráva m, ověřovaný podpis (r, s), hašovací funkce h (v DSS h=SHA-1).

Výpočet:

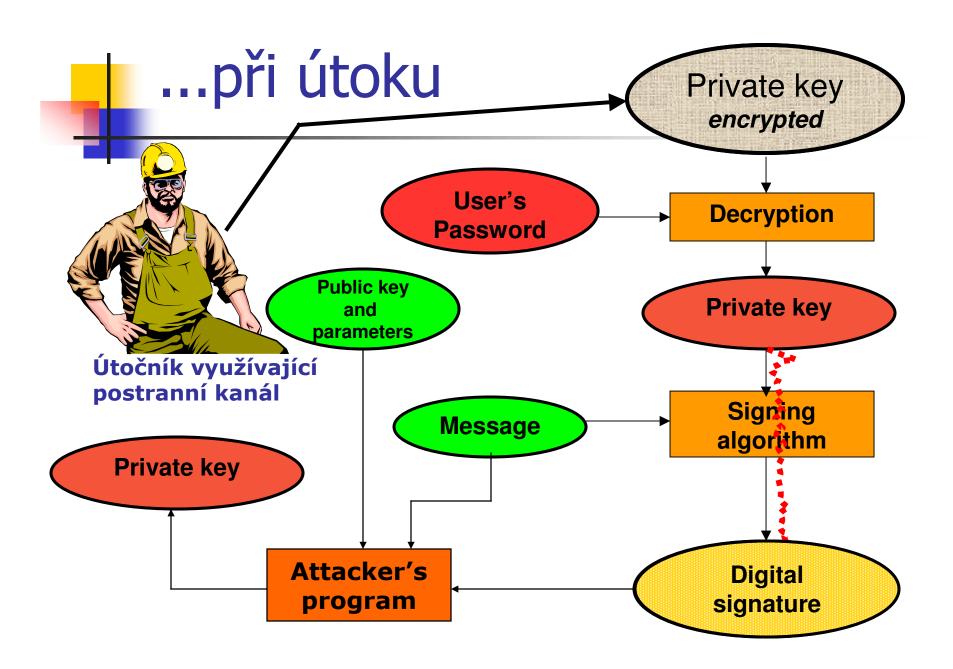
- Ověřme, že 0 < r < q a 0 < s < q. Jinak podpis odmítneme jako neplatný.
- Vypočtěme $w = s^{-1} \mod q$.
- Vypočtěme $u_1 = w^*h(m) \mod q$ a $u_2 = r^*w \mod q$.
- Vypočtěme $v = (\alpha^{u1})^{u2} \mod p$ mod q.
- Podpis prohlásíme za platný iff $\nu = r$.

ECDSA

- Algebraické rozšíření DSA.
- Namísto \mathbf{Z}_{p}^{*} , respektive její cyklické podgrupy, je použita eliptická křivka $E(\mathbf{F}_{q})$, respektive její cyklická podgrupa prvočíselného řádu n, kde $n > 2^{160}$.
- Použitá křivka je generována náhodně nebo je použita některá ze standardizovaných křivek.
 - U ECDSA je běžné sdílení veřejných parametrů (těleso, křivka, generátor podgrupy a jeho řád).
 - Při generování nových křivek je třeba pečlivě kontrolovat možné anomálie, které mohou vést k efektivním útokům.

Kryptoanalýza podpisových schémat

- Potenciální místa útoku
 - základní kryptografické transformace
 - inverze jednosměrných funkcí, kolize hašovacích funkcí,...
 - formátování podepisovaných dat
 - vážný problém u ISO 9796 schéma s obnovou zprávy
 - u používaných schémat s dodatkem zatím nezjištěny vážnější slabiny
 - generování klíčů a ukládání klíčů
 - nevědomé či záměrné generování slabých klíčů
 - útoky na čipové karty postranními kanály
 - vyšší procesy informačního systému
 - trójský kůň podstrčení dokumentu pro podpis, atp.
 - nedodržení okrajových podmínek použitých kryptografických mechanizmů


Řešení úloh faktorizace¹, DLP² a ECDLP³

- Bezprostředně souvisí s bezpečností RSA¹,
 DSA² a ECDSA³
 - význam pro dlouhodobé plánování
 - bezprostřední dopad "běžných objevů" na současné dobře navržené systémy zanedbatelný
 - bezpečnost praktických implementací více ohrožují jiné a závažnější objevy
 - na první pohled však nejsou tak markantní

Řešení úloh faktorizace¹, DLP² a ECDLP³

- Klasické metody
 - NFS¹, NFS/Index-calculus², Pollardovy metody¹,²,³ ρ a λ
 - rozvoj zatím víceméně stagnuje
- Speciální akcelerátory
 - TWINKLE^{1,2}, TWIRL^{1,2}
 - elektrooptické prosévací zařízení
- Kvantové počítače
 - Shorův algoritmus^{1,2,3}

Nepopiratelnost digitálního podpisu

- Definice. Nezávislá třetí strana je schopna jednoznačně ověřit, že daný subjekt předložený dokument podepsal (respektive nepodepsal).
- V současných systémech není nepopiratelnosti dosaženo automaticky
- Příslušný systém musí být s ohledem na požadovanou vlastnost nepopiratelnosti speciálně navržen a konstruován
 - pozor na změnu pohledu: Útočníkem je zde často sám majitel privátního klíče!

Nepadělatelnost digitálního podpisu

- Definice. Neexistuje zpráva, jejíž podpis je možné najít s pouhou znalostí veřejného klíče a jiných podepsaných zpráv.
 - odpovídá mezím teoreticky prokazatelných vlastností
 - ve skutečnosti však odstiňuje pouze část možných útoků
 - reálné útoky probíhají za volnějších podmínek
 - postranní kanály
 - obecně "povolená" interakce s podepisovacím modulem
 - trójský kůň…

- nepopiratelnost ⇒ nepadělatelnost
 - čili zajištění nepadělatelnosti je vhodné chápat v kontextu zajištění nepopiratelnosti
- z praktického hlediska je vhodné soustředit se na nepopiratelnost
 - omezení se pouze na nepadělatelnost je zavádějící

Univerzální nepopiratelnost

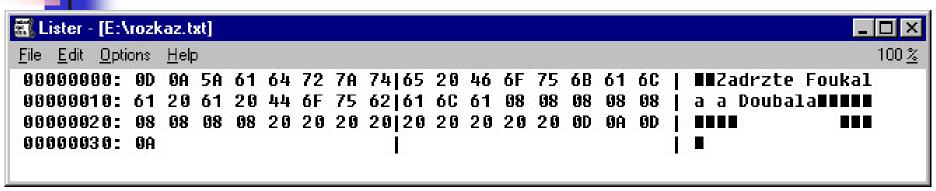
- I při nepopiratelnosti mohou hrozit útoky
 - vycházejí zejména z technických slabin konkrétního IS
 - podstata: lokální zmatení konkrétní osoby ověřující daný podpis
 - výrok této osoby se bude lišit od pozdějšího (správného) výroku soudce
- Řešení: univerzální nepopiratelnost
 - taková nepopiratelnost, kde role třetí strany není omezena na určitou skupinu vybraných autorit
 - čili každá ověřující osoba je schopna vydat rozhodnutí o pravosti podpisu konvenující s pozdějším verdiktem soudce

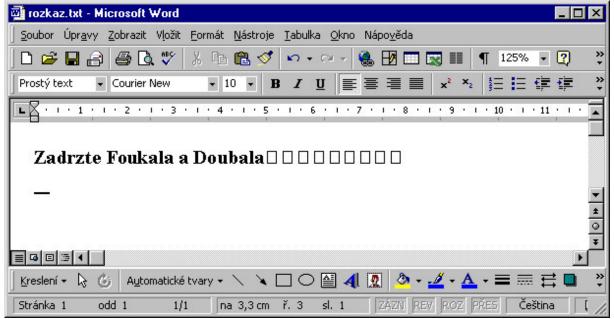
Zajišťování (univerzální) nepopiratelnosti

- Vyžaduje pečlivý formální rozbor procesů celého IS
 - mimo jiné se dotýká klíčového hospodářství
 - nikdo (ani sám majitel daného klíče) nesmí být schopen zcela ovlivnit hodnotu generovaných klíčů
 - zahrnuje i ostatní partie
 - formáty zpracovávaných dokumentů
 - architekturu adresářových a síťových služeb

Útoky na nepopiratelnost

- Využívají kryptoanalytické útoky na použité podpisové schéma k zajištění dílčích cílů hlavního útoku
- Cíl hlavního útoku
 - získat profit z napadení výroku o pravosti/nepravosti předloženého podpisu
 - útočník před soudem popírá svůj vlastní podpis
 - nejčastější případ
 - útočník* prokazuje, že někdo jiný podepsal jím* předložený dokument v jím* předložené podobě


- Základní princip: alternativní vysvětlení
 - útočník předkládá soudu (alternativní) vysvětlení toho, proč se u předloženého dokumentu nachází jeho (matematicky) platný podpis, jestliže on dokument nepodepsal
- Kryptologická opora soudních verdiktů
 - spočívá v tom, že <u>nelze nalézt alternativní</u> <u>vysvětlení</u>
 - čili, existuje pouze jedno matematicky korektní vysvětlení dané situace


Hledání alternativního vysvětlení

- Nalezení kolize
 - zpráv
 - veřejných klíčů
- Zpochybnění
 - nepadělatelnosti podpisů v daném schématu
 - kvality generování a ochrany privátních klíčů
 - bezpečnosti podepisovacího modulu
- Předstírání zmatení
 - kódování podepisovaných zpráv
 - trójský kůň

Příklad

–kódování zpráv- (1)

Příklad –kódování zpráv- (2)

Nepopiratelnost a fyzické předměty

- Typicky se dnes jedná o čipové karty
 - privátní klíč je uložen na kartě a chráněn mechanizmem PIN
 - volitelně lze privátní klíč na kartě i vygenerovat a provádět s ním podepisovací transformaci přímo v prostředí karty
 - klíč prokazatelně nikdy neopustí kartu
- Snižuje možnost alternativního vysvětlení
 - uživatel má klíč pod jistou úrovní své kontroly
- Sama karta ale nestačí
 - předstírání zmatení aplikace zobrazující podepisovanou zprávu není pod kontrolou čipové karty
 - zpochybnění kvality klíče generovaného na kartě (slabiny (P)RNG)

Nepopiratelnost a autonomní podpisové moduly

- Cílem je dále snížit riziko nalezení alternativního vysvětlení
 - součástí modulu může být i zobrazovací jednotka a klávesnice
 - Ize očekávat lepší řešení problémových oblastí čipových karet RNG, apod.
- Pro plošné nasazení však zatím nedostupné
 - řádově vyšší cena
 - možné problémy s kompatibilitou
- Nasazovány jako jádra klíčových systémů
 - certifikační autority
 - notářské služby
 - **...**

Elektronický podpis (1)

- Úzce spojen s podpisem digitálním
 - nejsou to ovšem zcela totožné pojmy
 - digitální podepisování chápeme jako bezpečnostně nejlepší způsob realizace podepisování elektronického
- Pojmy z jiné oblasti
 - digitální podpis je pojem kryptologický
 - elektronický podpis je pojem zejména právní a normotvorný
- Odlišný pohled
 - definice elektronického podpisu <u>stanovuje požadavky</u>
 - způsob realizace není v popředí zájmu
 - schémata digitálního podpisu se soustředí na plnění stanovených požadavků

Elektronický podpis (2)

- V ČR upraven zákonem
 - č. 227/2000 Sb., č. 226/2002 Sb.
 - včetně souvisejících vyhlášek a nařízení
- Vyhláška ÚOOÚ č. 366/2001 Sb.
 - doplňuje technické a technologické aspekty zákona
 - stanovuje přípustné kryptografické mechanizmy
 - styčná plocha mezi kryptologickým a legislativním pohledem

Elektronický podpis (3)

-korespondence pojmů-

- Data pro vytváření elektronického podpisu
 - privátní klíč uživatele
- Data pro ověřování elektronického podpisu
 - veřejný klíč uživatele

Elektronický podpis (4) -druhy podpisu a požadavky-

- Elektronický podpis (EP)
 - základní druh
 - není požadována nepopiratelnost
 - nestanovuje žádné další bezpečnostní vlastnosti
- Zaručený elektronický podpis (ZEP)
 - EP, který splňuje jisté bezpečnostní nároky
 - požaduje nepopiratelnost
 - lze jej chápat jako soubor požadavků na službu elektronického podepisování v daném IS jako celku
 - i když je definován jako soubor vlastností datové položky

- Kvalifikovaný elektronický podpis
 - není přímo pojem zákona
 - ten však používá jeho opisnou definici
 - ZEP, který splňuje rozšířené bezpečnostní nároky
 - veřejný klíč je certifikován kvalifikovaným certifikátem (viz zákon)
 - podpis je prováděn prostředkem pro bezpečné vytváření podpisu (viz zákon)
 - zvyšuje kvalitu nepopiratelnosti
 - snižuje možnost zmatení
 - požaduje autonomní podepisovací modul

Závěr

- Na bezpečnosti elektronického podepisování se podílí řada faktorů
 - počínaje kvalitou matematických primitiv a konče odolností pracovních stanic uživatelů
 - z kryptologického hlediska se jedná zejména o typ použitého schématu, kvalitu RNG, generování a uchovávání klíčů
- Hlavním cílem je nepopiratelnost
 - musíme být schopni útočníkovi* dokázat, že sám nebyl předmětem jiného útoku a tím zmařit jeho* útok
- Elektronické podepisování vs. digitální podepisování
 - legislativní vs. matematicko-technický pohled na dvě pronikající se oblasti

4

Další informace...

- Archiv českých článků o kryptologii
 - http://crypto.hyperlink.cz
 - http://cryptography.hyperlink.cz
- Ministerstvo informatiky České republiky
 - http://www.micr.cz
- EESSI The European Electronic Signature Standardization Initiative
 - http://www.ict.etsi.org/eessi/EESSI-homepage.htm