SELF-RECONSTRUCTION OF LIGHT BEAMS |
![]() |
|
![]() |
Many phenomena observable in our everyday life indicate that light propagates rectilinearly. Rectilinear propagation is one of the most apparent properties of light. It serves as an argument that light is a stream of particles. However, some optical phenomena and experiments indicate that the law of rectilinear propagation of light does not hold. They can be satisfactorily explained only on the assumption that light is a wave . Historically, the diffraction effects are associated with violation of the rectilinear propagation of light. The strong diffraction effects appear if the transverse dimensions of the beam of light are comparable to the wavelength. They are best appreciable for long waves such as sound or water waves. In optics, the diffraction effects are less apparent. They are responsible for the beam divergence in the free propagation and for penetration of light into the region of the geometric shadow.
In the modern treatment, diffraction effects are not connected with light transmission through apertures and obstacles, only. Diffraction is examined as a natural property of wavefield with the nonhomogeneous transverse intensity distribution. It commonly appears even if the beam is transversally unbounded. The Gaussian beam is the best known example. In optics, nondiffracting propagation of the beam-like fields can be obtained in convenient media such as waveguides or nonlinear materials. The beams then propagate as waveguide modes and spatial solitons, respectively. In 1987, the term nondiffracting beam appeared also in relation to the free-space propagation. Since that time, nondiffracting beams have been intensively investigated from both the theoretical and experimental point of view. A number of practical applications have also been proposed.
In present time, optics of nondiffracting beams represents an important part of modern classical optics. The particular research activities are directed to the following topics:
The contemporary research of nondiffracting beams follows up the previous research activities supported by the Grant J14/98 of the Ministry of Education and by the Grant 202/00/0142 of the Grant Agency of the Czech Republic. Attention is focused on both the theoretical and experimental problems of the nondiffracting propagation and self-reconstruction of light beams. The particular results can be classified into the following groups:
STATIONARY NONDIFFRACTING BEAMS
Thought the term "nondiffracting beam"
is controversial, after introductory discussions it has been fully
accepted in optics.
|
The nondiffracting beams exhibit interesting properties important for applications. Some of them are briefly reviewed.
Energetic properties of the vectorial nondiffracting beams can be described applying the Poynting vector P. It can be decomposed into the transversal and longitudinal components P=PT+PL. Though the intensity profile of the beam remains unchanged during propagation the transversal energy flow can be in general nonzero. It is restricted by the condition div PT =0. This condition can be simply interpreted: The transversal energy flow is source-free, or, equivalently, the lines of constant transversal energy flow are closed curves. The transversal energy flow can be conveniently analyzed as a superposition of the radial and azimuthal components PT=PR+PA. For the one-mode nondiffracting beam PR=0. The electromagnetic energy then flows along the direction of propagation or has the spiral character.
Self-imaging ![]()
|
Diffraction effects can be overcome in free propagation
of the source-free monochromatic wavefield described by the
homogeneous Helmholtz equation.
|
In recent time it has been shown that the coherent light field with an arbitrary transverse amplitude profile can be transformed into the state possessing an ability of the periodical reconstruction. The transverse intensity profile appearing at the planes of reconstruction then represents a very good approximation of the initial intensity profile. The transformation required for appearance of the self-reconstruction effect is based on the decomposition of the initial field into the set of nondiffracting modes with conveniently chosen propagation constants. It can be simply realized in the 4-f optical system (Fig. 7) applying the convenient Fourier filter. It is realized as an amplitude mask transparent only at the set of concentric annular rings. The field to be periodicly reconstructed is decomposed into the set of nondiffracting modes if its spatial spectrum is modified by the mask at the Fourier plane. The proposed method was verified experimentally. The obtained results are illustrated in Fig. 8.
The concept of the nondiffracting propagation of the stationary fields can also be generalized to the pulse propagation. The wideband pulslike nondiffracting wave packets are of particular interest for their applications in the ultrasound medical diagnostics. Optical applications of the nondiffracting pulses have also attracted attention. The dispersive temporal spread of ultrashort pulses complicates their application to the femtosecond spectroscopy and related fields. During propagation of the nondiffracting pulses the material dispersion can be eliminated due to the convenient composition of the spatio-temporal spectrum. It is formed by means of the generator whose dispersion is adapted to the material dispersion of the propagation medium. The nondiffracting pulses can be generated applying the holographic element, the so-called Lensacon. The required couplings of the spatial- and temporal-frequency spectra resulting in the vectorial nondiffracting pulses have also been analysed. This topic is open to further research.
The self-reconstruction concept applied to the monochromatic field has been generalized to the spatio-temporal self-reconstruction of the wave packets fulfilling the wave equation. The effect is based on the sampling of the spatial spectrum of the wave function and on its coupling to the temporal frequency spectrum. The predetermined spatio-temporal profile of the wave function is approximately reconstructed at the periodic spatial intervals along the propagation direction. If the temporal frequency spectrum of the field is not continuous but discrete, the periodicity appearing in both the spatial and temporal evolutions can be achieved. The reconstructed field then simultaneously exhibits propagation properties known as the self-imaging and the mode-locking.
The nondiffracting light propagation is an actual problem
of modern classical optics. It is not only important
for better understanding of the nature of the electromagnetic
field and of the diffraction effects but has also important
consequences for both the physical and technical applications.
The nondiffracting beams are considered to be used in
experiments testing the transfer of the light angular momentum to
the nano-particles, in electron accelerators and in experiments
of nonlinear optics. They were successfully used in acoustics
and metrology. At RCO, the particular attention will be focused
on the following theoretical and experimental problems:
The transverse intensity profiles of the nondiffracting beams depend on their spatial coherence. Numerical simulation of the nondiffracting beams generated by means of the Gauss-Shell source illustrates the intensity profiles for the degree of spatial coherence changing from 1 (left upper figure) to 0 (right bottom figure).
|