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Estimation of counted quantum phase
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The estimation of phase shift in realistic experiments is addressed here. Provided that the phase
concept is not ideal, the phase shift should always be inferred from the performed measurement.
Particularly, two different estimations are suggested. The conditional probability is given by the
experimentally observable dependence of the measured probability on the phase shift. As an explicit
example, the accuracy of the phase measurement on the Mach-Zehnder interferometer is evaluated

using different methods for comparison.
PACS number(s): 03.65.Bz, 06.30.Lz, 07.60.Ly

The problem of quantum phase is as old as quantum
mechanics itself [1], but new techniques of phase mea-
surement appeared recently in connection with the rapid
progress in quantum optics. Achievements in technology
of generation and detection of nonclassical light triggered
various schemes of feasible phase detection [2-18], to cite,
without requirements for completness, at least some titles
from the existing bibliography. Significantly, recent theo-
retical and experimental investigations of Noh, Fougéres,
and Mandel [11-13] started the wave of renewed inter-
est in this topic. Their operational approach is based on
multimode homodyne detection, where the phase shift is
derived from photon counting using four detectors. More
generally, any quantum phase operator may be associ-
ated with the simultaneous measurement of two commut-
ing Hermitian operators [19]. The ideal quantum phase
concepts can be distinguished as the reducible represen-
tations of a Euclidean algebra on Hermitian operators.
Nevertheless, such measurement requires a continuous
spectrum of registered observables and can be achieved
only as the limiting case. In the realistic quantum phase
measurement information about the phase shift is ob-
tained via counting of photons and the measured phase
parameter is therefore in principle discrete. On the other
hand, the induced phase shift is a continuous parame-
ter. The measured output therefore cannot be straight-
forwardly interpreted as possible values of phase shift.
This is the typical situation in quantum optics with re-
alistic finite energy fields [11-13,16,20,21].

In this paper, the realistic quantum measurement will
be completed by the quantum estimation of phase shift.
Particularly, two conditional probability distributions of
inferred phase shift will be suggested as an alternative
to the shift-invariant estimation proposed recently [22].
General theory will be illustrated on the example of the
Mach-Zehnder interferometer, where the differences be-
tween proposed and shift-invariant estimations are ap-
parent. The quantum estimation procedure is crucial for
phase concepts based on the detection of a different-than-
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phase variable [17,18,23], where the phase shift is inferred
rather than measured. On the other hand, only the ideal
quantum phase concepts yield information about phase
shift directly without any quantum estimation.

Let us describe the operator (Heisenberg) picture of
the discrete detection of a phaselike variable using advan-
tageously the formalism of generalized measurement [24].
Since the treatment is formally analogous to the contin-
uous case [19], let us point out the main differences only.
Suppose that the general measurement of a pair of ob-
servables represented by commuting Hermitian operators
Y1,Y2, [Y1,Y2] = 0 is available. Assuming the discrete
spectrum of the complex-valued operator Y =Y, +iYs,
the relations of completeness and orthogonality read
S luk) (yx| = 1, where |yi) are the orthonormal and
complete eigenvectors Y |yx) = vk |Yk);, (Ykl¥t) = Owi-
Here, for the sake of brevity, the notation does not show
explicitly the possible degenerations of the eigenvectors
|yx). The probability distribution of finding the complex
amplitude y; by performing the measurement on a gen-
eral quantum state |¢) is given by p(yx) = |('¢z|yk)|2.
The purpose of an arbitrary phase detection is to deter-
mine the nonrandom c-number displacement parameter
n € (—m, ] entering the displacement transformation [24]
of quantum state as |¢(n)) = e~V |¢), N being a Her-
mitian displacement operator. The variable 7 represents
the true value of the phase shift and the quantum phase
theory should determine this a priori unknown param-
eter as accurately as possible. The quantum measure-
ment specified above directly yields statistical informa-
tion about the discrete phaselike variable ¢ = arg[Y].
The dispersion of a detected phaselike variable [25] is
given as D? = 1 — |(e?¥)|?, where the exponential opera-
tor of the measured phaselike variable is

5~ [V (vty)-1/2 for Hg
R= { 0 for all states in Ho. 1)

Here, H, is the subspace spanned by the eigenstates with
zero complex amplitude Y|y = 0) = 0, 3 being the or-
thogonal complement of Ho. Handling data with indefi-
nite phase could be justified as in Ref. [19]. Nevertheless,
at this point, the formal analogy between discrete and
continuous models comes to an end. We should infer the
statistics of continuous phase shift variable ¢ from the
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knowledge of measured (discrete) phaselike output. The
measured phaselike variable ¢, € (—m,7] can achieve
only the discrete values ¢ consistent with the exponen-
tial operator (1). The probability for this to happen can
be easily expressed as the sum of all the contributions
DPm, for which argy,, = ¢x. The conditional probability
distribution of measuring the value ¢, when 7 is true is
then given as

pr(n) = Z

argym =%k

[(ymle= "N )|, (2)

This distribution is normalized with respect to the pa-
rameter k for each phase shift 7, > . pr(n) = 1. The
Bayes rule [25] may now be applied, asking what actual
value of phase shift ¢ could be inferred if the phase ¢
was detected,

p(lon) = & pe(@), 3)

normalization being C}, = f_:r d pr(0). This distribution
reflects the conditional probability of phase shift after a
single measurement without any prior knowledge. The
phase information may be associated with the conditional
probability of inferring the phase shift ¢ when the true
value is 7,

Pigln) = Y & pu(6) pa(n), @

% k

representing the first proposal of this paper. Let us
emphasize that phase ¢ is not a quantum mechanical
variable, but the estimation obtained from the measure-
ments. The quantum state of the field influences the
form of the distributions px(7), but not the prior knowl-
edge. The known dependence of the measured statistics
on the phase shift pg(n) fully determines the statistics of
the inferred phase shift P;(¢|n). The inferred probability
density is symmetric in the true and inferred phase shifts,
but is not shift invariant, it is dependent only on the dif-
ference n— ¢. Shift-invariant estimation was suggested by
Noh, Fougeéres, and Mandel [22]. They inferred the phase
shift as ¢ whenever for the true phase shift n+ 6 the out-
put o = ¢ + 0 is registered, 6 being an arbitrary phase
shift. Consequently, the resulting probability distribu-
tion representing the continuous limit of the treatment
of Noh, Fougéres, and Mandel is given as

Pxeu(@ln) = 5= Y mti—d+ 00 (5)
k

Both predictions (4) and (5) tend to comparable results,
if the quantum measurement (2) itself behaves in a shift-
invariant manner. Nevertheless, significant differences
can be expected, if the dispersion of a detected phaselike
variable strongly depends on the true value of phase shift
7. We will demonstrate this feature using the example of
the Mach-Zehnder interferometer. But before doing this
let us formulate a more effective estimation, which up-
dates the prior knowledge inferring the phase shift after
each trial in dependence on the measured output.

Let us suppose that the measurement of ¢, is per-
formed repeatedly n times; i = 1, 2,...,n, under identical
conditions (in the given quantum state for the same true
value of phase shift 7). The measured output ¢, should
be interpreted as the estimation of the phase shift with
the probability distribution p(¢|¢s,) in accordance with
relation (3). This information may be used as the prior
probability distribution for the subsequent (7 +1)th mea-
surement. Then for the uniform prior distribution before
the first trial, the probability distribution after the nth
measurement is given as the normalized product (likeli-
hood function)

Py(eln) o Hp(¢|<pk,-) (6)

i=1

and the actual phase shift may be determined using max-
imum likelihood estimation [26-28]. The dependence on
the true value of phase shift 7 is hidden in the statistics
of measured outputs ¢,, and may be shown explicitly for
sufficiently large number of trials n. Then each value ¢y,
appears about npg,(n) times in the likelihood function
and the distribution (6) reads

Pa(6I) = &y {H[pk(qs)]m’} : (7)
" k

where the normalization is

Can) = | :dtb{H[Pk((ﬁ)]”"(")} :

Index k exhausts all the possible values ¢ appearing
with nonzero probability. This is the second proposal for
how to infer the statistics of phase shift from the per-
formed measurement. Since the phase information is ac-
cumulated in the process of measurement, this estimation
is more efficient than estimation based on a single mea-
surement. The needed total expenses are n times larger
than in the case of single trial. The resulting conditional
probability distribution P;(¢|n) is neither shift-invariant
nor symmetric. However, for sufficiently large number of
repetition n (the so called “Braunstein’s knee”), the dis-
tribution is becoming Gaussian with the resolution cor-
responding to the Fisher information [29].

Let us apply our theory to the description of the SU(2)
interferometer [8]. Similar quantum detection of phase
shift was already addressed in Ref. [16]. The ordinary
measurement setup is depicted in Fig. 1. Let us restrict
ourselves to the case of single-mode quasimonochromatic
fields on each port for simplicity. Within the domain of
classical optics, the input fields with complex amplitudes
V1, V5 are combined on the 50-50 ideal beam splitter and
the phase shift 7 is induced in the arms of the interferom-
eter. Assuming the closed auxiliary input port 2 V5 = 0,
the integrated intensities on output ports W3, W, may be
easily specified as W3 = W; cos? /2, W, = W sin’ /2,
where W; = £ ftHT dt' |[V1(t')|? and € is the efficiency
of the detector. In the classical interferometry, the aver-
age value of energy is registered on each of output ports 3
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FIG. 1. Setup of Mach-Zehnder interferometer.

and 4 in dependence on the phase shift. The phase differ-
ence 7 is then inferred from this interferometric pattern.
The accuracy is given in semiclassical approximation by
the fluctuations of photon number [4,5,8]. The quantum
counterpart may be easily established assuming the clas-
sical relation

W,

tann/2 = W (8)
The desired phase shift can be deduced from the phase
of the complex amplitude Yy,z = W3 + iW,. Assuming
canonical quantization and an ideal process of photode-
tection, a quantum model may be obtained by formally
replacing complex amplitudes and integrated intensities
by annihilation operators d; and photon number opera-
tors N;, respectively, ¢ = 1,2,3,4. The quantum anal-
ogy of the closed auxiliary port 2 is then the condition
(a2) = 0. The complex amplitude Yasz may be quantized
introducing advantageously the generators of the SU(2)
algebra [8]. Let us define J; = %(&1&2 + azal), Jo =
%(&J{&g - &1&;), Js = %(ﬁl — fiz), and the Casimir
operator as J2 = JZ 4+ J2 + J2 = C(C + 1), where
¢ = 3 (1 + 7). Then the measured complex amplitude
is

x Js exp(injz), (9)

the displacement operator N being J,. The measured
phaselike variable ¢ reproducing in the classical limit the
relation (8) should be defined as

tan? g = tan(argYapz). (10)

The sine and cosine are given using the measured photo-
electron counts N3, N, as

sin —:t2 N3Ny

= E N,
(11)

cos _ N — Ny

W—N3+N4

Obviously, this detection cannot distinguish the sign of ¢.
Let us specify for concreteness the quantum measurement
in the state with closed auxiliary input port 2 and N
photons on the input port 1, |);, = |[N);1 ® |0)2. The
joint probability distribution of counting N3 = N —k and
N4 = k is given by binomial distribution,

P(N3=N—k,Ny=k) = (]Z) [cos2 Q] Nk [sin2 g]k .

2
(12)
Detection of k = 1,2,..., N photons on port 4 should be
interpreted as registration of phases ¢ and ¢_ = —pg,
k
pr = 2arctan 4/ ——-. (13)

N -k

Phases with different sign are detected with equal proba-
bilities px(n) = p—x(n) = 3P(N — k, k). Zero phase vari-
able o9 = 0 for £ = 0 is detected with the conditional
probability pr(n) = P(V,0). Consequently, the sharpest
distribution appears when the true phase shift is n = 0,
since only the value ¢} = 0 is registered, px(n = 0) = dxo.
On the contrary, the broadest distribution appears at
n=mn/2.

Let us specify explicitly the case of sharpest phase mea-
surement. The inferred conditional probability distribu-
tion (4) reduces to the only nonzero term, yielding

P(gln=0) = 5"

m [cos ¢/2]2N. (14)

Dispersion of inferred phase shift is simply

2

" ; 2N +1 2

2 — — id = = — & —
Dyz =1 ‘ _"d¢e P(¢|n =0) (N +1)2 N’
(15)

in accordance with the accuracy of the classical interfer-
ometry. One can also easily verify that the estimation (7)
tends to the same probability distribution in this special
case. Of course, the number of particles in each trial
should be renormalized as N/n to compare the perfor-
mance with the same total energy N.

-7 —7/2 0 w/2 T

FIG. 2. The inferred probability distributions Pi(¢|n = 0)
(full line), P1(¢|n = m/2) (dot-dashed line), and Pnrm (o) for
1 = 0 (dashed line) for N = 10.
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The estimation (5) exhibits different behavior, yielding
the equal shape of probability distribution for any true
value of phase shift, independent of the actually detected
statistics pg(n). The explicit expression is

P(e) = - i (JIZ) { [cOSz %} o [Sin2 a—_z‘p—k] k

k=0

N—k k
+ [cos2 #] [sin2 #] }, (16)

where ¢}, is defined in (13) and o = ¢ — 5. Obviously,
the distribution exhibits one peak, even if the measured
values and inferred distribution (4) show two peaks. Nu-
merical comparison of both the estimations for the case of
sharpest measurement 7 = 0 and for » = n/2 is given in
Fig. 2. Of course, this rough discrepancy between both
the estimations disappears provided that phase shift is

estimated on the interval (0, 7) only.

We have explicitly demonstrated that the discrete vari-
able cannot be directly used as a good estimator of con-
tinuous phase shift. Detection of any phase-sensitive
(continuous or discrete) variable may be in principle used
for evaluation of phase shift. The argumentation and
the derived probability distributions (4) and (7) do not
change, if we disregard the phaselike character of mea-
sured output assuming that k represents a general phase-
sensitive variable. Phase shift is always partially mea-
sured and partially inferred [16-18], even in the case of
classical interferometry. Phase measurement represents
one of the most accurate detection techniques currently
available, and the investigation of noises involved there-
fore deserves corresponding attention.
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ternal grant of Palacky University and by Optical Swiss
Program.
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