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The interaction of the electromagnetic field with lossless Lorentz oscillators modeling the inhomogeneous
dielectrics is diagonalized in a closed Fabry-Pe´rot resonator using the generalized polariton transformation.
Resulting dispersion relations coincide with the classical ones obtained by the solution of the wave equation.
The corresponding decomposition is, however, orthogonal and complete in the enlarged Hilbert space.
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I. INTRODUCTION

The investigation of the electromagnetic field in dielec-
trics has attracted growing attention recently@1–5#. Particu-
larly, quantum aspects of this problem are of current interest
due to the potential applications in technology of nanostruc-
tures. This research includes investigation of quantum wells
embedded in microcavities@6–8# and generation and propa-
gation of nonclassical states of light. Hence the quantization
of the electromagnetic field in inhomogeneous dispersive lin-
ear dielectrics represents a nontrivial problem@9–11#. In this
paper the canonical quantization scheme formulated by Hutt-
ner and Barnett@5# for homogeneous dielectrics will be ex-
tended to the case of lossless dispersive inhomogeneity. The
method will be illustrated in the one–dimensional problem
of quantization of the electromagnetic field in a closed cavity
with dispersive inhomogeneity modeled by the finite super-
position of lossless Lorentz oscillators. Normal modes are
associated with~generalized! polariton transformation. Po-
lariton solution exactly yields the orthogonal decomposition.

The considerations presented by this paper are motivated
by standard electromagnetic theory@12#. Suppose for con-
creteness the geometry of a closed Fabry–Pe´rot resonator
with dispersive inhomogeneity@refractive indexn(V)# along
the z axis, as sketched in Fig. 1. For the sake of simplicity
thes polarization of the electric field will only be assumed in
the following. Using the Maxwell equations, the eigenmodes
of the cavity with the time dependenceeiVt may be specified
as a solution of the Helmholtz~time-independent! wave
equation

FD1
V2

c2
@11u~z!x~V!#GE50, ~1!

wherex(v) is the susceptibility. The inhomogeneity is in-
cluded in the characteristic function

u~z!5 H1 for uzu< l /2
0 for uzu. l /2.

Imposing the boundary conditions at6L/2 as a perfect re-
flection at the mirrorsE(6L/2)50, the solutions of Eq.~1!
represent an eigenmode decomposition in classical electro-
magnetic theory. In general, susceptibility should be treated
as a complex-valued function of frequency due to the
Kramers–Kronig relations@13#
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x5x81 ix9; relating the real and imaginary parts by Hilbert
transformation. In such a case the eigenmode decomposition
~1! does not exist either for homogeneous cavity, since any
propagating wave is damped. Nevertheless eigenmodes may
be found providing that the imaginary part of susceptibility
disappears. Hence the susceptibility may be considered as
real and Eq.~1! may be simply solved in the regions where
the coefficients are continuous functions ofz. The electric
field E must be continuous together with its first derivation
]E/]z for eachuzu<L/2, yielding the dispersion relation
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FIG. 1. Geometry of a closed cavity with dispersive inhomoge-
neity in thez direction.

PHYSICAL REVIEW A MAY 1996VOLUME 53, NUMBER 5

531050-2947/96/53~5!/3687~4!/$10.00 3687 © 1996 The American Physical Society



whereQz
25(V2/c2)2q2 andQ8z

25Qz
21x(V)V2/c2. Here

q represents the two-dimensinal~2D! component of a wave
vector parallel to the boundaries. This transcendent equation
may be solved yielding the discrete set of eigenvalues. Nev-
ertheless, a simple analysis shows that the corresponding
eigenfunctionsEq,m(z) are not orthogonal since the ‘‘poten-
tial’’ x(V) depends on the frequency. This is the source of
theoretical troubles, since the decomposition of the electric
field is becoming questionable. The quasinormal modes in a
leaky macrocavity were used in Refs.@14#. Quantization of
this scheme will be given in the following section.

II. CANONICAL QUANTIZATION

Let us formulate a canonical description of the interaction
of a transversal electromagnetic field with matter. Neglecting
other losses the the Lagrangian readsL5*d3rL(r ), where
the Lagrangian density isL5Lem1Lmat1L int ,

Lem5
e0
2

@Ȧ22c2~“3A!2#, ~3!

Lmat5
r

2
@Ẋ22v0

2X2#, ~4!

L int52aA–Ẋ. ~5!

Boldface characters denote vectors and the overdot means
time derivation]/]t. The electromagnetic part is represented
by vector fieldA defined in the whole cavity. The polariza-
tion part is modeled by a harmonic-oscillator field~Lorentz
model! with amplitude vectorX, which is nonzero only in
the interval of the inhomogeneityuzu< l /2, v0 being the fre-
quency andr the density. Interaction of both fields is char-
acterized by interaction constanta. For simplicity, linearly
polarized fields with polarization parallel to discontinuity
planesz56 l /2 will be assumed (s polarization! in the fol-
lowing. The vector fieldA may be interpreted as electric
intensity and both fields may be represented as~real! scalar
fields. The Lagrange-Euler equations then yield the wave
equation~1! with the susceptibility

x85
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e0r~v0
22V2!

, x952
pa2

e0r
d~v0

22V2!. ~6!

The interacting fields may be quantized using expansion
in orthogonal basis relevant to respective free fields. A stan-
dard approach@5# may be used in the planexy perpendicular
to the direction of inhomogeneity, sinceq is conserved due
to the translation symmetry. In thez direction, the eigenfunc-
tion for the light and matter excitation parts should be dis-
tinguished. Assumingeiqs/(2p) dependence,s being the
projection of the 3Dr vector into thexy plane,$wm(z)% are
the solutions of the time-independent wave equation

F d2dz2 1Qm
2 Gwm~z!50; Qm
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Vm

2

c2
2q2, ~7!

fulfilling the given boundary conditions atuzu<L/2. Assum-
ing for concreteness perfect reflection on the end mirrors, we
have Qm5pm/L; m51,2,3, . . . . Frequencies are quan-

tized asVm(q)5cA(pm/L)21q2, q5uqu. Corresponding
eigenfunctions are given aswm(z)5A2sin@mp(z/L11/2)#.
The inhomogeneity of matter excitations is included in the
definition of eigenfunctionsxq,j(r ), since they are nonzero
only in the intervaluzu< l /2. Two sets of functionswq,m(r )
andxq,j(r ) defined in the 3D space are orthogonal and com-
plete in the volumes of quantization

E d3rwq,m~r !wq8,n
* ~r !5d~q2q8!dm,n ,

(
m

E d2qwq,m~r !wq,m* ~r 8!5d~r2r 8!,
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* ~r !5d~q2q8!dj,h ,

(
j
E d2qxq,j~r !xq,j* ~r 8!5d~r2r 8!u~z!.

The cross products are given by the matrix elements

E wq,m~r !xq8,j
* ~r !d3r5d~q2q8!Km,j ,

Km,j5E
2 l /2

l /2

wm~z!xj~z!dz, Km,j5Km,j* .

The functions$xj(z)% are orthogonal and complete in the
interval uzu< l /2. The explicit form of these functions is not
important in our considerations. In the following the decom-
position of the electromagnetic field will be consistently enu-
merated by Latin indices, whereas Greek ones will be used
for the matter oscillations. The classical fields may be de-
composed as

A~r ,t !5
1

2p(
m

E d2qAq,m~ t !wq,m~r !,

X~r ,t !5
1

2p(
j
E d2qXq,j~ t !xq,j~r !.

The total LagrangianL5Lem1Lmat1Lint may be quantized
as

Lem5e0(
m

E8
d2q@ uȦq,mu22Vm

2 ~q!uAq,mu2#, ~8!
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j
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Lint52a(
m,j

E8
d2qKm,j@Aq,m•Ẋq,j* 1c.c.#. ~10!

Here the prime means the integration over the half of the
reciprocal space. Canonically conjugated variables are given
as
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Aq,m* →Pq,m5
]L

]Ȧq,m*
5e0Ȧq,m , ~11!

Xq,j* →Yq,j5
]L

]Ẋq,j*
5rẊq,j2a(

n
Kn,jAq,n , ~12!

and as the complex conjugated relations. As the only differ-
ence in comparison to homogeneous dielectrics@5#, an infi-
nite number of termsAq,n appears in relation~12!. Standard
quantization is prescribed by the commutation relations

@Aq,m ,Pq8,n
* #5 i\dm,nd~q2q8!, ~13!

@Xq,j ,Yq8,h
* #5 i\dj,hd~q2q8!, ~14!

and since now the field variables will be considered as op-
erators. Annihilation operators of the electromagnetic field

aq,m5A e0
2\Vm~q!FVm~q!Aq,m1

i

e0
Pq,mG ~15!

and matter excitations

bq,j5A r

2\v0
Fv0Xq,j1

i

r
Yq,jG ~16!

are fulfilling the ordinary boson commutation relations
@aq,m ,aq8,n

†
#5dm,nd(q2q8), @bq,j ,bq8,h

†
#5dj,hd(q2q8).

Extending formally the definitions into the full space of vec-
torsq, the Hamiltonian reads

H5(
m
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j
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E d2q
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† !•~aq,m1a2q,m
† !, ~17!

the effective interaction constant beingG5a/Ae0r. The
matrix element is given by

Dn,m5(
j
Kn,jKm,j

5(
j
E

2 l /2

l /2

wn~z!xj~z!dzE
2 l /2

l /2
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5E
2 l /2

l /2
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The general form of polariton transformation diagonalizing
the Hamiltonian is given as

Bq,V5(
m

Wq,maq,m1(
j
Xq,jbq,j1(

m
Yq,ma2q,m

†

1(
j
Zq,jb2q,j

† . ~18!

Indexm exhausts all the cavity modes andj similarly does
all the modes of the decomposition of matter excitations. The
standard diagonalization condition

@Bq,V ,H#5\VBq,V ~19!

yields the dispersion relation for eigenfrequencyV and rela-
tions for coefficients in~18!. The anticipated operator solu-
tion is normalized with respect to the boson commutation
relation @Bq,V ,Bq8,V8

†
#5d(q2q8)dV,V8. Straightforward

but lengthy calculations lead to the following equations~de-
pendence onq will be omitted for brevity!:
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Finally, the dispersion relation follows as the condition for
the existence of the nontrivial solution of linear equations for
Tm ,

Tm5
G2V2

~v0
22V2!~Vm

2 2V2!(n Dm,nTn , ~24!

whereTm5(Wm2Ym)/AVm. The recurrent system of linear
equations~24! may be rewritten to the form of a differential
equation. Let us define formally the function
A(z)5(mTmwm(z), which is continuous and has continuous
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derivationdA/dz on the intervaluzu<L/2. After simple ma-
nipulations the equation forA(z) reads

F d2dz2 1Qz
2GA~z!52u~z!

G2V2

c2~v0
22V2!

3E
2 l /2

l /2

(
j

xj~z!xj~z8!A~z8!dz8.

~25!

Since the functionsxj(z) are complete on the given interval,
the equation~25! coincides with the scalar wave equation~1!
for a particular value of susceptibility~6!. The function
A(z) is therefore given as a Fourier transformation of the
classicalc-number vector potential

A~z!5
1

2pE d2s dte2 iqs2 i tVA~r ,t !

[(
m

E dte2 i tVAq,m~ t !wm~z!.

Hence the quantum problem is related to the classical solu-
tion of the wave equation with a dispersive lossless inhomo-
geneous medium. Classical solution yielding a nonorthogo-
nal eigenmode functions is completed by quantum treatment
characterized by orthogonal decomposition. A little generali-
zation using the principle of superposition@13# is possible,
providing that the electromagnetic field is interacting with a
finite ensemble of independent oscillators with Lagrangian
densities as in~4,5!, but distinguished by different param-
etersv0 ,v1 , . . . ,a0 ,a1 , . . . , andr0 ,r1 , . . . . Then

x8~V!5(
l

G2~v l !

v l
22V2 , ~26!

x9~V!52p(
l
G2~v l !d~v l

22V2!

and the susceptibility remains lossless.

III. CONCLUSION

Canonical quantization of the electromagnetic field in lin-
ear dispersive lossless inhomogeneous media was formulated
in terms of the overlapping of wave functions related to
quantization of free electromagnetic and matter excitation
fields. Waves in a dispersive inhomogeneous medium in clas-
sical electrodynamics correspond to generalized polariton
transformation. Even if quantum and classical problems
yield the same dispersion relations, there is a difference be-
tween both the treatments. Since the electromagnetic field
itself is not conserved, the respective eigenfunctions are not
orthogonal representing the system of quasinormal modes
@14#. They may be used for a description of the electromag-
netic field inside the cavity; however, since completeness and
orthogonality relations should be redefined, the description is
more complicated than in the ordinary case of orthogonal
modes. This contribution focused the quantum analogy of
dispersive inhomogeneity modeled by lossless Lorentz oscil-
lators. The analogous treatment of quantum objects—
excitons or dielectrics with losses—needs, however, further
analysis.
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