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Decomposition of the electromagnetic field in lossless inhomogeneous dispersive dielectrics
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The interaction of the electromagnetic field with lossless Lorentz oscillators modeling the inhomogeneous
dielectrics is diagonalized in a closed Fabryrd®®eesonator using the generalized polariton transformation.
Resulting dispersion relations coincide with the classical ones obtained by the solution of the wave equation.
The corresponding decomposition is, however, orthogonal and complete in the enlarged Hilbert space.

PACS numbes): 42.50—-p, 03.70:+k, 71.36+cC

I. INTRODUCTION , 2 [  wx"(w)
. . S, X' (Q)=—| do——37,
The investigation of the electromagnetic field in dielec- mJo 0=
trics has attracted growing attention recently-5]. Particu-
larly, quantum aspects of this problem are of current interest ,
due to the potential applications in technology of nanostruc- " 20 (= x'(@)
p pp ay x'(Q)=—— dwm,

tures. This research includes investigation of quantum wells
embedded in microcavitig$—8|] and generation and propa-
gation of nonclassical states of light. Hence the quantizatiog(:Xr +iy"; relating the real and imaginary parts by Hilbert

of the electromagnetic field in inhomogeneous dispersive lingansformation. In such a case the eigenmode decomposition
ear dielectrics represents a nontrivial problgm11]. In this (1) does not exist either for homogeneous cavity, since any
paper the canonical quantization scher_ne formulat_ed by HUtbropagating wave is damped. Nevertheless eigenmodes may
ner and Barnetf5] for homogeneous dielectrics will be ex- e found providing that the imaginary part of susceptibility
tended to the case of lossless dispersive inhomogeneity. Thﬁsappears. Hence the susceptibility may be considered as

method will be illustrated in the one—dimensional problem, o 404 Eq(1) may be simply solved in the regions where
of quantization of the electromagnetic field in a closed cavityyhe coefficients are continuous functions of The electric

with dispersive inhomogeneity modeled by the finite supersig|q £ myst be continuous together with its first derivation

position of lossless Lorentz oscillators. Normal modes argyg ;5 for each|z|<L/2, yielding the dispersion relation
associated withigeneralizedl polariton transformation. Po-

lariton solution exactly yields the orthogonal decomposition.
The considerations presented by this paper are motivated

by standard electromagnetic thedd/?]. Suppose for con-

creteness the geometry of a closed FabryePessonator

with dispersive inhomogeneifyefractive index1({2)] along

the z axis, as sketched in Fig. 1. For the sake of simplicity Q’tar{Q L__I} =-Q ta,-{Q'I_}

thes polarization of the electric field will only be assumed in z ‘2 ‘ z2)

the following. Using the Maxwell equations, the eigenmodes

of the cavity with the time dependenel!! may be specified

as a solution of the Helmholtttime-independent wave

equation X

L—I |
Q;tar{ QZT} = QZCO[{ Qé E} ) (2

2

Q
A+ ?[1+0(Z)X(Q)] E=0, (1)

where y(w) is the susceptibility. The inhomogeneity is in-
cluded in the characteristic function

-L/2 -1/2 1/2 L/2 z

1 for |z|<l1/2

G(Z)Z[o for |2|>1/2. (@)

Imposing the boundary conditions atL/2 as a perfect re- y
flection at the mirror€E(*L/2)=0, the solutions of Eq(l) R=1 R=1
represent an eigenmode decomposition in classical electro- ~ -
magnetic theory. In general, susceptibility should be treated

as a complex-valued function of frequency due to the FIG. 1. Geometry of a closed cavity with dispersive inhomoge-
Kramers—Kronig relationfl3] neity in thez direction.
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where Q2= (0?/c?)~g? andQ'2= Q7+ x(2)Q?/c? Here tized asQ,(q)=cy(7#m/L)2+ g2, q=|q|. Corresponding

g represents the two-dimensin@D) component of a wave eigenfunctions are given as,(z)= \/Esir[mw(z/L+1/2)].
vector parallel to the boundaries. This transcendent equatiofg jnhomogeneity of matter excitations is included in the
may be solved_ yielding the _dlscrete set of eigenvalues. Ne,Vdefinition of eigenfunctiongq (1), since they are nonzero
ertheless, a simple analysis shows that the correspondmtgnly in the interval|z|<1/2. Two sets of functionssq,m(r)

eigenfunctionsE, (z) are not orthogonal since the “poten- Ndxq.(r) defined in the 3D space are orthogonal and com-
tial” x(Q) depends on the frequency. This is the source oglete ?’n the volumes of quantization

theoretical troubles, since the decomposition of the electri
field is becoming questionable. The quasinormal modes in a

. . . . * ’
Iegky macrocavity were u;ed in Ref14]. Quan_tlzatlon of J d3r<pqym(r)goq,,n(r)=6(q—q ) min s
this scheme will be given in the following section.

Il. CANONICAL QUANTIZATION > f d2q@gm(M) @g m(r')=d8(r—r’),
m

Let us formulate a canonical description of the interaction
of a transversal electromagnetic field with matter. Neglecting
other losses the the Lagrangian reads [d3 “(r), where f d®r xq, (N xy (N =8(a-9") 8 ,,
the Lagrangian density i = Z¢nt Zmatt Zint »

. 2 N — !
A,Z}emzﬂ[Az—Cz(VXA)z], 3 Zg fd QXq,g(r)Xg,g(r )=6(r—r")e(z).
p . The cross products are given by the matrix elements
~%Tmat:§[xz_ ngz]' (4)
) . f (Pq,m(r))(;r_g(r)dsr:5(q_q,)Km,§,
L= — aA-X. (5)
Boldface characters denote vectors and the overdot means _ [ L
time derivationd/ dt. The electromagnetic part is represented Kine= fﬁwzgom(z)xg(z)dz, Kine=Kme-

by vector fieldA defined in the whole cavity. The polariza-

tion part is modeled by a harmonic-oscillator fidldbrentz  The functions{x(z)} are orthogonal and complete in the
mode) with amplitude vectorX, which is nonzero only in interval |z|<I/2. The explicit form of these functions is not
the interval of the inhomogeneity|<I/2, w, being the fre-  important in our considerations. In the following the decom-
quency and the density. Interaction of both fields is char- position of the electromagnetic field will be consistently enu-
acterized by interaction constaat For simplicity, linearly  merated by Latin indices, whereas Greek ones will be used
polarized fields with polarization parallel to discontinuity for the matter oscillations. The classical fields may be de-
planesz= *1/2 will be assumedq polarization in the fol-  composed as

lowing. The vector fieldA may be interpreted as electric

intensity and both fields may be representedrea) scalar 1

fields. The Lagrange-Euler equations then yield the wave A(rvt):ﬁz jdquq,m(t)‘Pq,m(r)v

equation(1) with the susceptibility "

a2 2

1
I N S L Y Sy X(r)==—> Jqux (1) xq ().
X eop(a)g—Qz)' X cop 8(wg—Q%). (6) 274 a.£ q.¢

The interacting fields may be quantized using expansior he total Lagrangiam =L ¢+ Lmart Line may be quantized
in orthogonal basis relevant to respective free fields. A stanas
dard approach5] may be used in the plangy perpendicular
to the direction of inhomogeneity, sineeis conserved due _ "o 2 2 2
to the translation symmetry. In theedirection, the eigenfunc- Lem= 60% J A%l Agqml*— Qn(D[Aqml?],  (8)
tion for the light and matter excitation parts should be dis-
tinguished. Assuminge'%/(27) dependences being the , ,
projection of the 3Dr vector into thexy plane,{¢n(2)} are Lmar=p f d2q[ | Xq, % — @§|Xq.l%1, (9)
the solutions of the time-independent wave equation ¢

2

d QZ ’ .
G2 Qnlem(@=0; Qi="z - (7 Lin=—a2, f FGn d Aqm Xge+ce]. (10

fulfilling the given boundary conditions &t|<L/2. Assum- Here the prime means the integration over the half of the
ing for concreteness perfect reflection on the end mirrors, weeciprocal space. Canonically conjugated variables are given
have Q,=7m/L; m=1,2,3... . Frequencies are quan- as



aL

A% = Pam=———= €oAqm, (12)
gq,m
XE Y L X ZK A (12)
q.¢ " Yaé™ TPAqET @ n&\q,n»
0.6
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and since now the field variables will be considered as op-
erators. Annihilation operators of the electromagnetic field

and as the complex conjugated relations. As the only differ-

ence in comparison to homogeneous dielectrids an infi-
nite number of term#\, , appears in relatiofl2). Standard
guantization is prescribed by the commutation relations

[Aq,maP;r,n]:iham,na(q_q’)a

[Xq,§ !Y;f’n] =

(13

i78;,0(0—q’), (14)

Dn,m

h
+—-G?
o

the effective interaction constant beir@= a/+egp. The
matrix element is given by

Dn,m: Eg Kn,gKm,g

12 2
:é f—|/2¢”(Z)X§(Z)dzj_|/2€Dm(2')Xg(z’)dz'

1/2
f ¢en(2)em(z)dz
-2

The general form of polariton transformation diagonalizing

the Hamiltonian is given as
Bqﬂ:% Wq,maq,m+2§ qugbq,g-l-% Yoma. qm
(18)

+E§ Zgb g

Index m exhausts all the cavity modes agdsimilarly does

all the modes of the decomposition of matter excitations. Th(?

standard diagonalization condition
[quﬂ,H]:hQquﬂ (19)

yields the dispersion relation for eigenfrequetizyand rela-
tions for coefficients in18). The anticipated operator solu-

deqth(q)aqmaqm+2 fdzqhwobngq§+ G\/—E fdz

d2q m(aq'rﬁ— aT_q,n) . (aq,m+ aT_q,m),

_ 60 |
aq,m_ V ZﬁQm(Q) Qm(q)Aq,m+ € Pq,m (15)
and matter excitations
e .

are fulfilling the ordinary boson commutation relations

T ’ T ’
[aq,m vaqr,n]: 5m,n5(q_q ) [bq,§ abqr,”]: 5§,n5(q_q )-
Extending formally the definitions into the full space of vec-
tors q, the Hamiltonian reads

\/—()(aqn+a—qn) (b & b—qg)

17
[
_ 1 2 Dmk _
(O mwm+zeg Joa W
o
+5 FZ Km.e(Xe+Z) =0, (20)
1 Dk
(Ot Y= 5672 55 (Wh Y0
i oo
_Eeﬁig Kim.e(Xe+Zg)=0, (21)
(Q—we)Xs+ 5 G\/_E\/_W ~Y,)=0, (22
(Q+ wo)Z— G\/—Z 8 (W,—Y,)=0. (23

J_

Finally, the dispersion relation follows as the condition for
he existence of the nontrivial solution of linear equations for

T,

G202
(w5—02)(Q5-0?)

Tm= ; DmnTh, (24)

tion is normallzed with respect to the boson commutationyhereT ;= (W~ Y1)/ VQm The recurrent system of linear

relation [Bgq, B! o 01=6(d—0q)8q,q. Straightforward
but lengthy calculatlons lead to the following equatigds-
pendence o will be omitted for brevity:

equationg24) may be rewritten to the form of a differential
equation.
A(2) =2, Tmem(2), which is continuous and has continuous

Let us define formally the function
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derivationd A/dz on the intervalz|<L/2. After simple ma-

nipulations the equation fok(z) reads X"(Q)=~— WZ G w) dwf—Q?)
d2 GZQZ
2 —
a2 T Qz|AD)=—-0(2) (02— 0?) and the susceptibility remains lossless.
112
xf > xd2)x{(2)AZ)dzZ. Ill. CONCLUSION
=112 ¢

Canonical quantization of the electromagnetic field in lin-
ear dispersive lossless inhomogeneous media was formulated
in terms of the overlapping of wave functions related to

the equatior(25) coincides with the scalar wave equatidn quantization of free electromagnetic and matter excitation
for a particular value of susceptibility6). The function fields. Waves in a dispersive inhomogeneous medium in clas-

A(2) is therefore given as a Fourier transformation of theSical electrodynamics correspond to generalized polariton

classicalc-number vector potential transformation. Even if quantum and classical problems

yield the same dispersion relations, there is a difference be-

1 L tween both the treatments. Since the electromagnetic field

A(z)= Zf d?s dte "9 eA(r 1) itself is not conserved, the respective eigenfunctions are not

orthogonal representing the system of quasinormal modes

22 dte "OA. (1) [141 'Ifhey' may be used' for a descript?on of the electromag-

T am(t) em(2)- netic field inside the cavity; however, since completeness and

orthogonality relations should be redefined, the description is

Hence the quantum problem is related to the classical solunore complicated than in the ordinary case of orthogonal

tion of the wave equation with a dispersive lossless inhomomodes. This contribution focused the quantum analogy of

geneous medium. Classical solution yielding a nonorthogodispersive inhomogeneity modeled by lossless Lorentz oscil-

nal eigenmode functions is completed by quantum treatmerators. The analogous treatment of quantum objects—

characterized by orthogonal decomposition. A little generali-€xcitons or dielectrics with losses—needs, however, further

zation using the principle of superpositiph3] is possible, analysis.
providing that the electromagnetic field is interacting with a
finite ensemble of independent oscillators with Lagrangian

(29

Since the functiong(z) are complete on the given interval,
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