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The near-photon-number eigenstates introduced by Yuen [Phys. Rev. Lett. 56, 2176 (1986)] link to-
gether squeezing, antibunching, and phase properties of light. They are the crescent states generated by
the crescent operator introduced here, and physically they represent another explicit example of
minimum uncertainty states of the Shapiro-Wagner phase concept.

I. INTRODUCTION

There is strong interest in the improvement of the per-
formance of optical devices beyond the shot-noise limit
predicted by classical optics. The focus of quantum op-
tics is therefore on the nonclassical behavior of light,
such as squeezing [1], antibunching, and sub-Poissonian
photocount statistics [2]. An ‘“old” problem of the phase
operator in quantum mechanics has also received
renewed and increasing interest, since many measurable
effects may be associated just with the phase shift of a
single-mode field.

The purpose of this Brief Report is to emphasize that
the nonclassical properties of light are simply associated
with the phase properties in the feasible model of
Shapiro-Wagner (SW) phase measurement via simultane-
ous registration of quadrature components [3-5]. The
states specified in Ref. [6] as noise minimum states
(NMS), which minimize the variance of photon number
An under the given constraints, provide the ultimate
phase resolution of SW phase measurement predicted in
Ref. [7]. The extremal properties of an example of NMS
introduced by Yuen [8] as a near-photon-number eigen-
state field are specified here. They are generated by the
state reduction during the parametric down conversion of
four-wave mixing [9] and provide the crescent shape of
Q—quasidistribution typical for the Susskind-Glogower
(SG) phase concept [10]. This feature may be expressed
easily by the action of the crescent operator. Moreover,
such states are also stationary states in a medium with
Kerr nonlinearity and they can be treated as displaced
Fock states [11]. As the last interesting property, let us
note that they are the eigenstates of the operator, associ-
ated with the simultaneous measurement of photon num-
ber and quadrature components. The similar combined
conditional probability distributions are investigated in
connection with superposition of classically distinguish-
able quantum states [12]. All these reasons support the
importance of investigated states in quantum optics.

II. CRESCENT STATES

The following inequality was derived recently [6]:
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are half-axes of the error ellipse, A2=A2sin’® + A3 cos’®,
and ®=1larg((var@)’) —arga. In the following we will
abbreviate using the symbols var for variance and A for
the root-mean-square of variance of an appropriate
operator, for convenience. Expression (1) was derived on
the basis of the commutation relation
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The phase-dependent quadrature operators X 1,2 are given
as
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Relation (1) can be obtained by taking the maximum over
6 on the right-hand side. Inequality (1) then formally
makes it possible to introduce a quantity like phase vari-
ance fulfilling the uncertainty relation with the photon
number variance as
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The explicit calculations [4,7] confirm this conclusion,
apart from the multiplicative factor V'2, for strong two-
photon coherent and coherent fields, since the value of
V'2A¢ represents the smallest possible phase resolution in
the Shapiro-Wagner phase concept, if both quadrature
operators X (0) and X,(6) are measured simultaneously.
Now we will clear up for which states the equality in
inequality (1) holds exactly. These states are the
minimum uncertainty states (MUS) of the photon-
number operator 7 and the quadrature operator, since
they resemble the number-phase MUS of the SG phase
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operator investigated in Refs. [13] and [14]. Their
mathematical development goes analogically and they
represent another special example of NMS, mentioned in
Ref. [6] as a polynomial solution. The equality sign in
the inequality (1) holds for states that diagonalize the
non-Hermitian operator,

a—ilgl X (0]lyy=0qly) , 3)

in analogy to the analytical approach of Ref. [14]; the
complex parameter £ is advantageously defined as
E=iexp(i0)|&|. The properties of these extremal states
will be considered here.

The value of An can be found directly without tedious
calculations if we notice that the expression on the right-
hand side of inequality (1) represents the maximum over
6. Then

[(X,(6))] <] A
28X,(6) P

(An)yys=

and, since inequality (1) takes place for all states, the fol-
lowing equality is therefore valid:
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To obtain the explicit solution for photon-number and
quadrature MUS we rewrite Eq. (3) advant@geously to the
form with displaced annihilation operator 4 =@ —&,

(AT 2 +2e* D) =@ — ey . (5)

The solution can be found in the form of decomposition,
l¢)=3,a,ln), respective to the displaced Fock states
generated by the 4 operator. Then it is necessary to fulfil
the recursion relation
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To converge the decomposition requires the cutoff in

the form
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and
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The solution may be expressed in the closed form as
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or alternatively, in the basis of Fock states using the rule
for expanding the generatmg function of the generalized
Laguerre polynomial [15] L) as
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Using the identity
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the state (7) may also be treated, analogous to the
coherent states [16], as nonunitarily-shifted Fock states
M) (Ref. [11]),

lY) =N exp[|£|X,(0)] M), (10)

where the normalization N is given as

N(&,M)={M|exp[2|£|X,(0)]|M )12
=(MN"?exp(—|&M)]agl 7(2]1ENM (11a)
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Equality (11a) follows from identity (9), whereas expres-
sion (11b) is obtained using decomposition (8) of the ex-
tremal state with the argument 2£.

The spectrum of the operator equation (3) is real and
therefore we can derive easily that X,(6)=0 (Ref. [17]);
X,(0)=2|al, n=M +1£|%. Other moments important
for systematic investigation of these extremal states in the
spirit of Ref. [6] can be developed as

=E[1+2L Y (—4|E1%) /Ly (—4|E]H)]
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and
An=(|&]|a|)”?.

The sub-Poissonian nature of such light is evident, since
|@| > |&] and therefore An <|a@|<(7)!/2. For complete-
ness we will set up the appropriate spheroidal equation
associated with inequality (1) in the form

[varfi+i|§|var)?,(6)]

X [varf —i||varX,(0)]|¥) =0,
or more apparently
[A2—2MA — &% —a?—gra—¢ga’
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The extremal states therefore minimize the photon-
number variance under the constraints of given ampli-
tude and variance of one quadrature component.

The antinormally ordered quasidistribution Q (a)

a)=[alP)?/r~la+EMexp(—la—¢&l))  (13)

yields the typical crescent shape, as is seen in Fig. 1. We
suggest, therefore, introducing formally the operator of
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FIG. 1. (a) The plot and (b) the view on the Q representation
of the near-photon-number eigenstate for M =6, £=0.1. The
contours are at the levels 0.001, 0.002, 0.003, and 0.004. The x
and y axes lie in Rea and Ima, respectively.

crescent shape ¢ (&),
Ce)=explI£1X,(0)], (14)

as the complex extension of displacement operator D(a)
representing the nonunitary transformation. The state
given by expression (10) is then the crescent state. The
crescent operator plays the same role for probability dis-
tributions of photon number and phase as the operator of
squeezing does for probability distributions of quadrature
operators. The properties of both operators are therefore
analogical and the crescent operator is relevant to the
phase measurement in the Shapiro-Wagner phase con-
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cept. A similar behavior, but without such an easy for-
malism, can be found also in other phase concepts [10].

III. NEAR-PHOTON-NUMBER EIGENSTATE FIELDS

The crescent transformation is associated with the gen-
eralized quantum measurement [18] of photon number
and both the quadrature components, as the real and
imaginary parts of diagonalized operator Y in Eq. (3),

Y=n—ilg|%,(0),

indicate. This may be verified explicitly considering the
state reduction for correlated photons in nonlinear opti-
cal processes [8,9]. We will show this, adopting the re-
sults of Ref. [9]. Let us suppose that the nonlinear cou-
pling device performs the SU(1,1) transformation of input
modes @, , into the output modes 51,2 according to the
rules

b,=a, cosh7'+aJ2re “®sinhr ,

b,=a, coshr+ale ®sinhr ,

providing the input state in coherent states a, (respective-
ly, By). If one input mode (port 1) is measured and found
in the pure photon-number state |m ), then the field on
the other port 2 is prepared in the state with the reduced
Q,, quasidistribution,

V'=1/(wm!cosh?r)(tanh7)*"|a—&|*" exp[ —|a—a,|?/cosh’r—|a—&|® tanh®r] , (16)

where @=a,+e'®B% /tanhr. Such states evidently may
be treated as the unnormalized states

) ~@'—p*mvy ., , 17)

where the parameters are given as u=a,+e®B3 /tanhr
and v=ay+e®B% tanhr. The states (17) may be normal-
ized easily and parametrized using the displacement and
crescent operators as

lg,(£,m)) =N(&,m)D(@)C(&)|m) ,
(18)
On(a)=|(alp,(&m))*/m ,

N(&,m) is the normalization given in expression (11b)
and

e=(u+v)/2=a,+e"®B% /tanh2r ,

s ) (19)
E=(v—p)/2=—e'"B /sinh2r .

This state reduces to the crescent states without displace-
ment, if the condition @=ca,+e¥8% /tanh2r=0 is
achieved.

The considered near-photon-number eigenstates will

play an important role in more sophisticated detection
techniques in the future; the combined conditional proba-
bility distributions investigated in Ref. [12] are such an
example. The states (18) may be associated with the
probability operator measure (POM) respective to the
simultaneous measurement of photon number and quad-
rature components, as is done in the Appendix.

IV. CONCLUSIONS

The investigated states represent the extremal states
respective to the measurable effects of phase, squeezing,
and antibunching. They exhibit analogical features com-
paring to the number-phase MUS of SG phase concepts,
but the model considered here seems to be more simple
and effective. In particular, the operator performing the
crescent shape transformation may be introduced simply.
The near-photon-number eigenstates are suited to the
above-mentioned measurements simultaneously, and
therefore the improvement of performance by some com-
bined measurements may be expected in the future.
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APPENDIX: POM FOR SIMULTANEOUS
DETECTION OF PHOTON NUMBER
AND BOTH THE QUADRATURE COMPONENTS

The considered probability distribution (16) can be
treated as a result of generalized quantum measurement
on output modes of the SU(1,1) coupling device, since

P, (a)=Tr[ R, (@)fou] - (A1)
The POM is given by the operators
R\m,om(a)=(l/7r)|m)11<m|®|a)22<a| , (A2)

|m) being the Fock state and |a) being the coherent
state of the output modes 3172 of the SU(1,1) coupling de-
vice (15), which performs the transformation of signal in-
put mode @; and of some auxiliary (image) input mode
@,. Our task is to find, for a given image input field, the
POM R,, ;,(a) on the signal Hilbert space. The physical
specification is therefore the following: the input mode 1
is in an arbitrary state with the density matrix represent-
ed as

Pn= [ daoP(ag)lag){ayl ,

whereas the image input field 2 remains, as in Sec. III, in
the coherent state 3,. The formal solution

(A3)
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ﬁm,in(a)z2,in<Bolﬁm,out(a)!BO>2,in (A4)

can be expressed using the projectors into the displaced
crescent states (18), if we assume that

P, (a)= [ daoP(ay){alp,(&m)) %, (A5)
=fdzaoP(ao)l(aoltf),(&m))lzqm (A6)
=Tr[pinR ()], (A7)

where

R, i(@)=13,(&m))(m,6),5lq,, /7 (A8)

and =a+e'®B% /tanh2r and
q,, =(sinh7)?™ /(m \cosh®r)
X exp( — | B,|? /cosh?r)
X L,,(—4|By|*/sinh?27) .

Relation (AS) follows from (A3) and from the
knowledge of quasidistribution (16) for an input signal
field in the coherent state. The equality in (A6) is valid
due to the dependence of the state (18) on the complex
amplitude a, since the parameters a,a, may be changed.
The resolution of the identity operator

S [ [dea,le&m)(me,el=1 @9
m =0

1
T

is the consequence of expression (A2).
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