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The purpose of this paper is to investigate intrinsic restrictions of quantum mechanics put on the
correlation function g'? by values of lower-order moments, which characterize noise in inter-
ferometric measurements. Some general consequences regarding the relation between antibunching
and squeezing are obtained. The class of fields with the minimum value of g'?’ for given noise is
specified and the relation of such states to the Kerr medium is emphasized. The concept of noise
minimum states can replace number-phase minimum uncertainty states.

I. INTRODUCTION

To obtain usable information about statistical proper-
ties of light, quantum optics often deals with moments of
the operator of electromagnetic field E only, instead of
using the complete information contained in the density
matrix p. In such a way, of course, some of the content
of the information about light is lost. Nevertheless, dual-
ism of the light quanta is preserved if we use the mo-
ments of the field operator up to fourth order.""? Howev-
er, if we accept this approach, a number of new problems
arise from the theoretical point of view. The density ma-
trix p must obey the following important conditions:>
(1) p is normalizable,

Tr(p)=1, (1.1a)

(2) p is a positive-definite Hermitian operator, and there-
fore (3) the necessary condition

Tr(pH <1, (1.1b)
where the equality holds for pure states.

Consequently some intrinsic restrictions appear, which
apply to all the possible moments of the field operators.
They are known as the generalized Cauchy-Schwarz
(GCS) inequalities,>* and their origin is the same as that
of the violation of Bell inequalities,’ for example. In oth-
er words, they are predictions of quantum mechanics. In
the spirit of the second quantization we will deal with the
creation and annihilation operators of the single-mode
stationary boson field @' and @), and the question is:
What are the mutual restrictions put on the moments of
the operators @ ta up to the fourth order? As a special
result of this general task we can obtain some conse-
quences for the relation between squeezing and anti-
bunching of light,® because the former effect involves the
operators up to the second-order,! whereas the latter one
includes them up to the fourth order.? This connection
was recently obtained for special states of light. Walls’
showed that ideal vacuum squeezed states are bunched
(@'?> 1) and Bondurant and Shapiro® found maximal an-
tibunching of ideal squeezed states as (An)?=(7)?/? for
mean photon number 7 large, where An is the root mean
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square of #A (rms). The stronger antibunching
(An)?=(7m)'3 occurs for the very special Kitagawa-
Yamamoto states’ (amplitude squeezed states), generated
with the help of Kerr nonlinearity, and therefore a natu-
ral question arises: How closely can we approach the
“ideal” case (An )*=0 under some given conditions? We
will try to clarify these questions.

For this purpose we will introduce a new class of quan-
tum states of light-noise minimum states (NMS’s). They
will be defined as all the states that minimize the rms of 7
under given constraints of lower-order moments. This
definition represents an alternative approach to the con-
cept of minimum uncertainty states!® (MUS’s), especially
number-phase MUS’s when we try to minimize the uncer-
tainty product of two canonically conjugated operators,
especially of photon-number and ‘“‘phase” operators.
Both concepts—NMS’s and MUS’s—when applied to
the simplest case of operators up to the second order in
a%a and to quadrature operators, respectively, tend to
well-known ideal squeezed states (for NMS’s this will be
shown in Sec. II). Fundamental differences appear when
also moment # 2 is involved. Number-phase MUS’s min-
imize the rms of #, but nobody knows under which physi-
cal circumstances. There are two noncommuting opera-
tors C and § associated with classical phase and there-
fore “phase” has a problematic meaning in quantum op-
tics, except for strong fields. These difficulties, contained
also in the mathematical structure of number-phase
MUS?’s, hinder possible applications. As a matter of fact,
the rms of f1 is ranged not only by predictions of values of
the rms of C and S, respectively, but also by all measure-
ments of noncommuting operators; for example, using
such measurements which include operators @,a 24 (re-
spectively, their adjoint operators) only. This is the main
idea of NMS’s and it promises better conditions for the
interpretation of the minimum value of the rms of f, be-
cause only squeezing is connected with the measurement
of such moments. Better conditions for a physical inter-
pretation of NMS’s will perhaps increase possible realiza-
tions and applications. Nowadays antibunching and
squeezing are utilized separately and are also treated as
independent effects of different order, but in the future it
will perhaps be necessary to use them simultaneously.
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The usage of NMS will show to what extent that is possi-
ble.

To support the concept of NMS’s we will emphasize in
Sec. 4 that such states incorporate many interesting
quantum states of light that are widely used in the inves-
tigations of quantum optics, i.e., superposition states,'!
ideal squeezed states,”!? amplitude squeezed states,’
photon-number states (Fock states), etc. All these states
possess the common feature mentioned above, and there-
fore the concept of NMS’s unifies a variety of states in
quantum optics.

To avoid confusion it will be necessary to clarify the
terminology regarding squeezing. The notion of quadra-
ture noise squeezing is straightforward—for some phase
parameter ® the quadrature variance ([A Re(@ e ~'®)]?)
falls below the semiclassical shot-noise limit of §, associ-
ated with a coherent state.! Unfortunately, the literature
in the field has not been uniform in its use of the word
“squeezing.” Yuen’s two-photon coherent state'* (TCS)
is a pure state with a Gaussian normally ordered form
that is squeezed, and we will distinguish this ideal
squeezed state from more general entities that satisfy the
preceding squeezing condition that a state that is
squeezed need not be a squeezed state, i.e., that it need
not be a TCS. The quadrature variance condition given
above will be replaced in Sec. II by an equivalent relation
[see inequality (2.3) below]. In the following we will use
the abbreviation TCS also for ideal squeezed states,” 2 or-
dinary squeezed states,’ etc. (as they differ in the parame-
trization only!) to distinguish them from the states that
are only squeezed according to the quadrature variance
condition. In the same way, since we suppose an ideal
process of detection, sub-Poissonian or antibunched light
is the same and we will use the term antibunching.

The paper is organized as follows. The relations be-
tween moments based on the GCS inequalities are given
in Sec. II. The main results are extended in Sec. III,
where the NMS’s are mathematically developed. In Sec.
IV some special examples of NMS’s are concluded, to-
gether with considerations about the relation between an-
tibunching and squeezing. Section V contains some other
problems related to NMS’s.

II. RESTRICTIONS
Our tool will be the GCS inequality®*
[CA,BYP<|| 4| |B)? , 2.1

where ( 4,B)=Tr(pA 'B), | A|*=TrpA4 * A), which is
valid for operators with bounded norms. The scalar
product allows the possibility that || 4| =0 for A4+0.
The equality in (2.1) occurs only for the states g, where (i)
| 4]|=0, ||B||=0 or (i) || 4|| |B||0 and (4 —AB)p=0
for some A. We would like to emphasize that inequality
(2.1) cannot be violated in quantum mechanics in con-
trast to the classical Cauchy-Schwarz inequality,’ which
can.

Consequences for lower-order moments are quite sim-
ple and the following inequality can be written:®

la|*<n (2.2a)

and

la?—@)?**<(n—lal*>*+n—lal*, (2.2b)
where the bar above the operators means the mean value
and the abbreviation 2 '@=# is also used. The equality
occurs for coherent states in (2.2a) and the TCS’s in (2.2b)
only. All possible moments must be in accordance with
this relation and we can represent them advantageously
in a graphical way, if we choose the three-dimensional
configuration space with the axes x +iy =a?, z=# with
the complex parameter @. All moments above the hyper-
boloid H are then possible [Figs. 1(a) and 1(b)]. Another
finer classification of this space according to squeezing is
provided by the condition'*

(a)

S—
—

FIG. 1. (a) Three-dimensional subspace of all possible
second-order moments for a given value @ ranged by the rota-
tionally symmetric hyperboloid H. The cone C is the boundary
for moments representing squeezed light. H, and C, have the
same meaning for @=0. All antibunched Gaussian states lie in-
side the sphere S with center at origin O and radius v'2|@|%
Vertex V has coordinates [Re(@)?, Im(a)?, |@|*]. (b) Upper view
of the cut of (a) by the plane 7 =const. General points may be
represented by the parameters (y,|a?|) or alternatively
(¢,laT=(@)]).
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la*—(@)?>r—lal?, (2.3)
which represents the definition for squeezing (in general).
The geometrical meaning is also simple—all points below
the cone C are squeezed and the TCS’s provide the maxi-
mally squeezed states of the field for given @,7n. They are
the only states lying on the surface of the hyperboloid H,
in spite of the ambiguity in all other points of the space in
Figs. 1(a) and 1(b). Such a description is not meaningless
and the symmetry of the space is very important. In the
case of vacuum fields (@=0) the space of second-order
moments is rotationally symmetric along the z axis.
When @#0, the symmetry is broken, since the direction
of the complex amplitude @ is preferred, and only the
mirror symmetry with respect to the plane given by the z
axis and by the direction of (@)? (OV line in Fig. 1) is
preserved. We also remind the reader of a more common
way how to describe the noise properties of the light in
the phase-space diagram."! The field (i.e., every point al-
lowed in Fig. 1) may be represented by the complex am-
plitude @ and the superposed noise (error) ellipse (Fig. 2),
which represents the noise measurable by the homodyne
detection. The correspondence between both Figs. 1 and
2 is given by the following expressions:® 4

Mo=1+2n—laltla’— @R, (2.42)
A*=Afcos*(p)+Alsin*(g) , (0 4b)
p=¢/2=largla’—(a)*]—arg(a) . (2.4¢)

The coordinates of the general point P in Fig. 1 regarding
the vertex V are just the variances 7—|a|? a%—(a@)%.
The meaning of the inequalities (2.2b) and (2.3) with
respect to the phase-space diagram is very simple. The
former one is equivalent to the relation A;A,>1 and
equality occurs just for the TCS’s and the latter one
represents all fields with A, <1 and they are squeezed.

A much more complicated task is to study the connec-
tions mutually relating second-order moments with the

X

P(¥)

X4

FIG. 2. Geometrical interpretation of the noise in an inter-
ferometric measurement in the phase-space diagram. a is the
complex amplitude of the field and A, , are half axes of the un-
certainty ellipse.

fourth-order correlation function g?=(a™a?)/(n)?
and (An)?=n%—(7)*=(a a2)—(n)?+n, respectively.
The following two conditions were recently derived:®

22
(2)3L‘LL (2.52)
(7)? o2
and
(An)> 7| -2 (2.5b)
}\’1)\'2 ’

where the last expression depends on the parameters of
the noise (error) ellipse, as sketched in Fig. 2. Both ine-
qualities (2.5a) and (2.5b) are consequences of the GCS in-
equality and they forbid some fields to be antibunched.®
All squeezed vacuum states (@ =0) are an evident exam-
ple as a consequence of (2.3) and (2.5a), and therefore the
vacuum TCS’s are bunched’ as well. However, not only
for vacuum TCS’s but for all TCS’s there exists a quite
simple relation between squeezing and antibunching, as is
seen from the following geometrical interpretation. The
correlation function g‘¥ can be factorized for all Gauss-
ian'® states (not only pure states like TCS’s) to the form

@ —la?]

_l4
8 Gauss — (_)2

la
1____
(7)?

+2 , (2.6)

X

and the condition g&) ., <1 has a very clear representa-

tion in the space in Fig. 1. Antibunched states lie inside
the sphere, with the center at origin O and with the ra-
dius V'2|a@|% All possible antibunched Gaussian states lie
in the region above the hyperboloid H, inside the sphere
S, and therefore they are all squeezed (i.e., they lie out-
side the cone C). The TCS’s are situated on the surface of
hyperboloid H; their antibunching reduces to the inter-
section of H with sphere S for all amplitudes @, contrary
to the approximation of the strong field in Ref. 1.

We believe that these simple geometrical considera-
tions justify an artificial coordinate space in Fig. 1. Nev-
ertheless, it will be useful in the following, when it will be
necessary to quantify the space of ““all error ellipses.” We
will search for the states minimizing n2 when 7, a?, and @
are given by a straightforward generalization of the prop-
erty of TCS’s following from (2.2b), which minimizes 7
when a? and @ are given.

III. VARIATIONAL EQUATION
FOR NOISE MINIMUM STATES

The previously mentioned result shows the existence of
the low boundary of the correlation function g'®’ and
(An)?, respectively, _dependent on the first- and second-

order moments @, a2 and 7. Unfortunately, our estima-
tions do not enable us to find the minimum value of the
correlation function g2 (@,a%7) of the field with the
given moments @, a7, and it is necessary to use the vari-
ational approach.!”!® All states minimizing the function-
al Tr(p% ?) under the restrictions
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Tr(p)=1,

Tr(pa)=a ,
_ 3.1)
Tr(pa *)=a?,

Tr(pR)=n

are NMS’s and obey the operator (Lagrange-Euler) equa-
tion

(A 2+yA—E0 =%+ ad '+ a*@)pin=MPrmin »
(3.2)

A and y are real parameters, and £, and a complex.
Equation (3.2) is nothing other than the steady-state solu-
tion for the nonlinear Hamiltonian, including Kerr non-
linearity together with the generation of TCS’s in the
rotational-wave approximation. From the methodical
point of view it is necessary, at first, to find the eigenvalue
and all eigenfunctions of the ground state of such a Ham-
iltonian, and if some degeneration of the solution ap-
pears, then to construct an appropriate density matrix.
Our strategy is straightforward—if we know p,;, and
Amin as functions of the parameters y, a, and §, and if we
changed them by the parameters a@,a 2, and 7 using the re-
lations (3.1), we could obtain n? as a function of the pa-
rameters @, a2, and 7 only. This provides the smallest
possible value of g'* and n?, respectively, when some
given complex amplitudes of the field and noise are
presented. Knowing this we can also predict what kinds
of fields can or cannot be antibunched, and therefore the
following program is to be realized: to find this function
for all points above the hyperboloid H in Fig. 1. The
symmetry of the space enables us to simplify the solution.
In the case where @ =0, the function g2 will be rota-
tionally symmetric along the z axis. When a@#0, then
mirror symmetry with respect to the plane given by the z
axis and direction (@ )? takes place. We will minimize the
appropriately chosen nonlinear functional

n2+ya+v|alP+ola?2+£((@ et +@ra) . (3.3)

The above-mentioned symmetry is included and vy, v, 4,
and § are four real parameters instead of five real ones.
The extremal equation' is given as

(R 2y +([9a+8@)]e P+ (va+2ca fatia t
+c.c. DY) =Aly) .

When we compare it with Eq. (3.2) we can obtain the pa-
rameters as

(3.4)

£2= —[9a’+£(@ )] (3.5a)

and

a=va+2¢ata?. (3.5b)

The solution has fundamental importance in quantum
optics but it will be rather complicated to find it because
the above-mentioned Hamiltonian includes a variety of
quantum optical effects such as antibunching, squeezing,

bistability, etc.

We will deal with the equation for the ground state of
the wave function |¢) of Eq. (3.2) and we can use advan-
tageously the representation of the quantum mechanics in
terms of functions analytic in the complex half-plane.'’
Then the creation operator may be represented by £*z,
whereas the annihilation operator by d /d (§*z) for £§+0
and the functions (£*z)"/(n!)!/? are then associated with
the Fock state |n ). We will search for the ground state
of the equation that is regular in the complex half-plane,

af
dz

+(—A+ulglz+gl* 22 f =0,

where u=a/£ is a complex parameter. This type of
equation has been known since 1928 as a generalized
spheroidal equation,” and some special cases of it came
from the problem of an electron in the Coulombian po-
tential of two nuclei, from factorization of the wave equa-
tion in oblate (prolate) spheroidal coordinates,?! and the
solution is strongly connected with problems of optimiza-
tion and apodization in classical optics?? and squeezing in
quantum optics.?® In spite of the fact that such functions
are widely used, they have not yet been quite understood
and new methods for studying them need to be found.?*
Nevertheless, some aspects are known. Such an equation
involves three-term recursion formulas with decomposi-
tions using confluent hypergeometric functions.?’ The
three-term character is also seen from the rewritten equa-
tion (3.2) in the form

((ATAP+26* AT 42426 A A+ (4)g1P+y)A T4
+la+(y+1DEIA T+ [a*+(y +1)E* 14 —Q}ly) =0,
3.7

2
<z2—1)%z—{+[(y+1)z+,ﬁ]

(3.6)

A=a—¢& Q=rA+|E*—(y+1)|E|*—at*—a*¢,

if the basis for decomposition |¢) is taken to be
ln W =(1/n1)"%@ T —£*)"|£), |&) is the coherent state.
Alternatively, we can again represent the boson operators
4,4 %in the complex half-plane to obtain the equation
2
z(z =2 )M
dz*

+[2|§|2z2+(4|§|2+y+1>z+1+y*+y]i‘g—

+EPp+y+1)z —QIF =0 (3.8)
and for the decomposition it holds that F(z)
=¥ _0a,2",a_;=0,and
[n(n—1)+n(4|E2+y+1)—Qla,

+(n+1D)[2n +y+1+u*la, 4,

+|£122n —14+p+y)a, _,=0. (3.9

If we adopt a general technique for solving such equa-
tions,?! the normalizable solution exists for a discrete set
of parameters () only, and appropriate values are ob-
tained from the condition for a continued fraction



a
", n>0, X,=—Q—T,
n—1 l1+y+p

nin—1+n4|E*+y+1)—Q
+(n+1)2n+1+y+p*)X,
+(1/X,)|€12n —1+y+p)=0 .

X =

a

(3.10

The solution belongs to higher transcendental functions
and includes, as for the special cases, prolate spheroidal
functions (@=0), Mathieu functions (@=0, y =0), and
polynomial solutions (u+y=-—-2N+1; N=1,2,...).
We can solve the equation for some values of parameters
explicitly and obtain, in such a way, information about
the behavior for the function g'2).

IV. SPECIAL SOLUTIONS

The very important set of special solutions is represent-
ed by all TCS’s, as it follows from the unambiguity in
(2.2b) under the restriction

la?—(@)?}=(7—|a|)?+7—|a|? 4.1)
for all @ (i.e., the surface of hyperboloid H in Fig. 1), or
alternatively, from Eq. (3.2) for y — o, but with |£]?/y,

J

((Al—3—[i—laPAlr1+ D12 (A= 3+ 15— lal?/

The relation (4.3) was previously derived in Ref. 26 using
the heuristic method based on the inequality

Tr[pth —k)A—k—1)]20 for all k=0,1,2,... .
4.5)

The third example can be treated as the minimizing of
(@™ ?) for the given a® only. Variational formulations

need a=0, y = —1, and we search for the ground state of
the equation

@P—g*2@2—e)y)=(r—|gl* .

It is evident that coherent states |+&),|—&) create a
subspace of extremal states and they also directly fulfill
the equality sign in the inequality (2.5a). Advantageously
we will define the new orthonormal basis as eigenfunc-
tions

o) = exp(|£]2/2)

(4.6)

( 0sh|§|2)'/2(|+§>+|_€))
=(cosh|g|?)7!/2 2 —2%1 (4.7a)
and
o) =%"+5>_"§”
=(sinh|£|?) 12 2 i 2n+1), (4.7

n=o [(2n+1)1]'72
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a/y#0. The value of g'2) is expressed as (2.6) under the
condition (4.1).

Another well-known example of the generalization of
the Fock states may be given. The Fock state is the
eigenfunction of (3.2) for a=£=0, and the solution can
be twice degenerated for appropriate values of y. The
minimum state appears for y=—2[A]—1 and for the
density matrix

Poin=d|[ADA A+ =d)|[R]+1){[A]+1]

+({@a/((r]+ D[R]+ 1){[A]ll+c.c.), 4.2

where d =7 —[7] and [7] is the integer part of the mean

photon number 7. Such states provide the minimum

value
(An)2,=d(1—d)<1,

3

(4.3)

depending on the mean photon number only. It holds for

all complex amplitudes satisfying (1.1b), i.e.,
la|2<([7]+1)d(1—d) . 4.4)

In Fig. 1 such minimum states are situated (i) for 2=0
along the z axis without constraints, and (ii) for @0
along the z axis inside the closed intervals

/([A1+1D]V2) for [A]=>4|a|*—1 .

I
including even (odd) Fock states only. They are also
known as SU(1,1) coherent states?’ or even (odd) coherent
states.'®2® The annihilation operator acts on the sub-
space according to the rule

@le)=E&(tanh|&]*)'?)0) ,
@lo)=E&(tanh|£]?) " 2|e) .

(4.8a)
(4.8b)
The extremal density matrix is then given as
Pmin=rle)(el+(1—=p)lo) ol +rle)(o|+r*lo)(el,
4.9)

and the parameters &, p, and r are connected with &, az,
7, and (@ "2 ?) through the relations

_=§{[r(tanh|§|2)1/2+rt(tanh|§|2)—l/2” ,

02=§2
) ) (4.10)
=|£*[p tanh|£|>+(1—p)/tanh|£]*]
(37‘262)=|€!4 ,
and this description is correct for
0=<p=1, (4.11a)
Ir?<p(1—p), (4.11b)

as the consequences of the properties (1.1a) and (1.1b).
The dependence in (4.10) can be inverted as
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. 2
_ smh2_|-a 1 la?| (4.12a)
2|a?| tanh|a |
-2
|,;2=J_¢Ml_[l—cos<xnanh2|a 11, (4.12b)

4|a?|

where Y= arg(a )—2arg(a). Consequently, the condi-
tions (4.11), and (4.12) mark out the region in the space of
second-order moments, where p,,;, defines the minimal
value

(2) — |a 2
in . (4.13)
m(m)?
The region is defined as
——l——~ n —tanh|a?|+
tanh|a | |a | 102|
_ 2
> 1=cositanh2la®] ) 212 177 (4 140)

tanh2|a?|

All such points lie near the zero cone C, but above the
hyperboloid H. Effectively the largest region occurs for
a=0,

|a2|tanh|a?| <7 <|a?|(tanh|a?|) " (4.14b)

and we can summarize our knowledge about g'2) in Fig.
3 in this case by the following.

() a’=0; g2 =1—1/A+d(1—d)/(7)
in (4.2)
(ii) 0< 7 < |a?|tanh|a?|; g2} <1; B, includes polyno-
mial solutions of (3 2)fory<—1,e Qzl_lcnly unknown
a?|(tanhla?))""; g2 =]a’?/

2. A . .
5 Pmin 1S given

111) |aZ|tanh|a?| <7 <|a
(71)% Brin 18 glven in (4.9).
(iv) 7 <|a?|tanhla?])"!

; g2 >1; ppin includes the

solution for spheroidal wave functions for y > — 1, explic-
itly unknown.
W) A(A+1)=|a’|? g =3+1/m; p,,;, is vacuum TCS.

In cases (ii) and (iv) it is necessary to solve the spheroidal
equations (3.2) and (3.6), respectively, for a, u=0, as a
consequence of the symmetry (3.5) for @ =0.

From the point of view of quantum optics there exists
an important surface O, defined as

gun(@,a’,m)=1,

(4.15)

which separates the region of possible antibunched states
g3, <1) from the region where all states must be
bunched (g'2) > 1). Such a surface is zero cone C; in the
case @=0, and when |@| increases, the surface is de-
formed and only the front part of C,, with respect to the
complex amplitude (a)2 is preserved, according to the
condition (4.14a) for |a?| =7,

|a|®
|a?

1—tanh|a?| > (y)tanh2|a?|] . (4.16)

The structure of the surface Q_ for all intermediate states
(@#0, ) will probably be complicated, but there are
some reasons for its simple determination for strong fields
because condition (4.16) reduces to half a straight line
¥=0, |a?|>|a|? in this case. We will try to find Q, in
the future.

As the last example we will deal with the amplitude
squeezed states’ decreasing the variation (An)* up to
(7)!/3. Such states are generated in a nonlinear Mach-
Zehnder interferometer using the Kerr medium and they
may be expressed as

l¥)=D(n0(w

where the displacement operator ﬁ(n) and the operator

ey, (4.17)

/

N\ /1)
N Co
Ho

3

4)
‘-,

~.

Imat ~

FIG. 3. The five regions for values of g'%) for vacuum fields zero cone C,. The value g'2), is explicitly unknown inside the

(@=0). Inside C, the field can be antibunched (g2;, <1) but
outside it cannot (g'2), > 1). The surface Q, is incident with the

regions (2) and (4).
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I?(a))=exp[%iwh‘(ﬁ—l)] act on the coherent state |a, ).

The parameters are suitably chosen to fulfill the condi-
tions

2/3

. 1on —
n=—iae /n}3, w=n7?3, n.=|a,|?, (4.18a)

so that n,o>>1, n.w?<<1 takes place for n, large. Un-
der these conditions the lower-order moments can be ap-
proximated as

la|=~nl?, (AaTAa)=~[((Aa)?)|=n2",

c

- (4.18b)
((A@)*) /(@P=—n1".

This state is not evidently the extremal state for (3.2) in
the mathematical sense, but it is reasonable to investigate
how closely it approximates the state with a minimum
rms of f for given large moments @ and A. This sugges-
tion seems to be in accordance with the requirement of
symmetry (3.5a), since for £=0 the condition for al/(@)y
to be real applies. We will compare the state (4.17) with
the solution of Egs. (3.2) and (3.6), respectively, for £=0,
including the symmetry of Eq. (3.3),

[A2+ya+uv@ta+aa H)w)=rlw) . 4.19)

Unfortunately we do not know the solution explicitly and
therefore our estimation will be based on the higher-order
GCS inequalities (2.1), for which the equality sign occurs
just for the NMS’s. The method is given in the Appen-
dix, and we can conclude that for n, large (4.17) seems to
be quite a good approximation of the solution.

V. REMARKS ON THE SOLUTION

In this section we will mention the following as yet un-
discussed possibilities of other studies concerning NMS’s.

(i) We can deduce from the variational nature of Eq.
(3.2) that a similar equation will also solve the problem of
finding the maximum squeezing under given conditions.
Therefore relevant processes connected with the Hamil-
tonian (3.2) can, in special cases, improve squeezing, as is
investigated elsewhere.?’.

(i) The inequality (2.5b) is valid, but the extremal
states have not yet been found,*® besides the simplest case
of Fock states. It is interesting to note that the equality
occurs for TCS’s under the approximation of a strong
field used in Ref. 1, Chap. 3.3 for 7 >>exp(2s), where s is
parameter of squeezing sinhZs =A@ TA@ ).

(iii) It is possible that the ground steady-state solution
of (3.2) may not provide the minimum value of the rms of
f for all possible points above the hyperboloid H. Then it
is necessary to find another solution of (3.2) with the next
value of the parameter A, > A, and to do the previous
procedure until the minimum value of the rms of f# on the
whole configuration space in Fig. 1 is found. The solu-
tion for NMS’s is really the ground state of (3.2) for
points on the surface of the hyperboloid H (TCS), but on
the contrary we must use the entire spectrum in the case
of Fock states situated on the z axis. It is still unknown if
some discontinuities of (An)? can appear, as a conse-
quence of different steady-state solutions of the Hamil-
tonian (3.2).

VI. CONCLUSIONS

This paper is related to the fundamental problem of
quantum mechanics and can be characterized by a basic
question: What is the connection between mathematical
tools of quantum mechanics and really measurable quan-
tities? We solve it in the framework of quantum optics,
using the connection between the properties of the densi-
ty matrix and moments of the field operators up to the
fourth order. NMS’s introduced in this paper represent
extremal states with respect to both nonclassical effects
squeezing and antibunching. Unlike number-phase
MUS’s they are tightly connected to experimental condi-
tions, since noise properties in homodyne detection are
better understood than quantum phase properties.
NMS’s allows us to clarify the question of maximum pos-
sible antibunching.

(a) The value (7)*/? represents the minimum value
(An)? under the constraints that a is given and condition
(4.1) applies.

(b) The value (7)'/3 represents an approximation of the
value (An)? under the constraints that @ and 7 are given
and condition (4.4) is not true.

In both cases the limit of a strong field with @ large is
supposed. To summarize, we can find the following im-
portant reasons for studying NMS’s in spite of their
mathematically complicated development.

(i) They entirely replace the concept of number-phase
MUS’s. They are realizable, the problems concerning
phase are avoided, and information about the rms of # is
preserved.

(ii) Both effects, squeezing and antibunching, have been
treated up to this time as independent phenomenon of
different orders. It would be inconsistent if we did not
clarify the intrinsic restrictions following from quantum
mechanics. NMS’s are able to provide information on
the extent to which squeezing and antibunching are com-
patible. Particularly, for vacuum fields (@ =0), they are
complementary effects.

(iii) The concept of NMS’s unifies many states of light
in the common framework.

Besides the fundamental questions of quantum optics
more practical problems have arisen as well. For in-
stance, both quantum effects could be simultaneously uti-
lized in quantum nondemolition measurement and in op-
tical communication systems in the future. We also sup-
pose that the above considerations provide new traits for
a better understanding of the nature of the quantum noise
of light.
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APPENDIX

The following inequality takes place and the equality
sign holds just for extremal states (4.19):
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|<(Aﬁ2)(Aﬁ+%EAaT+$‘TAa))|2

<1

- ’

((Aﬁ2)2)((Aﬁ+$aAaT+$‘TA6)2)

(AD

where AA=A— 4. The expression on the left-hand side
of (A1) is the measure of closeness to the extremal state of
the given state of the field. In this spirit we could also
derive seven inequalities, if we were interested in ex-
tremal states of (3.2). But we will deal with the (A1) in-
equality only and restrict ourselves to the highest order in
the complex field amplitude |a,|. The fraction on the
left-hand side can be easily developed as

la,?(2]a,[2+1)2
la 2 [2le, P4+ 1) +2]a, 7]

-1

: ) (A2)

2‘“1]2

which seems to be quite a good approximation of 1 in the
case of a strong field.

It is interesting to note that Eq. (4.19) enables us to fac-
torize some moments in the closed form, if we act on
both sides by the operators Aad,Ad *,Aﬁ ,A7 % and then
take the mean value. The following factorization takes
place:

(aaTar)=—la'Qa+v+y+1),

(aatar?y=—v@a+a'n—2lal’ahH—y(aa *Ah‘&é)

(A 2AR)=vla XA +v)—y[n*—(7)],

((AR2)?)=—y (AR 2AR) —v(@(AaTAR ) +c.c.)
—2va(aa'tan) —vialPea+1) .

These four relations are entirely equivalent to the solu-

tion of Eq. (4.19), because such moments provide the
equality in (A1).
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